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Figure 1: Examples of probabilistic automata

1 Probabilistic automata
Probabilistic automata are a generalization of finite automata introduced by [Rab63]. They are also a particular case of
weighted automata where the weights are rational (or real) and the transition matrices are stochastic (probabilities sums
to 1). The interpretation of this model is that the automaton associates to each word a probability of acceptance.

A matrix M ∈ RP ×Q is said to be stochastic if all entries are between 0 and 1, and the sum of all entries on each row
is equal to 1, i.e.

∑
q∈Q Mpq = 1 for all p ∈ P . A probabilistic automaton is a tuple A = ⟨A, Q, S, µ, T ⟩ where

• A is a finite alphabet,

• Q is a finite set of states,

• S ∈ [0, 1]1×Q is stochastic (row) vector of initial probabilities,

• T ∈ {0, 1}Q×1 is a 0− 1 (column) vector of accepting states,

• µ(a) ∈ [0, 1]Q×Q is a stochastic matrix of transition probabilities, for every a ∈ A.

Unless otherwise stated, we always requires the probabilities to be rational numbers. We naturally extend µ to define a mor-
phism from the set of words to the set of Q×Q matrices, using the usual matrix product: µ(w1 · · ·wn) = µ(w1) · · ·µ(wn).
To every word w ∈ A∗, we can now associate the probability of acceptance A(w) = Sµ(w)T .

It will occasionally be useful to more fined-grained probabilities. Given two states q, q′ ∈ Q and a word w ∈ A∗, we
define the probability of going from state q to state q′ by reading w to be A

(
q

w−→ q′
)

= µ(w)q,q′ .

Example 1 (Automaton of Figure 1a). We use the notation a|p on an edge of q to q′ to signify that the transition labelled
by a has probability p; formally µ(a)qq′ = p. If the probability is 1 then we sometimes write just a. In this example, there
is a unique initial state, labelled by an incoming arrow, which therefore has probability 1. We identified the accepting
states by an extra circle.

This probabilistic automaton is represented by the tuple A = ⟨A, Q, S, µ, T ⟩ where A = {a, b}, Q = {1, 2, 3} and

S =
[
1 0 0

]
, µ(a) =

0 1 0
0 1

2
1
2

1 0 0

 , µ(b) =

 1
3 0 2

3
1 0 0
0 1

4
3
4

 and T =

0
0
1

 .

Consider the word bb, it can be accepted through two paths:

• 1→ 1→ 3 with probability 1
3 ·

2
3 = 2

9

• 1→ 3→ 3 with probability 2
3 ·

3
4 = 1

2

Note that the path 1→ 3→ 2 has probability 1
3 ·

1
4 but ends at 2 which is not a accepting state. Thus the probability of

acceptance of bb is 2
9 + 1

2 = 13
18 .

Exercise 2. In Example 1, check that I, µ(a) and µ(b) are stochastic. Check that the acceptance probability of bb
matches the formal definition, i.e. Sµ(bb)T = 13

18 . What is the acceptance probability of aabb?

Exercise 3. Show that the product of two stochastic matrices is stochastic.

3
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Exercise 4. Given ⟨A, Q, S, µ, T ⟩, two states q, q′ ∈ Q and a word w, what is the interpretation of µ(w)q,q′? Prove it.
Therefore what is the meaning of Sµ(w)?

It is often convenient to create probabilistic automata where the transition matrix is not stochastic because the
probabilities sum to less than 1. This is the case in Figure 1c: the probability to leave state 2 is only 1

2 . This can handled
in two ways: either by allowing substochastic matrices, where the sum in each row less or equal to 1. Or, by adding a sink
state which is not accepting and collects all the missing probabilities. The two approaches are equivalent: any path that
reaches the sink state will never leave it and thus has probability of acceptance 0.

Exercise 5. Illustrate the substochastic and sink state approaches on C from Figure 1c. Show that indeed every word
has the same probability in each approach.

In the context of weighted automata, it is natural to consider the weighted language of words recognized by an
automaton, where the weight is the probability of acceptance. In the context of probabilistic automata, a new interesting
notion of language emerges. Let A be a probabilistic automaton and 0 ⩽ λ ⩽ 1, define the language recognized by A as

LA(λ) = {w ∈ A∗ : A(w) > λ}.

In other words, LA(λ) is the set of words accepted by A with probability at least λ. Any such LA(λ) is called a stochastic
language and λ is called a cut-point. Note however that LA(λ) is not a weighted language, there is one language for each
λ. More generally, given ▷◁∈ {⩾, >, =, ̸=, <,⩽} a comparison operator, we can consider

L▷◁
A(λ) = {w ∈ A∗ : A(w) ▷◁ λ}.

Example 6 (Automaton of Figure 1a). We have seen in Example 1 that A(bb) = 13
18 thus bb ∈ LA(λ) for every λ < 13

18 ,
but bb /∈ LA(λ) for every λ ⩾ 13

18 .

Exercise 7 (Automaton of Figure 1a). Find a word that is not in LA( 1
2 ) and one that is in LA(λ) for all λ < 2

3 . Can
you find a word in LA( 2

3 )? Find an infinite regular language that is included in LA(λ) for all λ < 2
3 .

Exercise 8 (Automata of Figure 1). What is the relationship between B of Figure 1b and A of Figure 1a, in particular
can you relate LA(λ) and LB(λ)?

1.1 Relation to regular languages
It is natural to try to understand how stochastic languages compares to other classes of language, and in particular if they
are decidable language. A first simple step toward this goal is to compare them to regular languages.

Exercise 9. Prove that every regular language is stochastic. Hint: take a finite automaton and consider its transition
matrix: µ(a)q,q′ = 1 if there is an edge from q to q′ labelled by a, 0 otherwise.

Exercise 10. Let A be a finite alphabet, prove that the collection of regular languages over A∗ is countable.

When comparing regular languages to other classes, the following characterization will be very useful. It provides not
only a criterion to decide whether a language is regular, but also to estimate the number of states of a minimal automaton.

Theorem 11 (Myhill-Nerode). Let L be a language, we say that two words u and v are right equivalent for L, and write
u ≡L v, if for every w ∈ A∗, we have uw ∈ L if and only if vw ∈ L. Prove that ≡L is an equivalence relation. Show that
a language L is regular if and only if the number of equivalence classes of A∗ with respect to ≡L is finite. Furthermore,
the number of equivalence classes corresponds to the number of states of the smallest deterministic finite automaton that
recognizes L.

Exercise 12. Prove Theorem 11. For the last statement, you can show that the number of equivalence classes is a bound
of the number of states (and not necessarily that it is optimal). Hint: the equivalence classes correspond to states of an
automaton that recognizes L.

1.1.1 Non-regular stochastic languages

A first observation is that there exist some stochastic languages that are not regular, this was proven in [Rab63] using a
counting argument.

Theorem 13. Stochastic languages strictly contains regular languages.

4
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Figure 2: Examples of stochastic automata whose language is not regular.

Proof. Every regular language is stochastic, see Exercise 9. Conversely, we will construct a nonregular stochastic language.
Consider A = ⟨A, Q, S, µ, T ⟩ where A = {0, 1}, Q = {p, q} and

S =
[
1 0

]
, µ(0) =

[
1 0
1
2

1
2

]
, µ(1) =

[ 1
2

1
2

0 1

]
, T =

[
0
1

]
.

This automaton is illustrated in Figure 2a. Given a word w ∈ A∗, define [w] =
∑|w|

i=1 wi2i−|w|−1. We now claim that
Sµ(w) =

[
1− [w] [w]

]
. Indeed check that [ε] = 0, [w0] = [w]

2 and [w1] = 1+[w]
2 . Then we check by induction that

S =
[
1− [ε] [ε]

]
,

[
1− [w] [w]

]
µ(0) =

[
1− 1

2 [w] 1
2 [w]

]
,

[
1− [w] [w]

]
µ(1) =

[
1−[w]

2
1+[w]

2

]
.

It follows that the probability of acceptance of w is A(w) = [w]. But now note that [w] is dense in [0, 1] for w ∈ A∗.
It follows that if λ < µ then LA(λ) ⊋ LA(µ). Indeed, by density we can find w such that λ < A(w) ⩽ µ since λ < µ.
Therefore the collection {LA(λ) : λ ∈ [0, 1]} is uncountable. But the collection of regular languages is countable, thus
there exists a λ such that LA(λ) is not regular.

1.1.2 Universally non-regular probabilistic automata

The original construction by Rabin showed that there exists an automaton A such that LA(λ) is not regular for at least
one λ (in fact for almost all λ). Surprisingly, a small modification of this automaton given by [FS15] allows us to strengthen
this statement.

Theorem 14. There exists a universally non-regular probabilistic automaton, i.e. an automaton B such that LB(λ) is
non-regular for all λ ∈ (0, 1).

Proof. Consider automaton B illustrated in Figure 2b, it is defined over the alphabet A′ = A ∪ {♯} = {0, 1, ♯}. It is the
same as automaton A from the proof of Theorem 13 with an extra transition from q to p labelled by ♯. Note that when
reading a ♯, the automaton must be in state q for the word to be accepted with positive probability. Therefore for all
u, v ∈ A∗, we have that

B(u♯v) = B
(

p
u−→ q

)
B
(

p
v−→ q
)

= A(u)A(v) = [u][v].

Recall that the set [A∗] = {[w] : w ∈ A∗} is dense in [0, 1].
Now fix λ ∈ (0, 1) and take u, v ∈ A∗ such that λ < [u] < [v]. Then by density of [A∗] we can find w ∈ A∗ such that

λ
[u] > [w] > λ

[v] . But then B(u♯w) = [u][w] < λ whereas B(v♯w) = [v][w] > λ. This shows that u ̸≡LB(λ) v. Again by
density of [A∗], we can find infinitely many such pairs u, v and thus LB(λ) cannot be regular by Theorem 11.

Exercise 15. Let C = ⟨A, Q, S, µ, T ⟩ be the automaton illustrated in Figure 2c. Give A, Q, S, µ and T . Show for every
word x(n1, . . . , nk) := an1ban2 · · · ank b we have C(x(n1, . . . , nk; m)) = 2−m

∏k
i=1(1−2−ni). Show that if u = x(n1, . . . , nk)

and w = x(nk+1, . . . , nℓ) then C(uw) = C(u)C(w). Show that {C(x(n1, . . . , nk)) : n1, . . . , nk ∈ N, k ∈ N} is dense in [0, 1].
Conclude that C is universally non-regular. Hint: use the same proof idea as Theorem 14.

1.1.3 Isolated cut-points

An interesting observation in the examples above is that stochastic languages that are non-regular tend to verify that
LA(λ) ̸= LA(λ + ε) for small ε. For example, this was essential in the proof of existence of such languages. On the other
hand, simple examples that only recognize regular language tend to satisfy the opposite property that the language is
unchanged by small perturbation in the threshold. The latter are called isolated cut-points.

5
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Formally, a cut-point λ is called isolated with respect to some probabilistic automaton A if there exists δ > 0 such
that

|A(w)− λ| ⩾ δ, ∀w ∈ A∗.

We will call δ the isolation threshold (for λ), although there is no standard name for it.

Theorem 16. If λ is isolated with respect to A then LA(λ) is regular. Furthermore, if A has n states and r final states,
then LA(λ) can be recognized by a finite deterministic automaton with at most (1 + r

δ )n−1 states where δ is the isolation
threshold.

Proof. For simplicity, we assume that there is a unique initial state and a unique final state (which are distinct). Write
A = ⟨A, Q, S, µ, T ⟩ where Q = {s1, . . . , sn}, s1 is the unique initial state and sn is the only final state. Let L = LA(λ)
and assume that λ is isolated with threshold δ > 0. Let x1, . . . , xk ∈ A∗ be pairwise ≡L-unequal words (i.e. xi ̸≡L xj for
i ̸= j, see Theorem 11). Then by definition, for every i ̸= j, there exist y ∈ A∗ such that xiy ∈ L but xjy /∈ L (or the
other way around). Since λ is isolated we must have that

A(xiy)−A(xjy) ⩾ 2δ.

Let (ξi
1, . . . , ξi

n) be the first row of µ(xi). Let (η1, . . . , ηn) be the last column of µ(y), for this particular y. Check that
A(xiy) = Sµ(xiy)T = Sµ(xi)µ(y)T = ξi

1η1 + · · · ξi
nηn and thus

A(xiy)−A(xjy) = (ξi
1 − ξj

1)η1 + · · · (ξi
n − ξj

n)ηn ⩾ 2δ.

But since µ(y) is stochastic, we must have 0 ⩽ ηℓ ⩽ 1 for all ℓ. This implies that

|ξi
1 − ξj

1|+ · · · |ξi
n − ξj

n| ⩾ 2δ, for i ̸= j. (1)

In other words, the points ξi and ξj cannot be too close to each other for the L1 norm. Coupled with the fact that they
are stochastic vectors (and thus live in [0, 1]n), this will put a bound on k.

Let ∥x∥ = |x1|+ · · ·+ |xn| denote the L1 norm and BR(p) = {x ∈ Rn : ∥x− p∥ < R} denote the L1 open ball of radius
R and center p ∈ Rn. We will use the fact that BR(p) has volume cRn where c only depends on n (in fact c = 2n

n! ). Now we
can rephrase (1) as ∥ξi − ξj∥ ⩾ 2δ which implies that Bδ(ξi) ∩Bδ(ξj) = ∅ for i ̸= j. On the other hand, by stochasticity,
we have that ∥ξi∥ = 1 thus if x ∈ Bδ(ξi) then ∥x∥ ⩽ ∥x− ξi∥+ ∥ξi∥ < 1 + δ thus Bδ(ξi) ⊆ B1+δ(0). Therefore,

Bδ(ξ1) ⊎ · · · ⊎Bδ(ξk) ⊆ B1+δ(0)

where ⊎ denotes the disjoint union. By taking the volume, we get that kcδn ⩽ c(1 + δ)n and thus

k ⩽ (1 + 1
δ )n.

This show that the number of equivalence classes with respect to ≡L is finite and therefore L is regular. Furthermore this
gives us a bound on the number of states by Theorem 11. It is possible to improve the bound further by noting that the ξi

are stochastic vectors, therefore they belong to the hyperplane H defined by x1 + · · ·xn = 1, which is a n− 1 dimensional
subspace. Therefore we get that

(Bδ(ξ1) ∩H) ⊎ · · · ⊎ (Bδ(ξk) ∩H) ⊆ B1+δ(0) ∩H

where all intersections with H are nonempty. We conclude by noticing that if BR(p)∩H is nonempty, its volume in H is
c′Rn−1 (where in fact c′ =

√
n

(n−1)! ).
We leave the general case of a several initial/final state to the reader, since the proof is similar.

The previous theorem suggests that finding an equivalent deterministic finite automaton might increase the number of
states. Furthermore, the increase fundamentally depends on the isolation threshold, which we do not know if it is lower
bounded by a function of n. The next theorem shows that, in fact, it is not.

Theorem 17. There exists a probabilistic automaton A with only two states and a sequence (λm)m∈N of isolated cut
points such that LA(λm) cannot be recognized by a deterministic finite automaton with less than m states.

Proof. Let A = ⟨A, Q, S, µ, T ⟩ where A = {0, 2}, Q = {s0, s1} and

S =
[
1 0

]
, µ(0) =

[
1 0
2
3

1
3

]
, µ(2) =

[ 1
3

2
3

0 1

]
, and T =

[
0
1

]
.
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This automaton is very similar to the dyadic automaton of Figure 2a but in base 3. Similarly, we get that if w ∈ A∗ then

A(w) =
|w|∑
i=1

wi3i−|w|−1.

Contrary to the previous automaton, the set P = {A(w) : w ∈ A∗} is not dense anymore. Indeed, P is included in the
Cantor set C, that is exactly the set of real numbers of [0, 1] that do not require the digit 1 in their ternary (base 3)
expansion. In fact, it can be seen that C is the topological closure of P , therefore if λ /∈ C then λ must be an isolated
cut-point of A. Now fix m ∈ N and consider the cut point

λm = 0.2222 · · · 2211 =
m−1∑
i=1

2 · 3−i + 3−m + 3−m−1.

Note that λm /∈ C because its ternary expansions1 contain the digit 1. Then the word 2m ∈ LA(λm) since it has probability
of acceptance

A(2m) =
n∑

i=1
2 · 3i−k−1 > λm.

Conversely, if w ∈ A∗ has length |w| ⩽ m− 1 then

A(w) ⩽
|w|∑
i=1

2 · 3−i−|w|−1 ⩽
m−1∑
i=1

2 · 3−i ⩽ λm.

It follows that A(λm) is nonempty and must reject all words of length less than m. Therefore any deterministic finite
automaton that recognizes this language must have at least m states (see Exercise 18).

Exercise 18. Let L be a nonempty regular language that contains no words of length less than m. Show that any
deterministic finite automaton that recognizes L must have at least m states. Hint: use Theorem 11.

Theorem 17 shows that the number of states of a deterministic automaton must be a function of the isolation threshold,
even when the number of states of the probabilistic automaton is fixed. Conversely, it is natural to ask about the
dependence on the number n of states of the probabilistic automaton when the isolation threshold is fixed. The following
result shows an almost matching depencen with Theorem 16.

Theorem 19. There exists δ > 0 such that for infinitely many n, there exists a regular language recognized by a probabilistic
automaton with n states and an isolated cut-point with isolation threshold at least δ, such that the smallest deterministic
finite automaton recognizing it has Ω(2 n ln ln n

ln n ) states.

Proof. See Exercise 92.

1.2 Operations on probabilistic automata
Probabilistic automata naturally define functions from Σ∗ to [0, 1]. This gives us more structure to work with than classical
automata and begs the question of which operations can be done effectively. Natural operations include:

• convex combinations: αA(w) + (1− α)B(w);

• complement: 1−A(w);

• product: A(w)B(w);

• changing the probability of the empty word.

We will now see that all these operations are effective.

Lemma 20. For any two probabilistic automata A and B over the same alphabet, and α ∈ [0, 1], there exists an automaton
αA+ (1− α)B that satisfies (αA+ (1− α)B)(w) = αA(w) + (1− α)B(w) for every word w.

1Beware that a number can have two ternary expansions, for example 1
3 = 0.1 = 0.0222 · · · in base 3. In this case, λm = 0.2222 · · · 2211 =

0.2222 · · · 2210222 · · · that both use the digit 1.

7
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Proof. Let A = ⟨A, Q, S, µ, T ⟩ and B = ⟨A, Q′, S′, µ′, T ′⟩. Define C = ⟨A, Q ∪Q′, S′′, µ′′, T ′′⟩ where

S′′ =
[
αS (1− α)S′] , µ′′(a) =

[
µ(a) 0

0 µ′(a)

]
, T ′′ =

[
T
T ′

]
.

One can then check that

C(w) =
[
αS (1− α)S′] [µ(w) 0

0 µ′(w′)

] [
T
T ′

]
= αSµ(w)T + (1− α)S′µ′(w)T ′.

Graphically, this construction corresponds to the following:

A

α

B

1− α

Lemma 21. For any probabilistic automaton A, there exists Ac such that Ac(w) = 1−A(w) for every word w.

Proof. Let A = ⟨A, Q, S, µ, T ⟩ be a probabilistic automaton and define Ac = ⟨A, Q, S, µ, T ′⟩ where T ′
i = 1 − Ti, i.e. S is

the “complement” over T . Then for every word w ∈ A∗, we have that

Ac(w) = Sµ(w)S =
|Q|∑
i=1

(Sµ(w))iTi =
|Q|∑
i=1

(Sµ(w))i(1− Ti) =
|Q|∑
i=1

(Sµ(w))i −
|Q|∑
i=1

(Sµ(w))iTi = 1−A(w)

by stochasticity of Sµ(w).

Lemma 22. For any two probabilistic automata A and B over the same alphabet, there exists a product automaton A · B
that satisfies A · B(w) = A(w)B(w) for every word w.

Proof. Let A = ⟨A, Q, S, µ, T ⟩ and B = ⟨A, Q′, S′, µ′, T ′⟩. Define C = ⟨A, Q × Q′, S ⊗ S′, µ ⊗ µ′, T ⊗ T ′⟩ where ⊗ is the
Kronecker product: given M ∈ RI×J and M ′ ∈ RI′×J′ then M ⊗M ′ ∈ R(I×I′)×(J×J′) is defined by

(M ⊗M ′)(i,i′),(j,j′) = Mi,jM ′
i′,j′ .

We check that ⊗ preserves stochasticity: for every (i, i′) ∈ I × I ′,∑
j∈J

∑
j′∈J′

(M ⊗M ′)(i,i′),(j,j′) =
∑
q∈J

Mi,j

∑
j′∈Q′

M ′
i′,j′ =

∑
j∈Q

Mi,j = 1

if M and M ′ are stochastic. And furthermore, it satisfies the mixed-product property:

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

Indeed, if A ∈ RI×K , B ∈ RI′×K′
, C ∈ RK×J , D ∈ RK′×J′ ,

(A⊗B)(C ⊗D)(i,i′),(j,j′) =
∑
k∈K

∑
k′∈K′

(A⊗B)(i,i′),(k,k′)(C ⊗D)(k,k′),(j,j′)

=
∑
k∈K

∑
k′∈K′

Ai,kBi′,k′Ck,jDk′,j′

=
∑
k∈K

Ai,kCk,j

∑
k′∈K′

Bi′,k′Dk′,j′

= (AC)i,j(BD)i′,j′

= ((AC)⊗ (BD))(i,i′),(j,j′).

Therefore for every word w ∈ A∗ we have that

C(w) = (S ⊗ S′)µ′′(a)(T ⊗ T ′)
= (S ⊗ S′)(µ(a1)⊗ µ′(a1)) · · · (µ(a|a|)⊗ µ′(a|a|))(T ⊗ T ′)
= (Sµ(a1) · · ·µ(an)T )⊗ (Sµ(a1) · · ·µ(an)T ) by the mixed-product property
= A(w)B(w).
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In a number of proofs, we will want to specifically change the probability of the empty word after a construction,
typically to change it to zero so that it is rejected.

Lemma 23. For any probabilistic automaton A and probability p, there exists an automaton A[ε ← p] that satisfies
A[ε← p](ε) = p and A[ε← p](w) = A(w) for any non-empty word w.

Proof. Let A = ⟨A, Q, S, µ, T ⟩ and let qε, q̃ε /∈ Q be a fresh states. Define B = ⟨A, {qε, q̃ε} ∪Q, S′, µ′, T ′⟩ where

S′ =
[
p 1− p 0

]
, µ′(a) =

0 0 Sµ(a)
0 0 Sµ(a)
0 0 µ(a)

 , T ′ =

1
0
T

 .

Graphically, this construction corresponds to the following:

Aqε q̃ε

p 1− p
a|simulate a in A a|simulate a in A

It is clear that µ′(a) is stochastic and furthermore we have that

B(ε) = S′T ′ =
[
p 1− p 0

] 1
0
T

 = p.

Furthermore, check by induction that for every non-empty word w, we have

µ′(w) =

0 0 Sµ(w)
0 0 Sµ(w)
0 0 µ(aw)


and hence

B(w) = S′µ(w)T ′ =
[
p 1− p 0

] 0 0 Sµ(w)
0 0 Sµ(w)
0 0 µ(aw)

1
0
T

 = pSµ(w)T + (1− p)Sµ(w)T = A(w).

1.3 The emptiness problem and its variants
Given a stochastic language, the first question that comes to mind is whether this language is empty or not. Surprisingly,
even this simple problem turns out to be undecidable. Note that Rabin defines the language LA(λ) as words with
probability of acceptance strictly greater than λ, but some authors prefer to use another convention where the probability
is greater or equal to λ. To avoid any ambiguity, we distinguish the two problems and follow a recent proof strategy
[GO10].

Problem 24 (Strict Emptiness). Given a probabilistic automaton A and a cut-point λ, decide whether there exists a word
w such that A(w) > λ.

Problem 25 (Emptiness). Given a probabilistic automaton A and a cut-point λ, decide whether there exists a word w
such that A(w) ⩾ λ.

Problem 26 (Universality). Given a probabilistic automaton A and a cut-point λ, decide whether it is true that A(w) ⩾ λ
for all word w.

In fact, all three problems are essentially equivalent and reduce to the following variant of the problem where we look
for words with a specific probability of acceptance.

Problem 27 (Equality). Given a probabilistic automaton A and a cut-point λ, decide whether there exists a word w such
that A(w) = λ.

It is clear that those problems are equivalent to asking whether L>
A(λ), L⩾

A(λ) and L=
A(λ) are empty. An important

fact about stochastic language is that the cut-point is usually irrelevant because it can easily be changed, as follow lemma
(left as an exercise) shows.

9
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Exercise 28. Given A a probabilistic automaton and two rational cut-points λ, µ ∈ (0, 1), show that there exists an
automaton B such that A(w) ⩾ λ if and only if B(w) ⩾ µ.

We will start with the equality problem and reduction from the Post Correspondence Problem (PCP) given by Bertoni
[BMT77]. Recall that PCP is a classical example of undecidable problem.

Problem 29 (PCP). Given A a finite alphabet and ϕ1, ϕ2 : A → {0, 1}∗ two functions that we naturally extend to
morphisms over A∗, decide whether there exists w ∈ A∗ \ {ε} such that ϕ1(w) = ϕ2(w).

It will be usual, for a later reduction, to consider a particular sub-class of probabilistic automaton where only certain
probabilities appear. An automaton is called simple if every initial and transition probability is in {0, 1

2 , 1}. Note that
this is, in some sense, the weakest set of probabilities that one can use to produce nontrivial behaviours: an automaton
using only {0, 1} would only recognize regular languages. The follow lemma, left as an exercise shows that this restriction
is not as strong as it seems.

Exercise 30. Recall that a dyadic number (or dyadic rational) is a number of the form a2−p for some a ∈ Z and p ∈ N.
Given a probabilistic automaton A over alphabet A where all transition probabilities are dyadic, build a simple automaton
B, also over alphabet A, such that {B(w) : w ∈ A∗} = {0}∪{A(w) : w ∈ A∗}. Hint: if p is the maximum dyadic exponent
that appears in A, build B such that A(w1 · · ·wk) = B(wp+1

1 · · ·wp+1
k ).

Theorem 31. The Equality Problem is undecidable, even for simple automata and cut-point 1
2 .

Proof. We will reduce from the PCP: let ϕ1, ϕ2 : A → {0, 1}∗ be an instance. We modify this instance into φ1, φ2 by
inserting 1 after every letter of ϕi(a) so that φi(a) ∈ {01, 11}∗. Clearly, φ1(w) = φ2(w) if and only if ϕ1(w) = ϕ2(w) so
this modification preserves the undecidability.

We will build a probabilistic automaton A such that A accepts a word with probability 1
2 if and only if this PCP

instance has a solution. We do so by encoding {0, 1}∗ into probabilities. Similarly to the proof of Theorem 13, define

[w] =
|w|∑
i=1

wi2−i for every w ∈ {0, 1}∗.

Check that [·] is injective over {01, 11}∗ and therefore for every words w ∈ A∗,

[φ1(w)] = [φ2(w)] if and only if φ1(w) = φ2(w). (2)

We can now consider the following two automata for i ∈ {1, 2}: Ai = ⟨A, Q, S, µi, T ⟩ where Q = {p, q} and

S =
[
1 0

]
, µ(a) =

[
2−|φi(w)| [φi(w)]

0 1

]
, and T =

[
0
1

]
.

One checks that µ(a) is substochastic2 by checking that [w] ⩽ 1 − 2−|w| for every w ∈ {1, 0}∗. For every u, v ∈ {0, 1}∗,
check that [uv] = [u] + 2−|u|[v]. Then check that if a, b ∈ A we have that

µi(a)µi(b) =
[
2−|φi(a)|−|φi(b) [φi(a)] + 2−|φi(a)|[φi(b)]

0 1

]
=
[
2−|φi(ab)| [φi(ab)]

0 1

]
and therefore for every word w ∈ A∗,

Ai(w) = S

[
2−|φi(w)| [φi(w)]

0 1

]
T = [φi(w)].

Finally, we can build automaton B = 1
2A1 + 1

2A
c
2. We then obtain that every word w ∈ A∗,

B(w) = 1
2 ⇐⇒ 1

2A1(w) + 1
2A

c
2(w) = 1

2 ⇐⇒ [φ1(w)] = [φ2(w)] ⇐⇒ φ1(w) = φ2(w)

using (2). It remains to deal with the empty word since B(ε) = 1
2 but we do not want to accept the empty word. Therefore

B[ε← 0] accepts a word with probability 1
2 if and only if the PCP instance has a solution.

In this proof, note that automata B only uses dyadic transition probabilities, and therefore we can make it simple by
introduing more states (see Exercise 30). Furthermore, check that the construction of B[ε← 0] preserves simplicity.

2It is possible to build stochastic matrices directly by taking S =
[
1 0

]
, µi(a) =

[
1 − [φi(a)] [φi(a)]
1 − [1φi(a)] [1φi(a)]

]
and T1 =

[
0
1

]
, T2 =

[
1
0

]
. This

requires to tweak [·] into [w] =
∑|w|

i=1 wi2i−|w|−1 and φi to insert a 1 before every letter so that φi(a) ∈ 1{0, 1}∗.

10
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We will now extend this result to other problems by a clever trick to encode an equality problem into an inequality
one.

Proposition 32. Given a simple probabilistic automaton A, one can compute (simple) probabilistic automata B and C
such that the following propositions are equivalent:

• there exists a word w such that A(w) = 1
2 ,

• there exists a word w such that B(w) ⩾ 1
4 ,

• there exists a word w such that C(w) > 1
8 .

Proof. The idea of the proof is that x = 1
2 if and only if x(1−x) ⩾ 1

4 . Therefore from A, build B = A·Ac (see Lemma 22),
then B(w) = A(w)(1−A(w)). By construction, all transition probabilities of B are already multiple of 1

4 (see Exercise 33).
To build C, we start by noticing that since all initial and transition probabilities of B are multiple of 1

4 , B(w) is a
multiple of 4−|w|−1 for every word w. Thus B(w) ⩾ 1

4 if and only if B(w) > 1
4−4−|w|−1 if and only if 1

2B(w)+ 1
2 4−|w|−1 > 1

8 .
One easily builds an automaton D such that D(w) = 4−|w|−1 for any word w. Then C = 1

2B + 1
2D satisfies that

C(w) > 1
8 ⇐⇒ B(w) > 1

4 − 4−|w|−1 ⇐⇒ B(w) ⩾ 1
4 .

Finally, we can make B and C simple by Exercise 30.

Exercise 33. Show that if A and B are simple then all initial and transition probabilities of A · B are multiple of 1
4 .

As a consequence of Theorem 31 and Proposition 32, we get:

Theorem 34. The emptiness and strict emptiness problems are undecidable, even for simple automata and a fixed dyadic
cut-point in (0, 1).

1.4 The isolation problem
We saw in Section 1.1.3 that isolated cut-points are very special since they define regular languages. On the other hand,
the emptiness language is undecidable in general for probabilistic automata but decidable for finite automata. Therefore,
if we can detect that a cut-point is isolated, it would give us a way to decide emptiness in certain cases.

Problem 35 (Isolation). Given a probabilistic automaton A and a cut-point λ, decide whether λ is isolated with respect
to A.

Unfortunately, this problem is undecidable in general and even when the threshold is fixed. An elegant way to prove
this is to reduce to a variant of the PCP problem for infinite words, which is also undecidable.

Remark 36. We will see an alternative proof of undecidability in Section 1.6.

Problem 37 (ω−PCP). Given A a finite alphabet and ϕ1, ϕ2 : A → {0, 1}∗ two functions that we naturally extend to
morphisms over A∗, decide whether there exists w ∈ AN such that ϕ1(w) = ϕ2(w).

Exercise 38. Show that ω−PCP is undecidable.

In particular, we will use a classical feature of the ω−PCP problem: if an instance is not solvable, then there is uniform
bound on the how far the first different letter can be.

Lemma 39. Let ϕ1, ϕ2 : A→ {0, 1}∗ be an instance of the ω−PCP that has no solution. Then there exists n0 ∈ N such
that for every infinite (or non-empty finite) word w, there exists i ⩽ n0 such that ϕ1(w)i ̸= ϕ2(w)i. In other words, ϕ1(w)
and ϕ2(w) differ already in their first n0 letters, and n0 is independent of w.

Proof. Consider the tree where the root is labelled (ε, ε) and given a node (u, v) of the tree, if ui = vi for all i ⩽ min(|u|, |v|),
then this node has children (uϕ1(a), vϕ2(a)) for all a ∈ A. In other words, we write on the nodes the result of finite labelling
of the ω−PCP and we continue only if we haven’t found a differing letter (but labels are allowed to differ in length, in
which case we only compare up to the shortest one). This tree is finitely branching since each node has 0 or |A| children
and A is finite. This tree has no infinite path for it would imply that this instance of ω−PCP has a solution. Therefore
by König’s lemma, the tree is finite. Let n0 be the longest length of a word that appears in a label of the tree. Since the
labels of the nodes are of the form (ϕ1(w), ϕ2(w)), this shows the result.

Theorem 40. The isolation problem is undecidable, even for simple automata and a fixed dyadic cut-point in (0, 1).
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Proof. We will show the result for the cut-point λ = 1
2 , this can be extended to any rational λ ∈ (0, 1) by Exercise 28.

The problem will essentially be the same as for Theorem 31 with a twist. Let ϕ1, ϕ2 : A → {0, 1}∗ be an instance of
the ω−PCP. We modify this instance so that ϕi(w) ∈ {0, 1}∗1 for every non-empty word w. This can be done by adding
a “1” after each letter of ϕi(a) for every a ∈ A. Clearly, this does not change the undecidability of ω−PCP.

Like in the proof of Theorem 31, we define [w] =
∑|w|

i=1 wi2−i for every w ∈ {0, 1}∗ and build a probabilistic automaton
C such that C(w) = 1

2 + 1
2 ([ϕ1(w)] − [ϕ2(w)]) for every w ∈ A∗. Finally we let B = C[ε ← 0] to avoid any problem with

the empty word. Recall that [wx] = [w] + 2−|w|[x] for all words w, x. We will now show that 1
2 is isolated if and only if

this instance of ω−PCP is not solvable.
Assume that this instance has a solution w ∈ AN. Let n ∈ N, then there exists a finite prefix u of w such that

|ϕ1(u)| ⩾ n and |ϕ2(u)| ⩾ n (since ϕ1(w) and ϕ2(w) are infinite words). Since the instance is solvable, ϕ1(w) = ϕ2(w) and
thus the first n letters of ϕ1(u) and ϕ2(u) are the same, i.e. ϕ1(u) = px and ϕ2(u) = py for some p ∈ An and x, y ∈ A∗.
But then

|[ϕ1(u)]− [ϕ2(u)]| = |[px]− [py]|
= |[p] + 2−|p|[x]− [p]− 2−|p[y]|
= 2−n|[x]− [y]|
⩽ 21−n since [x], [y] ∈ [0, 1].

Therefore, since w is non-empty,

|B(w)− 1
2 | = |C(w)− 1

2 | =
1
2 |[ϕ1(w)]− [ϕ2(w)]| ⩽ 2−n.

This shows that 1
2 is not isolated, since there are words accepted with probabilities arbitrarily close to the cut-point.

Conversely, assume that this instance has no solution. Then by Lemma 39, there exists n0 ∈ N such that for every
infinite (or non-empty finite) word w ∈ AN, there exists i ⩽ n0 such that ϕ1(w)i ̸= ϕ2(w)i. Recall that we modified the
instances so that ϕi(w) ∈ {0, 1}∗1 for every word w. Let w ∈ A∗, then we can write ϕ1(w) = ua1x and ϕ2(w) = ub1y
where |u| ⩽ n0, a, b ∈ {0, 1} are distincts and x, y ∈ {0, 1}∗. It follows that

|[ϕ1(w)]− [ϕ2(w)]| = |[ua1x]− [ub1y]|
= |(a− b)2−|u| + ([x]− [y])2−|u|−2|
⩾ |a− b|2−|u| − |[x]− [y]|2−|u|−2

⩾ 2−|u| − 2 · 2−|u|−2 since [x], [y] ∈ [0, 1]
⩾ 21−n0 since |u| ⩽ n0.

It follows that for all non-empty word w,

|B(w)− 1
2 | = |C(w)− 1

2 | =
1
2 |[ϕ1(w)]− [ϕ2(w)]| ⩾ 2−n0 .

and the empty word has probability 0 so |B(ε) − 1
2 | = 1

2 ⩾ 2−n0 . Since n0 is independent of w, this shows that 1
2 is

isolated.

1.5 The value 1 problem
There is a slight discrepancy in Theorem 40 for the case λ = 0 and λ = 1. It is clear that those two cases are symmetric,
by taking the complement of the automaton. If we fix the cut-point to 1, the isolation problem is the same asking if there
are words accepted with probabilities arbitrarily close to 1. This is related to asking what is the value of an automaton.
The value of probabilistic automaton A over alphabet A is

val(A) = sup{A(w) : w ∈ A∗}.

In other words, it is the supremum of the probability of acceptance over all possible input words. Note that this probability
may not be achieved by any path, only as the limit of longer and longer paths.

Problem 41 (Value 1). Given a probabilistic automaton A, decide whether A has value 1, i.e. for every ε > 0, there
exists w such that A(w) > 1− ε.

Remark 42. We will see an alternative proof of undecidability in Section 1.6.

Proposition 43. Let x ∈ (0, 1), then the automaton Ax from Figure 3 has value 1 if x > 1
2 , and value 1

2 otherwise.
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0 1 34

5 2

b| 12b| 12 b

a, ba|1− x a|x

a|x

a a

b a|1− x b

Figure 3: Auxiliary automaton for the value 1 problem.

Proof. Let n ∈ N, check that if we are in state 4, the only way to reach state 4 by reading ak is to use the self-loop k
times. Furthermore, the only way to reach 4 from 4 by reading akb is to reach 5 from 4 by reading ak. But the only
reachable states from 4 are 4 and 5 so by stochasticity, the probability to reach 5 is the complement of that of reaching
4. Therefore,

Ax

(
4 an

−−→ 4
)

= (1− x)n, Ax

(
4 anb−−→ 4

)
= Ax

(
4 an

−−→ 5
)

= 1−Ax

(
4 an

−−→ 4
)

= 1− (1− x)n.

Furthermore, for n0, . . . , nk ∈ N, since there is no transition from 4 labelled by b, the only way a path of the form
an0ban1b · · · bank can be accepted from state 4 is by repeatedly reaching 4 from 4 when reading anib. Hence

Ax

(
4 an0 b···bank

−−−−−−−→ 5
)

=
(

k−1∏
i=0
Ax

(
4 ani b−−−→ 4

))
Ax

(
4 ank

−−→ 5
)

=
k∏

i=0
(1− (1− x)ni).

A similar reasoning shows that

Ax

(
1 an

−−→ 1
)

= xn, Ax

(
1 an

−−→ 2
)

= 1− xn, Ax

(
1 anb−−→ 1

)
= 1− xn.

Now note that the only way to reach 3 from 1 by reading an0b · · · bank is to have already reached 3 after reading
an0b · · · ank−1b from 1. But then, because of the last transition by b, one must be in state 1 or 3. By stochasticity,
the probability to be in 3 in the complement of that of being in 1. Therefore,

Ax

(
1 an0 b···ank−1 b−−−−−−−−−→ 1

)
=

k−1∏
i=0
Ax

(
1 ani b−−−→ 1

)
=

k−1∏
i=0

(1− xni),

and

Ax

(
1 an0 b···bank

−−−−−−−→ 3
)

= Ax

(
1 an0 b···ank−1 b−−−−−−−−−→ 3

)
Ax

(
3 ank

−−→ 3
)

= 1−Ax

(
1 an0 b···ank−1 b−−−−−−−−−→ 1

)
= 1−

k−1∏
i=0

(1− xni).

If x > 1
2 , by letting n0 = · · · = nk = n and k = 2n − 1 for n ⩾ 2, we have

Ax

(
4 (anb)kan

−−−−−−→ 5
)

= (1− (1− x)n)k+1

= e(k+1) log(1−(1−x)n) but (1− x)n < 1
2

⩾ e−2(k+1)(1−x)n

using log(1− y) ⩾ −2y when y ⩽ 1
2

= e−2(2−2x)n

since k − 1 = 2n

→ 1 as n→∞ since 2− 2x < 1 since x > 1
2 .

And similarly,

Ax

(
1 (anb)kan

−−−−−−→ 3
)

= 1− (1− xn)k

= 1− ek log(1−xn)

⩾ 1− e−kxn

using log(1− y) ⩽ −y

13
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⩾ 1− e− 1
2 (2x)n

since k ⩾ 2n−1

→ 1 as n→∞ since 2x > 1.

It follows that
Ax(b(anb)2n

an) = 1
2Ax

(
4 (anb)2n

an

−−−−−−−→ 5
)

+ 1
2Ax

(
1 (anb)2n

an

−−−−−−−→ 3
)
→ 1 as n→∞

and therefore val(Ax) = 1 when x > 1
2 . On the other hand, if x ⩽ 1

2 , note that any word w that is accepted must start
with a b and hence is of the form w = ban0ban1b · · · bank for some n0, . . . , nk ∈ N. Hence,

Ax(w) = 1
2Ax

(
1 an0 ban1 b···bank

−−−−−−−−−−→ 3
)

+ 1
2Ax

(
4 an0 ban1 b···bank

−−−−−−−−−−→ 5
)

= 1
2 −

1
2

k−1∏
i=0

(1− xni) + 1
2

k∏
i=0

(1− (1− x)ni)

⩽ 1
2 −

1
2

k−1∏
i=0

(1− xni) + 1
2

k∏
i=0

(1− xni) since xni ⩽ (1− x)ni when x ⩽ 1
2

⩽ 1
2 .

This proves that val(Ax) ⩽ 1
2 when x ⩽ 1

2 . On the other hand, check that Ax(bb) = 1
2 so val(Ax) ⩾ 1

2 .

Theorem 44. The value 1 problem is undecidable.

Proof. We will reduce from the strict emptiness problem with fixed cut-point 1
2 . Let B be a probabilistic automaton over

alphabet A, which we assume does not contain a, b, $ and ♯. We will now combine Ax from Figure 3 and B. The idea is to
replace the transitions in Ax that involve x by copies of B. Consider the automaton C below, over alphabet A ∪ {b, ♯, $},
where the transitions coming out of B are from the accepting states of B, and the dashed transitions coming out of B are
from the non-accepting the states. Furthermore, the only accepting states of C are 5 and 3. The notation X on the arrows
means that there is a transition for every letter a ∈ X.

0

B

1 3 9

B

4

5

7

2 8

b| 12b| 12 b

♯

b
$

A

♯

♯

♯

A

$ ♯

$
A

♯

b b

♯

$ $

This automaton can be summarized with the following more informal picture, where we allow “meta transitions” of the
form $w♯|p(w) which means that we take this transition by reading a word of the form $w♯ for some w ∈ A∗ with has
probability p(w).

0 1 34

5 2

b| 12b| 12 b

b, $w♯$w♯|1− B(w) $w♯|B(w)

$w♯|B(w)

$w♯ $w♯

b $w♯|1− B(w) b

Note that close proximity between this automaton and that of Proposition 43 (see Figure 3). We now claim that C has
value 1 if ∃w ∈ A∗ such that B(w) > 1

2 , and otherwise it has value ⩽ 1
2 .

First, let us note that any word accepted by C with positive probability must be of the form

y = bu1b · · · buk, where ui = $wi1♯ · · · $wini♯ (3)

for some k ∈ N, ni ∈ N and wij ∈ A∗. To see that, we can partition the states of C into two groups:

• “type A” states: 0, 1, 2, 3, 4, 5,

14
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• “type B” states: 7, 8, 9 and the states of the two copies of B.

Then observe that (1) we start in a type A state, (2) accepting states have type A, (3) the only valid transitions in type
A states are b and (possibly) $, (4) reading $ in a type A state leads to a type B state, (5) the only valid transitions in
type B states are A and ♯, (6) reading ♯ in a type B state leads to a type A state. The general form (3) then follows from
those observations.

Second, having summarized the automaton C as in the second picture, one can see that the exact same proof as that
of Proposition 43 shows that if y is as in (3), then its probability of acceptance is

C(y) = 1
2 + 1

2

k∏
i=0

1−
ni∏

j=1
(1− B(wij))

− 1
2

k∏
i=0

1−
ni∏

j=1
B(wij)

 . (4)

Also recall that the probability of acceptance in Ax in Proposition 43 was

Ax(an0ban1b · · · bank ) = 1
2 + 1

2

k∏
i=0

(1− xni)− 1
2

k−1∏
i=0

(1− xni) (5)

We are now ready to show the result. Assume there exists a word w such that B(w) > 1
2 and let x = B(w). Let ε > 0,

since Ax has value 1 by Proposition 43, there exists n1, . . . , nk such that Ax(ban1b · · · ank ) ⩾ 1− ε. But now observe that
by (4) and (5),

C(b($w♯)n1b · · · b($w♯)nk b) = Ax(ban1b · · · ank b) = 1− ε.

It follows that val(C) = 1.
Conversely, assume that B(w) ⩽ 1

2 for every word w ∈ A∗. Recall that only words y of the form (3) are accepted by C
and let x = maxi,j B(wij) ⩽ 1

2 . Then

C(y) = 1
2 + 1

2

k∏
i=0

1−
ni∏

j=1
(1− B(wij))

− 1
2

k∏
i=0

1−
ni∏

j=1
B(wij)

 by (4)

⩽ 1
2 + 1

2

k∏
i=0

1−
ni∏

j=1
(1− x))

− 1
2

k∏
i=0

1−
ni∏

j=1
x

 since B(wij) ⩽ x

= 1
2 + 1

2

k∏
i=0

(1− (1− x)ni))− 1
2

k∏
i=0

(1− xni)

= Ax(ban1b · · · bank ) by (5)
⩽ 1

2

by Proposition 43 since x ⩽ 1
2 . Hence we have shown that C(y) ⩽ 1

2 for all words y, so in particular val(C) ⩽ 1
2 < 1.

1.6 The value approximation problem
We have seen in the previous sections that it is undecidable to check whether a cut-point λ is isolated, even when λ = 1.
Said differently, we cannot determine if the value (which is a limit) is bigger than a particular number. However, it seems
reasonable to expect that this limit is at least approximable with small or even arbitrarily small error. A very surprising
result by Condon and Lipton is that even computing an approximation with error strictly less than 1

2 is impossible [CL89].
In fact, Fijalkow showed an even stronger result: in some sense, we cannot approximate it even if we allow the algorithm
to be incorrect or not terminating sometimes [Fij17].

Theorem 45. There is no algorithm such that given a probabilistic automaton A,

• if val(A) = 1, then the algorithm outputs “yes”,

• if val(A) ⩽ 1
2 , then the algorithm outputs “no”,

• otherwise, the algorithm can output anything or not terminate.

Proof. In fact we have already proven this fact: in the proof of Theorem 44, we have seen that the automaton C that has
value either 1 or 1

2 depending on whether LB( 1
2 ) = ∅ or not. Hence if an algorithm as described in the statement of the

theorem existed, it would decide if LB( 1
2 ) = ∅ which is not possible by Theorem 44.
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We now explore some consequences of it. Essentially, this theorem subsumes all the undecidability results that we
have seen so far.

Corollary 46. For any fixed λ ∈ (0, 1], the problems of deciding, given an automaton A, whether val(A) > λ (resp.
val(A) ⩾ λ) is undecidable. In particular, the value 1 problem is undecidable.

Proof. We look at the strict problem first: if 1 > λ ⩾ 1
2 then this is immediate. Indeed, if the problem was decidable,

it would give us an algorithm that, in particular, outputs “yes” when val(A) = 1 and “no” when val(A) ⩽ 1
2 , which

contradicts Theorem 45. When λ < 1
2 , assume that we have an algorithm that decides whether val(A) > λ. Let k ∈ N

be such that 2kλ ∈ [ 1
2 , 1) and consider the algorithm that given A, builds B such that B(w) = 2−kA(w) and runs the

algorithm on B. Then val(B) = 2−k val(A) and therefore the algorithm accepts if and only if val(A) > 2kλ. But since
2kλ ⩾ 1

2 , we are back to the previous case where we have shown that such an algorithm cannot exists.
The non-strict problem is exactly is the same except that the case distinction is on λ > 1

2 . The value 1 problem is
clearly equivalent to val(A) ⩾ 1.

Corollary 47. The emptiness, strict-emptiness and universality problems are undecidable.

Proof. Let A be an automaton and λ ∈ (0, 1) a cut-point, then observe that there exists w such that A(w) > λ if and only
if val(A) > λ. But checking if the value of an automaton is strictly bigger than λ is undecidable by the previous corollary.
The emptiness problem reduces to the strict emptiness problem using a similar construction to that of Proposition 32,
and universality is simply the emptiness of the complement.

Corollary 48. The isolation problem is undecidable for any cut-point.

Proof. Let λ ∈ [0, 1]: if λ = 0 then note that 0 is isolated for A if and only if 1 is isolated for 1 − A, so we can always
assume that λ > 0. Assume that there is an algorithm to decide isolated of λ, we will show that there is an algorithm
that satisfies Theorem 45 and reach a contradiction. Indeed, given A, we can build B = λA, run the isolation algorithm
on B for λ and output the opposite. If val(A) = 1 then val(B) = λ so λ is not isolated so the algorithm outputs “yes”. If
val(A) ⩽ 1

2 then val(B) = λ
2 < λ so λ is isolated and we output “no”. The other cases don’t matter, and we have indeed

reached a contradiction.

1.7 The density problem
We have seen in Section 1.1.3 that isolated cut-points yield regular languages but that deciding whether a given cut-point
is isolated is undecidable (Section 1.4 for cut-points in (0, 1) and Section 1.5 for 0 and 1). A potential much weaker is to
ask whether a given automaton has any isolated cut-point, or equivalenty whether the set of acceptance probabilities is
dense in [0, 1].

Problem 49 (Density). Given a probabilistic automaton A over A, decide whether {A(w) : w ∈ A∗} is dense in [0, 1].

Surprisingly, this problem is also undecidable. However this result will not follow from Theorem 45 and will require
a completely different proof. Intuitively, this is related to whether the smallest set stable under a certain linear map is
dense in [0, 1]. We will start with a warm-up to give the intuition of the construction, which we then modify in a similar
fashion to Section 1.5.

Lemma 50. Let u ∈ [0, 1
4 ] and let Du ⊆ [0, 1] be the smallest set such that 0 ∈ Du and if x ∈ Du then fi(u, x) ∈ Du for

all i ∈ {0, 1, 2, 3}, where fi(u, x) := 1−u
3 i + ux. Then Du is dense in [0, 1] if and only if u = 1

4 .

Proof. If u = 1
4 then 0 ∈ Du and for all i ∈ {0, 1, 2, 3}, fi(u, x) = 1−u

3 i + ux = i+x
4 ∈ Du. In other words, Du contains all

4−adic rationals which are clearly dense in [0, 1].
Conversely, let u < 1

4 and ε = 1
4 − u > 0. We will show that show that Du ⊆ X, where X = [0, 1

4 − ε]∪ [ 1
4 , 1]. Observe

that
f0(u, X) = uX ⊆ [0, u] ⊆ [0, 1

4 − ε] ⊆ X

and for i ∈ {1, 2, 3},
fi(u, X) = 1−u

3 i + uX ⊆ 1−u
3 i + [0, u] ⊆ [ 1−u

3 i, 1] ⊆ [ 1−u
3 , 1] ⊆ [ 1

4 , 1]

since 1−u
3 ⩾ 1

4 since u < 1
4 . It follows that 0 ∈ X and fi(X) ⊆ X, therefore Du ⊆ X since Du is the smallest such set.

Clearly X is not dense in [0, 1] so Du is not either.

We will now see how to encode the set Du defined in the previous lemma in a probabilistic automaton. Intuitively,
this is possible because the maps fi are linear and endomorphisms of [0, 1].
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Lemma 51. Let u ∈ [0, 1
4 ] and Du be defined as in Lemma 50. Let Au = (A, Q, S, T, µ) where A = {0, 1, 2, 3}, Q = {1, 2},

S =
[
1 0

]
, µ(i) =

[
1− ai ai

1− bi bi

]
, T =

[
0
1

]
where ai = 1−u

3 i and bi = u + ai. Then Au is a probabilistic automaton and {Au(w) : w ∈ A∗} = Du.

Proof. Let u ∈ [0, 1
4 ] and Du and fu be as in Lemma 50. First note that ai, bi ∈ [0, 1] so Au is indeed a probabilistic

automaton when u ∈ [0, 1
4 ]. Then check that for every i, fi(u, x) = 1−u

3 i+ux = ai(1−x)+bix. Let X = {Au(w) : w ∈ A∗},
we claim that X = Du. First note that Au(0) = 0 so 0 ∈ X. If x ∈ X then by stochasticity and the definition of S, there
exists w ∈ A∗ such that Sµ(w) =

[
1− x x

]
. But then for any i ∈ A,

Au(wi) = µ(w)µ(i)T =
[
1− x x

] [ai

bi

]
= ai(1− x) + bix = fi(u, x)

and hence fi(u, x) ∈ X. This shows that Du ⊆ X. But conversely, by construction, any x ∈ X is of the form x = Au(w)
for some w ∈ A∗. By induction on |w|, one shows that Au(w) ∈ Du since for |w| = 0, Au(w) = 0 ∈ Du and if we have
shown that Au(w) ∈ Du then Au(wi) = fi(u,Au(w)) ∈ Du for any i ∈ A. This shows that X ⊆ Du and completes the
proof.

Corollary 52. Let Au be as in Lemma 51, then Au has an isolated cut-point if and only if u < 1
4 .

We will now see how this construction can be modified so that u is replaced by an arbitrary automaton E . If we can
ensure that the probabilities of the words are in [0, 1

4 ], the construction will have an isolated cut-point if and only if 1
4 is

isolated in E . The first step is to modify Lemma 51 and replace the ai and bi by arbitrary automata.
Lemma 53. Let B, C be arbitrary automata over some alphabet Σ. Let ♯ /∈ Σ, then there exists a probabilistic automaton
D over Σ′ := Σ ∪ {♯} such that for all w(1), . . . , w(k) ∈ Σ∗,

D(♯w(1)♯w(2)♯ · · · ♯w(k)♯) =
[
1 0

] k∏
i=1

M(w(i))
[
0
1

]
, where M(w) :=

[
1− B(w) B(w)
1− C(w) C(w)

]
∀w ∈ Σ∗.

Proof. We write 1 (resp. 0) for the all-one (resp. all-zero) vector. For any vector x, we let xc := 1− x.
Write B = (Σ, Q1, S1, µ1, T1) and C = (Σ, Q2, S2, µ2, T2). Let D = (A′, Q′, S′, µ′, T ′) where Q′ = Q1 ∪Q2,

S′ = 1
α

[
(T c

1 )T (T c
2 )T
]

, µ′(σ) =
[
µ1(σ) 0

0 µ2(σ)

]
, µ′(♯) =

[
T c

1 T1
T c

2 T2

] [
S1 0
0 S2

]
=
[
T c

1 S1 T1S2
T c

2 S1 T2S2

]
, T ′ =

[
0
1

]
and α = (T c

1 + T c
2 )T 1 is such that S′ is stochastic. Note that µ′(σ) is stochastic and µ′(♯) is the product of stochastic

matrices, so is stochastic. Let w(1), . . . , w(k) ∈ A∗, then

D(♯c(1)♯c(2)c · · · ♯c(k)c) = S′µ′(♯)µ′(w(1))µ′(♯) · · ·µ′(♯)µ′(w(k))µ′(♯) = S′
[
T c

1 T1
T c

2 T2

]
A1 · · ·Ak

[
S1 0
0 S2

]
T ′

where

Ai =
[
S1 0
0 S2

] [
µ1(w(i)) 0

0 µ2(w(i))

] [
T c

1 T1
T c

2 T2

]
=
[
S1µ1(w(i)) 0

0 S2µ2(w(i))

] [
T c

1 T1
T c

2 T2

]
=
[
S1µ1(w(i))T c

1 S1µ1(w(i))T1
S2µ2(w(i))T c

2 S2µ2(w(i))T2

]
=
[
1− B(w(i)) B(w(i))
1− C(w(i)) C(w(i))

]
.

Furthermore,

S′
[
T c

1 T1
T c

2 T2

]
= 1

α

[
(T c

1 )T (T c
2 )T
] [T c

1 T1
T c

2 T2

]
= 1

α

[
(T c

1 )T T c
1 + (T c

2 )T T c
2 (T c

1 )T T1 + (T c
2 )T T2

]
=
[
1 0

]
.

Indeed, if v ∈ {0, 1}n then vT vc = 0 and vT v = vT (1 − vc) = vT 1 − vT vc = vT 1, therefore (T c
1 )T T c

1 + (T c
2 )T T c

2 =
(T c

1 )T 1 + (T c
2 )T 1 = α. Finally, [

S1 0
0 S2

]
T ′ =

[
S1 0
0 S2

] [
0
1

]
=
[
S10
S21

]
=
[
0
1

]
by stochasticity of S1 and S2. This shows the result.
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We will now instantiante this construction for a particular choice of B and C that mimics the choice of ai and bi in
Lemma 51.

Lemma 54. Let E be an arbitrary automaton over some alphabet Γ. There exists automata B and C over Σ := A ∪ Γ,
where A = {1, 2, 3, 4}, such that for any word w ∈ Γ∗ and i ∈ A,

B(iw) = 1− E(w)
3 i, C(iw) = E(w) + B(iw),

and B(u) = C(u) = 0 for all u /∈ AΓ∗. In particular, if fi is defined as in Lemma 50 and M is defined as in Lemma 53,
then for all i ∈ A, w ∈ Γ∗ and x ∈ [0, 1] we have[

1− x x
]

M(iw) =
[
1− fi(E(w), x) fi(E(w), x)

]
.

and for all w′ /∈ AΓ∗ we have [
1− x x

]
M(w′) =

[
1 0

]
.

Proof. For every i ∈ A, let Bi and Ci be such that

Bi(w) = 1−E(w)
3 i, Ci(w) = E(w) + Bi(w).

This is possible because for each i, 1− E(w) corresponds to the complement, and multiplying by i
3 can be done trivially

by a convex combination of 1 − E(w) and the automaton that has constant probability 0 for all words. Hence Bi is
immediately seen to be a probabilistic automaton. Similarly, observe that Ci(w) = i

3 + (1 − i
3 )E(w) and hence is also

a convex combination of E and the automaton that has constant probability 1. From this, we construct B such that
B(iw) = Bi(w) as follows.

1B0

B1 B2

B3
0 3

1 2

It is sub-stochastic and can be made stochastic with a sink state. Clearly B(ε) = 0 and B(iw) = Bi(w) for all w ∈ Γ∗.
Furthermore, if w /∈ Γ∗ then B(iw) = 0 since there Bi only has letters labelled by Γ (ie the transition will lead to the sink
state). Finally, if the first letter is not in A, it will also lead to a sink state. The construction for C is exactly the same.

Let fi be defined as in Lemma 50 and M as in Lemma 53. For all i ∈ A and w ∈ Γ∗ we have (⋆ denotes that the value
is computed by stochasticity)

[
1− x x

]
M(iw) =

[
1− x x

] [1− B(iw) B(iw)
1− C(iw) C(iw)

]
=
[
1− x x

] [1− Bi(w) Bi(w)
1− Ci(w) Ci(w)

]
=
[
⋆ (1− x)Bi(w) + Ci(w)

]
=
[
⋆ Bi(x) + (Ci(w)−Bi(w))x

]
=
[
⋆ 1−E(w)

3 i + E(w)x
]

=
[
⋆ fi(E(w), x)

]
.

For any w′ /∈ AΓ∗, we have

[
1− x x

]
M(w′) =

[
1− x x

] [1− B(w′) B(w′)
1− C(w′) C(w′)

]
=
[
1− x x

] [1 0
1 0

]
=
[
1 0

]
.
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Contrary to Lemma 53, we do not necessarily have that the set of acceptance probabilities of D is of the form Du for
some u. However, it will contain many such sets, in fact at least one per acceptance probability of E .

Lemma 55. If D is defined as in Lemma 53 with B, C, E from Lemma 54, then for all w ∈ Γ∗, DE(w) ⊆ {D(v) : v ∈ Σ′∗}.

Proof. We show a slightly stronger result. Let X = {D(v) : v ∈ ♯(Σ∗♯)∗}, then 0 ∈ X since D(♯) = 0 by Lemma 53
Furthermore, if x ∈ X then there exists v ∈ ♯(Σ∗♯)∗ such that S′µ′(v) =

[
1− x x

]
. But then, by Lemma 53 and

Lemma 54, for every i ∈ A,

D(viw♯) = S′µ′(viw♯)T ′ =
[
1− x x

]
M(iw)

[
0
1

]
=
[
1− fi(E(w), x) fi(E(w), x)

] [0
1

]
= fi(E(w), x).

It follows that fi(E(w), x) ∈ X. But DE(w) is the smallest set that is stable under those operations, hence DE(w) ⊆ X.

We now want to argue that if E accepts words with probabilities arbitrarily close to 1
4 (i.e. 1

4 is not isolated) then the
sets Du “converge” to D1/4 as u gets close to 1

4 .

Lemma 56. If (un) ∈ [0, 1]N converges to some u∗ then
⋃∞

n=0 Dun
contains Du∗ .

Proof. Let X = {x : ∃(sn)n such that x = limn→∞ sn and sn ∈ Dun for all n}. Clearly X ⊆ Y :=
⋃∞

n=0 Dun . Therefore
if we show that Du∗ ⊆ X, we will have Du∗ ⊆ Y and hence Du∗ ⊆ Y = Y since Y is closed; which shows the result.

It remains to see that Du∗ ⊆ X: clearly 0 ∈ X since 0 ∈ Dun
for all n. Let x ∈ X and write x = limn→∞ sn where

sn ∈ Du∗ . Then that for any i ∈ A,
fi(u∗, x) = fi(u∗, lim

n
sn) = lim

n
fi(u∗, sn)

by continuity of fi. Furthermore, by the uniform continuity of fi (continuity over the compact set [0, 1]2), there exists
α such that for any n, |fi(u∗, sn) − fi(un, sn)| ⩽ α|u∗ − un|. Hence we can write fi(u∗, sn) = fi(un, sn) + εn where
|εn| ⩽ α|u∗ − un| → 0 as n → ∞. Now let s′

n = fi(un, sn), then s′
n ∈ Dun

since sn ∈ Dun
and (s′

n)n has a limit since
s′

n = fi(u∗, sn)− εn → fi(u∗, s) as shown above. Therefore,

fi(u∗, x) = lim
n

fi(u∗, sn) = lim
n

s′
n + εn = lim

s
s′

n ∈ X.

This shows that X is stable under the application of the fi(u∗, ·), hence it contains Du∗ which is the smallest set to satisfy
this condition.

Corollary 57. If D is defined as in Lemma 53 with B, C, E from Lemma 54, and 1
4 is not an isolated cut-point of E then

D has no isolated cut-points.

Proof. If 1
4 is not isolated then there exists a sequence (wn)n of words such that E(wn)→ 1

4 . But then by Lemma 55, we
have that ⋃

n

DE(wn) ⊆ {D(v) : v ∈ Γ′∗}

and hence, by Lemma 56,
D1/4 ⊆

⋃
n

DE(wn) ⊆ {D(v) : v ∈ Γ′∗}.

But D1/4 = [0, 1] by Lemma 50, hence {D(v) : v ∈ Γ′∗} = [0, 1] and therefore D cannot have an isolated cut-point.

We will now show that the converse holds: if 1
4 is isolated in E then D has isolated points. This requires to generalize

the argument that we used in Lemma 50.

Lemma 58. Let u < 1
4 and D′

u be the smallest set such that 0 ∈ D′
u and for all x ∈ D′

u, i ∈ A and u′ ⩽ u, fi(u′, x) ∈ D′.
Then D′

u is not dense in [0, 1].

Proof. The proof is essentially the same as that of Lemma 50. Let ε = 1
4 − u > 0 and X = [0, 1

4 − ε]∪ [ 1
4 , 1]. Observe that

for all u′ ⩽ u,
f0(u′, X) = u′X ⊆ [0, u′] ⊆ [0, u] ⊆ [0, 1

4 − ε] ⊆ X

and for i ∈ {1, 2, 3},
fi(u′, X) = 1−u′

3 i + u′X ⊆ 1−u′

3 i + [0, u′] ⊆ [ 1−u′

3 i, 1] ⊆ [ 1−u′

3 , 1] ⊆ [ 1
4 , 1]

since 1−u′

3 ⩾ 1
4 since ′ ⩽ u < 1

4 . It follows that 0 ∈ X and fi(X) ⊆ X, therefore D′
u ⊆ X since D′

u is the smallest such
set. Clearly X is not dense in [0, 1] so D′

u is not either.
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(a) A Markov chain representing a hypothetical stock market

egg

tadpole adult

0.5

0.3

60

(b) A linear dynamical system modelling a frog population

Figure 4: Examples of Markov chain and linear dynamical systems

Corollary 59. If D is defined as in Lemma 53 with B, C, E from Lemma 54, and if there exists ε > 0 such that E(w) ⩽ 1
4−ε

for all w ∈ Σ∗, then D has at least one isolated cut-point.

Proof. Let X = {D(w) : w ∈ Σ′∗}. By Lemma 53 and Lemma 54, we have that every x ∈ X is either 0 or of the form
fi(E(v), x′) for some v ∈ Γ∗ and x′ ∈ X. But E(v) ⩽ 1

4 − ε, hence by letting u = 1
4 − ε < 1

4 , we get that X ⊆ D′
u where D′

u

is defined as in Lemma 58. It follows by Lemma 58 that X is not dense in [0, 1]. Consequently, there is an open interval
I in [0, 1] that does not intersect X and the center of this interval is an isolated cut-point of D.

Theorem 60. The density problem is undecidable.

Proof. We show that the problem is undecidable by reducing from the problem of deciding whether 1
2 is an isolated

cut-point of a given automaton. The will show the result since the latter is an undecidable problem.
Let F be any automaton on alphabet Γ. We can build E such that E(w) = F(w) · (1 − F(w)) for all w ∈ Γ∗ by the

product construction. Then observe that E(w) ⩽ 1
4 for all w. Furthermore, 1

4 is isolated for E if and only if 1
2 is isolated

for F . We now build D as done in Lemma 53 and Lemma 54. By Corollary 57 and Corollary 59, we have that D has an
isolated cut-point if and only if 1

4 is isolated for E . Therefore we have reduced the problem of whether 1
2 is isolated for F

to the problem of deciding whether D has an isolated cut-point.

2 Markov chains and linear dynamical systems
A Markov chain is a particular case of probabilistic automata where the alphabet is unary. In this case, we can simplify
the presentation and describe a Markov chain in dimension d by a tuple M = ⟨S, A, T ⟩ where

• S ∈ [0, 1]1×d is stochastic (row) vector of initial probabilities,

• T ∈ {0, 1}d×1 is a 0− 1 (column) vector of accepting states,

• A ∈ [0, 1]d×d is a stochastic matrix of transition probabilities.

Similarly to probabilistic automata, we usually assume that initial probabilities and transition probabilities are rational
numbers. In the case of Markov chains, there is a unique probability of acceptance for every length. It is given for every
n ∈ N by

M(n) = SAnT.

More generally, we will consider linear dynamical systems (LDS) ⟨S, A, T ⟩ where we lift the restriction that I and A be
stochastic. In particular, the values of a LDS do not need to be within [0, 1].

Example 61. Figure 4a illustrates an hypothetical stock market that can exhibit three behaviors during a week: bull,
bear or stagnant. For example, following a bull week, the market has 90% chances of being bull the next week but it will
become bear with a 7.5% probability. If we start from an initial distribution over the three states and put it in a vector
S, and let A be the transition matrix, then SAn gives the probability distribution over the three states after n weeks.
We can thus analyse the long-term behavior of the system. For example if we take T =

[
1 0 0

]t then SAnT gives the
probability of being in a certain state (say bull) after n weeks. The emptiness problem now becomes: does there exists n
such that SAnT ⩾ λ, in other words, is there is any week where the probability of the market being bull is higher than λ.
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Example 62. Figure 4b illustrates a simplified model for the dynamics of a frog population. Frogs have three life stages:
egg, tadpole and adult. Every year, 50% of the eggs survive to become tadpoles, 30% of the tadpoles become adults and
every pair of adults produces 120 eggs and dies. The corresponding transition matrix, also known as the Leslie matrix, is

A =

 0 0 60
0.5 0 0
0 0.3 0

 .

Starting from an initial state of the pond, for example 50 eggs, 20 tadpoles and 2 adults, we can get the state of the
population after n years by computing SAn where S =

[
50 20 2

]
. We can study the long-term behavior of this system,

for example the total population size is given by SAnT where T =
[
1 1 1

]t.
2.1 Linear recurrent sequences
An alternative point of view is to consider the sequence (un)n∈N given by un =M(n). A useful property of this sequence
is that it is linear. Formally, a linear recurrent sequence (LRS) of order k is any sequence (un)n∈N that satisfies the
recurrence relation

un+k = ak−1un+k−1 + · · ·+ a0un

for all n ∈ N, for some numbers a0, . . . , ak−1 ∈ R. When all numbers un and ai are rational, we say that it is a rational
LRS, and if all numbers un and ai are integers, then it is an integer LRS. There is a strong connection between LRS and
matrix powers that comes from linear algebra.
Theorem 63 (Cayley–Hamilton). Let A ∈ Rd×d be a matrix and let p(λ) = det(λId−A) be its characteristic polynomial,
then p(A) = 0. In particular, Ad is a linear combination of Id, A, . . . , Ad−1.

Proof. We admit the proof and simply show how the last statement follows from p(A) = 0. Indeed, p(λ) is a determinant
of d × d matrix, thus it is a polynomial of degree d in λ. Furthermore, it is not hard to see that p is monic, i.e.
p(λ) = λd + q(λ) where q has degree at most d− 1. Therefore, p(A) = 0 implies that Ad = −q(A) =

∑d−1
i=0 aiA

i where the
ai are the coefficients of q.

Proposition 64. Let d ∈ N, let S ∈ Q1×d, A ∈ Qd×d and T ∈ {0, 1}d×1. Then the sequence (SAnT )n∈N is a rational
LRS of order d. Furthermore if all entries of S and A are integers, then it is an integer LRS. In particular, if M is a
Markov chain, then (M(n))n∈N is a rational LRS. Conversely, if (un)n∈N is rational LRS of order d, then there exists a
LDS ⟨S, A, T ⟩ of dimension d such that un = SAnT for all n ∈ N. Furthermore, if (un)n is an integer LRS then S, A and
T have integer coefficients.

Proof. By Cayley–Hamilton theorem, Ad is a linear combination of Id, A, . . . , Ad−1 so we can find a0, . . . , ad−1 ∈ Q such
that

Ad =
d−1∑
i=0

aiA
i.

For every n ∈ N, let un = SAn+dT , then we have that

un+d = SAn+dT = SAnAdT = SAn

(
d−1∑
i=0

aiA
i

)
T =

d−1∑
i=0

aiSAn+iT =
d−1∑
i=0

aiun+i.

Thus (un)n is a LRS. If all entries of S and A are rational, then the characteristic polynomial p of A has rational entries
thus the coefficients ai are rationals. Similarly if S and A are rational, then the coefficients of p are integers.

Conversely, if (un)n is a LRS of order d, let a0, . . . , ad−1 be the coefficients of the recurrence relation. Consider the
matrices

S =
[
1 0 · · · 0

]
, A =



0 1 0 · · · 0

0 0 1 . . . 0
...

... . . . . . . 0
0 · · · · · · 0 1
a0 a1 · · · · · · ad−1

 , T =


u0
u1
...

ud−1

 .

Then we check that for every n ∈ N,

A


un

un+1
...

un+d−1

 =


un+1

...
un+d−1

a0un + · · ·+ ad−1un+d−1

 =


un+1

...
un+d−1
un+d

 and thus AnT =


un

un+1
...

un+d−1

 (6)
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follows by induction. This implies that SAnT = un and concludes.

Remark 65. The proof of Proposition 64 could give the impression that any Markov chain or LDS ⟨S, A, T ⟩ verifies
equation (6), i.e. it shifts consecutive terms by one. This is not the case in general, see Exercise 66.
Exercise 66. Consider the following two LDS ⟨S, A1, T ⟩ and ⟨S, A2, T ⟩:

S =
[
1 0

]
, T =

[
0
1

]
, A =

[
0 1
−1 2

]
, and B =

[
1 1
0 1

]
.

By following the proof of Proposition 64, let un = SAnT , find the recurrence relation (of order 2) satisfied by un, find u0
and u1 and give an explicit expression for un. Find an explicit expression for Bn and show that un = SBnT . Then prove
that

An

[
un

un+1

]
=
[
un+1
un+2

]
but Bn

[
un

un+1

]
̸=
[
un+1
un+2

]
.

Proposition 67. Let λ ∈ Q, (un)n and (vn) be two rational LRS. Then (λ)n, (λun)n, (un + vn)n, (unvn)n.

Proof. For Markov chains, this is a special case of Section 1.2, and in fact the same proofs works for non-stochastic systems
as well. We redo the proof for completeness.

The first item is trivial since it satisfies un+1 = un. Let (un)n and (vn)n be two LRS of order d (we can always increase
the order artificially) and let a0, . . . , ad−1 and b0, . . . , bd−1 be the coefficients of the recurrence relation. Let wn = λun,
then

wn+d−1 = λun+d−1 = λ

d−1∑
i=0

aiun+i =
d−1∑
i=0

aiλun+i =
d−1∑
i=0

aiwn+i

thus (wn)n is a LRS. By Proposition 64, there exists S1, S2, A1, A2, T1 and T2 such that un = S1An
1 T1 and vn = S2An

2 T2.
Consider

Ŝ =
[
S1 S2

]
, Â =

[
A1 0
0 A2

]
, T̂ =

[
T1
T2

]
.

Then we have that
ŜÂnT̂ =

[
S1 S2

] [An
1 0

0 An
2

] [
T1
T2

]
= S1An

1 T1 + S2An
2 T2 = un + vn.

Thus by Proposition 64, (un + vn)n is a LRS. Similarly, consider

Î = S1 ⊗ S2, Â = A1 ⊗A2, T̂ = T1⊗ T2

where ⊗ denotes the Kronecker product (see proof of Lemma 22). Then by the mixed-product property,

ŜÂnT̂ = (S1 ⊗ S2)(A1 ⊗A2)n(T1 ⊗ T2) = (S1An
1 T1)⊗ (S2An

2 T2) = unvn.

Thus by Proposition 64, (unvn)n is a LRS.

Another interesting feature of LRS is that we can provide an explicit expression for its general term. Let (un)n be
a LRS and let a0, . . . , ad−1 be the coefficients of its recurrence relation. We define the characteristic polynomial of the
sequence to be

p(x) = xd − a1xd−1 · · · ad−1x− ad.

Proposition 68. Let (un)n be a LRS and p its characteristic polynomial. Let λ1, . . . , λd be the (possibly repeated)
(complex) roots of p. Then there are univariate polynomials A1, . . . , Ad of degree at most d such that

un = A1(n)λn
1 + · · ·+ Ad(n)λn

d . (7)

In particular, (un)n is linear combination of the sequences nkλn
i for i ∈ {1, . . . , d} and 0 ⩽ k < d. Furthermore, all the

coefficients that appear in the Ai are algebraic numbers3. Conversely, any sequence of this form is a LRS.

Proof. Put A in Jordan Normal Form (see Proposition 69) below, then A = PJP −1 where J = diag(J1, . . . , Jk). It follows
that An = PJnP −1 and Jn = diag(Jn

1 , . . . , Jn
k ). It is easy to check by induction that a block Ji of dimension k satisfies

Jn
i =


λn

i

(
n
1
)
λn−1

i · · ·
(

n
k

)
λn−k

i

. . . ...
. . .

(
n
1
)
λn−1

i

λn
i


and therefore the entries of Jn

i are a linear combination of nkλn
i . Putting everything together, we get the result.

3Algebraic numbers are roots of polynomials with integer (or rational coefficients). For example x =
√

2 is algebraic because x2 − 2 = 0.
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Proposition 69 (Jordan Normal Form (JNF)). Let A ∈ Rd×d be a matrix, then there exists an invertible matrix P and
block diagonal matrix J = diag(J1, . . . , Jk) such that A = PJP −1 where Ji is a Jordan block of the form

Ji =


λi 1

. . . . . .
λi 1

λi


where λ1, . . . , λk are the (possibly repeated) eigenvalues of A.

To summarize, we started with Markov chains that we generalized to linear dynamical systems. We then showed that
the following objects are equivalent:

• linear dynamical systems,

• linear recurrent sequence,

• exponential polynomials: expressions of the form (7).

This equivalence is important because it shows that LRS are a universal object in some sense, they appear naturally in
many contexts and it gives more tools to solve problems.

2.2 Decision problems
Recall that in Section 1.3, we looked at the emptiness problem for probabilistic automata and showed that it is undecidable.
It is clear that the proof does not apply anymore because we used binary expansion to encode words, something which is
impossible with a unary alphabet. In fact, the problem becomes a priori much simpler. Indeed, fix λ ∈ (0, 1), then the
emptiness problem for Markov chain becomes: decide whether there exists n ∈ N such that SAnT > λ. Note in particular
that this is a “deterministic” problem: there are no words to choose, we just need to check if a LRS contains an element
bigger than λ. For this purpose, we introduce the following two problems (the names are not universally):

Problem 70 (Markov Reachability/Equality). Given a Markov chain ⟨S, A, T ⟩ and a threshold λ ∈ Q, decide whether
SAnT = λ for some n.

Problem 71 (Markov inequality). Given a Markov chain ⟨S, A, T ⟩ and a threshold λ ∈ Q, decide whether SAnT ⩾ λ for
all n.

Note that the Markov inequality problem naturally comes in two flavors, depending on whether the inequality is strict
or not. It is clear that the Markov inequality problem is equivalent (in terms of decidability) to the emptiness problem
since ∃n.SAnT > λ if and only if ¬∀n.SAnT ⩽ λ if and only if ¬∀n.(1− SAnT ) ⩾ 1− λ and 1− SAnT is also a Markov
chain.

While the Markov reachability problem hasn’t necessarily received a lot of attention, the following well-known problems
for integer LRS have been studied extensively.

Problem 72 (Skolem). Given a LRS (un)n, decide whether it has a zero, i.e. whether un = 0 for some n ∈ N.

Problem 73 (Positivity). Given a LRS (un)n, decide whether it is positive, i.e. whether un > 0 for all n ∈ N.

Note that the positivity problem also naturally comes in two flavors, depending on whether the inequality is strict or
not. It is clear that the positivity problem is harder than the Skolem problem since we can reduce the latter to the former.
On the other hand, the Skolem problem has now been open for more than 70 years [OW12] ! In particular, the Skolem
problem is not known to be either decidable or undecidable.

Remark 74. The Skolem and positivity are classically defined with a threshold of 0. This is without loss of generally
since for any λ ∈ Q, un = λ if and only if un − λ = 0 and (un − λ)n is a LRS.

Exercise 75. Some authors define the Skolem or Markov reachability problem as follows: given a matrix A ∈ Qd×d,
decide whether (Mn)1,2 = 0 for some n. Show that the two formulations are equivalent.

It is clear that the Markov reachability and inequality problems are particular cases of the Skolem and positivity
problems for rational LRS. Nevertheless, one could hope that the stochastic aspect could make the problem easier. We
will show that this is unfortunately not the case. The reduction follows [Aks+15] and uses the following intermediate
problem.
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Problem A. Given a stochastic matrix A ∈ Qd×d and a vector y ∈ {0, 1, 2}d, decide whether there exists n ∈ N such that
eAny = 1 where e =

[
1 0 . . . 0

]
.

Proposition 76. The Skolem problem for rational LRS reduces to Problem A.

Proof. Let A ∈ Zd×d be an instance of the Skolem problem. Without loss of generality (see Exercise 75), we are trying
to decide whether (An)1,2 = 0 for some n. We will construct a stochastic matrix P̃ and vector ṽ ∈ {0, 1, 2}2k+1 such that
for all n, An

1,2 = 0 if and only if eP̃ nṽ = 0 where e =
[
1 0 . . . 0

]
.

The first step consists in separating the positive and negative values in A, since a stochastic matrix can only have
nonnegative entries. Let A+ and A− be nonnegative matrices defined by A+

ij = max(0, Aij) and A+
ij = max(0,−Aij), then

A = A+ −A−. Now define

e =
[
1 0 . . . 0

]
, P =

[
A+ A−

A− A+

]
, v =

[
x
−x

]
, x =

[
0 1 0 . . . 0

]t
.

One checks that eP nv = e(A+ −A−)nx = An
1,2 by showing, by induction on n, that

P nv =
[

(A+ −A−)nx
−(A+ −A−)nx

]
.

The second step is to rescale the matrix to make it stochastic4, now that it only has nonnegative entries. Let s ∈ Q such
that sP is substochastic and define

ẽ =
[
e 0

]
, P̃ =

[
sP 1− sP1
0 1

]
, ṽ =

[
1 + v

1

]
, where 1 =

[
1 . . . 1

]t
.

First it is clear that ẽ is stochastic since it contains a single 1, and the entries of ṽ are in {0, 1, 2} since the entries of v
are in {−1, 0, 1}. Moreover, P̃ is stochastic since on row i, the last entry is 1− (sP1)i = 1−

∑
j sPij , i.e. the remainder

to make it stochastic. Then we have that

ẽP̃ nṽ =
[
e 0

] [(sP )n 1− (sP )n1
0 1

] [
1 + v

1

]
=
[
e 0

] [(sP )nv + 1
1

]
= e(sP )nv + e1 = snAn

1,2 + 1.

Therefore, ẽP̃ nṽ = 1 if and only if An
1,2 = 0.

Proposition 77. Problem A reduces to the Markov reachability problem with threshold 1
2 .

Proof. Let e =
[
1 0 . . . 0

]
, A ∈ Qd×d stochastic and y ∈ {0, 1, 2}k be an instance of Problem A. We will build a

markov chain M′′ such that eAny = 1 if and only if M′′(n + 1) = 1
2 and M′′(0) = 0. This will give us an instance of the

Markov reachability problem.
First, we need to put y in the matrix itself since we cannot have a value of 2 in the vector T and ensure that the

resulting matrix is stochastic. Define

s =
[
e 0 0

]
, B =

 1
4 A 1

4 y 1− 1
4 (A1 + y)

0 0 1
0 0 1

 , t =

0
1
0

 , 1 =

1
...
1

 .

Note that s is stochastic and B is stochastic since A is stochastic and yi ⩽ 2 thus each line has sum 1 and 1− 1
4 A1− 1

4 y ⩾ 0.
Then check (using that A1 = 1 since A is stochastic) that

sBnt =
[
e 0 0

] ( 1
4 A)n 1

4n An−1y 1− 1
4n (An1− y)

0 0 1
0 0 1

0
1
0

 = 4−neAn−1y.

Next, we will use the following automaton, which is essentially the same as in the proof of Proposition 32, to “compensate”
for the 4−n factor.

⟨s, B, t⟩ s f
1
2

1
2

1
4

3
4

4We have already seen this trick for probabilistic automata, but in the case at hand, we have more constraints to satisfy on the vectors.
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Formally, let M = ⟨s, B, t⟩ be the Markov chain above, and M′ be the Markov chain such that M′(n) = 1− 4−n for all
n ∈ N, which is easy to define. Finally, let M′′ = 1

2M+ 1
2M

′. It follows that for n ⩾ 1,

M′′(n) = 1
2 ⇔ M(n) =M′(n) ⇔ sBn−1t = 4−n ⇔ eAn−1y = 1.

Furthermore, M′′(0) = 1
2M(0) = 1

2 st = 0 by definition of s and t.

We can now show the main result of this section.

Theorem 78. The following problem are interreducible5:

• the Skolem problem for integer LRS,

• the Skolem problem for rational LRS,

• the Markov reachability problem, even for fixed threshold.

Proof. The Skolem problem for integer LRS and the Markov reachability problem are particular case of the Skolem problem
for rational LRS. By Proposition 76 and Proposition 77, we have that the Skolem problem for rational LRS is reducible to
the Markov reachability problem. Finally the Skolem problem for rational LRS is easily reducible to the Skolem problem
for integer LRS: let (un)n be a rational LRS, by Proposition 64, write un = SAnT for some rational S, A, T . Then
there exists m ∈ N such that mS, mA and mT have integer coefficients. But clearly, vn = (mS)(mA)n(mT ) = mn+2un

thus the Skolem problem for (un)n is equivalent to the Skolem problem for (vn)n, but the latter is an integer LRS by
Proposition 64.

Theorem 79. The following problem are interreducible:

• the positivity problem for integer LRS,

• the strict positivity problem for integer LRS,

• the positivity problem for rational LRS,

• the strict positivity problem for rational LRS,

• the Markov reachability problem, even for fixed threshold,

• the strict Markov reachability problem, even for fixed threshold.

Proof. It is straightforward to check that the proof of Theorem 78 also shows that all the non-strict problems are interre-
ducible, and that all the strict problem are interreducible. It remains to see that a strict problem is interreducible with a
non-strict one. This is the case for the integer LRS.

Let (un)n be an integer LRS, then un ⩾ 0 if and only if un + 1 > 0 and un + 1 is an integer LRS. Thus the non-strict
positivity problem reduces to the strict one. Conversely, un > 0 if and only un ⩾ 1 thus the strict positivity problems
reduces to the non-strict one.

2.3 Skolem–Mahler–Lech theorem
We will now see one of the most famous results on the Skolem problem, that gives the structure of the set of zeroes of a
LRS. We will follow a particularly simple proof that does not require too much number theory [Han86]. A set A ⊆ N is
called:

• periodic if there exists r such that q ∈ A if and only if q + r ∈ A for all q ∈ N.

• ultimately periodic if there exists q0 and r such that q ∈ A if and only if q + r ∈ A for all q ⩾ q0,

• quasi-periodic if it the union of a finite set and a periodic set.

Exercise 80. Show that A is periodic of period r if and only if there exists a finite set P ⊆ {0, . . . , r − 1} such that
A =

⋃
p∈P (p + rN). Show that A is ultimately periodic if and only if then there exists r ∈ N and two finite sets F, P such

that Z = F ∪
⋃

p∈P (p + rN).

Lemma 81. Let (Ai)i∈I be a family of quasi-periodic sets with the same period r, then A =
⋂

i∈I Ai is quasi-periodic of
period r.

5This means there are both reducible to each other. In particular their (non-)decidability is equivalent.
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Let p be a fixed prime number, then for every rational number q ̸= 0, there exists a unique integer u ∈ Z such that
q = pu a

b where a, b ∈ Z and p does not divide a or b. We write this number vp(q) = i, and by convention vp(0) =∞. This
is called a p-adic valuation and it satisfies the following properties:

• for all q, q′ ∈ Q, vp(qq′) = vp(q) + vp(q′),

• for all q, q′ ∈ Q, vp(q + q′) ⩾ min(vp(q), vp(q′)),

• for all n ∈ N, vp(n!) ⩾ n
p−1 .

Given a polynomial P (x) = a0 + a1x + · · · + anxd with rational coefficients, we define its valuation to be vj
p(P ) =

min{vp(aj), . . . , vp(an)} for j ⩽ n, and vj
p(P ) =∞ if j > n. It then follows that

• for all n ∈ N, vp(P (n)) ⩾ v0
p(P ).

Lemma 82. Let P be a polynomial with rational coefficients and n ∈ Z. Let R(x) = (x − m)P (x), then for every i,
vi

p(P ) ⩾ vi+1
p (R).

Proof. Write P (x) = a0 + a1x + · · ·+ anxn and R(x) = b0 + b1x + · · ·+ bn+1xn+1, with an, bn+1 ̸= 0. By definition of R,
we get that bn+1 = an, bi+1 = ai −mai+1 and b0 = −ma0. It follows that

ai = bi+1 + mbi+2 + · · ·+ mn−ibn+1.

But then vp(ai) ⩾ min(vp(bi+1), . . . , vp(bn+1)) = vi+1
p (P ) for all i. This implies that vi

p(R) ⩾ vi+1
p (P ).

Proposition 83. Let (dn)n be a sequence of integers and let bn =
∑n

i=0
(

n
i

)
pidi. Then either bn is identically 0, or

{n : bn = 0} is finite.
Proof. Assume that {n : bn = 0} is infinite, we will show that bn is identically zero. It is enough to show for all n, u ∈ N
that vp(bn) ⩾ u. For any n ∈ N, let

Rn(x) =
n∑

i=0

dip
i

i! x(x− 1) · · · (x− i + 1).

It follows that for all n ⩾ m, Rn(m) = bm. Furthermore, vi
p(Rn) ⩾ i− i

p−i for all i ∈ N. Indeed, if Rn(x) =
∑n

i=0 a
(n)
i xi,

then a
(n)
i is a linear combination of djpj

j! for j ⩾ i. But

vp

(
djpj

j!

)
= vp

(
djpj

)
− vp (j!) ⩾ vp

(
pj
)
− j

p−1 ⩾ j − j
p−1

and thus vp(a(n)
i ) ⩾ i− i

p−1 for all i.
Now fix n, u ∈ N, and let i such that i − i

p−1 ⩾ u. Let m1, . . . , mi be distincts elements such that bmj
= 0, and let

n0 ⩾ max(n, m1, . . . , mi). Then Rn0(mj) = bmj
= 0 for all j as we have seen before (since n0 ⩽ mj). It follows that

Rn0(x) = (x−m1) · · · (x−mi)P (x) for some polynomial P . Thus

vp(bn) = vp(Rn0(q)) since n ⩾ n0

= vp(P (q)) since Rn0(q) = P (q)y for some y ∈ N
⩾ v0

p(P )
⩾ vi

p(Rn0) by Lemma 82
⩾ i− i

p−1 ⩾ u by assumption on i.

Proposition 84. Let ⟨S, A, T ⟩ be LDS with integer coefficients and A invertible. If p > 2 does not divide det A, then
{n : SAnT = 0} is quasi-periodic of period r < pd2 when d is the dimension of A.
Proof. For any n ∈ N, let ñ denote the class of n modulo p and extend it to Ã coefficient-wise. Then Ã is a matrix with
coefficients in the field F = Z/pZ, but since p does not divide det A, then Ã is invertible over F. Since GLk(F) is finite of
cardinal less than pd2 , it follows that there exists r < pd2 such that Ãr = I and thus Ar = I + pM where M is an integer
coefficient matrix.

Let j ∈ {0, . . . , r − 1} and for all n ∈ N, let dn = (SAj)MnT , then

uj+rn = SAj+rnT = SAj(Ar)nT = SAj(I + pM)nT =
n∑

i=0

(
n

i

)
pidi.

It follows by Proposition 83 that {n : uj+rn = 0} is either finite or everything. Since there are finitely many j, then
{n : un = 0} is quasi-periodic.
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Theorem 85 (Skolem–Mahler–Lech). Let (un)n be a LRS, then the set Z = {n : un = 0} is a ultimately-periodic.

Proof. We will show this result in the case of rational LRS only, and admit the general case. By Proposition 64, there
exists a LDS ⟨S, A, T ⟩ such that un = SAnT . Since it is rational, there exists m ∈ Z such that ⟨mS, mA, mT ⟩ is an integer
LDS and clearly, SAnT = 0 if and only if (mS)(mAn)(mT ) = mn+2SAnT = 0. Thus we can assume that ⟨S, A, T ⟩ has
integer coefficients. Let d be the dimension of A and V = Ad(Rd), then observe that A is invertible over V . Furthermore,

{n : un = 0} = {n : SAnT = 0} = {n ⩽ d : SAnT = 0} ∪ {d + n : SAn(AdT ) = 0}.

The first part is finite and the second part corresponds to the LDS ⟨S, A, AdT ⟩. Since A is invertible over V and AV ⊆ V ,
we can find another LDS ⟨S′, B, T ′⟩ such that SAnT = S′BnT ′ and B is invertible (see Exercise 86). Then apply
Proposition 84 to ⟨S′, B′, T ′⟩ to conclude. Note that the resulting set is only ultimately periodic and not quasi-periodic,
because of the shift d + n introduced to make A invertible.

Exercise 86. Let ⟨S, A, T ⟩ be a LDS and V a linear subspace. Assume that T ∈ V , AV ⊆ V and A is invertible over V .
Show that there exists a LDS ⟨S′, B, T ′⟩ such that SAnT = S′BnT ′ and B is invertible.
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A Exercises
Exercise 87. Consider the following language over alphabet A = {a, b}:

L = {an1ban2b · · · ank ba∗ : k > 1,∃i > 1, n1 = ni}.

(a) Show that L is a context-free6 language. If you don’t know context-free languages, you can ignore the question.

We now assume that L = LA(λ) for some probabilistic automaton A = ⟨A, Q, S, µ, T ⟩. The goal of this exercise is to
reach a contradiction, therefore showing that L is not stochastic. Let P (x) = c0 + c1x + · · · + cdxn be the characteristic
polynomial of µ(a). Recall that by Theorem 63, P (µ(a)) = 0.

(b) Recall why 1 is an eigenvalue of µ(a). Show that c0 + · · ·+ cd = 0 and that for any word w,
∑d

i=0 ciA(aiw) = 0.

Let Pos := {i : ci > 0} and NonPos := {i : ci ⩽ 0}. Define w = bai1b · · · baik b where {i1, . . . , ik} = Pos.

(c) Let i ∈ {0, . . . , n}, when is aiw ∈ L? Show that
∑d

i=0 ciA(aiw) >
∑d

i=0 ciλ. Why is this a contradiction?

Exercise 88. Consider the following language over alphabet A = {a, b, c}:

L = {anbncn : n > 0}.

It is a classical result that L is a not a context-free language. The goal of this exercise is to show that L is stochastic.

(a) Show that L = L1 ∩ L2 where L1 = {anbnc+ : n > 0} and L2 = {a+bncn : n > 0} where x+ := xx∗.

(b) Build an automaton A1 such that A1(bmc) = 2−m if m > 0 and 0 otherwise7. Then modify it into B1 such that
B1(a∗bmc+) = 2−m if m > 0 and 0 otherwise.

(c) Build an automaton A2 such that A2(anb) = 1 − 2−n if n > 0 and 0 otherwise. Then modify it into B2 such that
B2(anb+c+) = 1− 2−n if n > 0 and 0 otherwise.

(d) Build an automaton C1 such that C1(anbmc+) = 1
2 (1− 2−n + 2−m) if n, m > 0 and 0 otherwise.

(e) Show that L1 = L=
C1

( 1
2 ).

(f) Show that for all x, y ∈ [0, 1], x = 1
2 ∧ y = 1

2 if and only if 1
2 x(1− x) + 1

2 y(1− y) = 1
4 .

(g) Show that for any two automata A and B, there exists an automaton C such that L=
C ( 1

4 ) = L=
A( 1

2 ) ∩ L=
B ( 1

2 ).

(h) Conclude.

Exercise 89. We will now consider various operations on stochastic languages.

(a) Show that if L is regular then there exists an automaton A such that A(w) = 1 if w ∈ L and 0 if w /∈ L.

(b) Let L be a regular language, A be a probabilistic automaton and λ < 1 a threshold, show that there exists B and
µ, δ such that LB(µ) = LA(λ) ∩ L and LB(δ) = LA(λ) ∪ L.

(c) Show that if L = L=
A( 1

2 ) for some automaton A then L is stochastic.

Consider L = {an1b · · · bank b : k > 1 ∧ n1 = nk}. We will show that LL′ is not stochastic for some regular language L′.

(d) Build an automaton A such that A(an1b · · · bank b) = 1− 21−k−n1 if k ⩾ 1.

(e) Build an automaton B such that B(an1b · · · bank b) = 21−k−nk if k > 1.

(f) Show that L is a stochastic language.

(g) Show that LA∗ = {an1ban2b · · · ank ba∗ : k > 1,∃i > 1, n1 = ni} where A = {a, b}.

(h) Conclude using Exercise 87.

(i) Show that LcA∗ is stochastic. Find a homomorphism h : {a, b, c} → A∗ such that h(LcA∗) is not stochastic.

(j) (not easy) Using a similar technique as in Exercise 87, show that L∗ is not stochastic by consider the word
w = bai1b(ai2b)2 · · · (aik b)2.

6Also known as algebraic languages, see https://fr.wikipedia.org/wiki/Langage_alg%C3%A9brique.
7In other words, any word not of the form bmc must have probability of acceptance 0.
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Exercise 90. Let A and B be two probabilistic automata. We say that they are equivalent if for every word w, A(w) =
B(w).

(a) Write A = ⟨A, Q1, S1, µ1, T1⟩ and B = ⟨A, Q2, S2, µ2, T2⟩. Recall the construction of C = ⟨A, Q, S, µ, T ⟩ such that
C(w) = 1

2A(w) + 1
2B(w). Find a vector T̃ such that for every for word w, A(w) = B(w) if and only if Sµ(w)T̃ = 0.

(b) Define Vn = span{Sµ(w) : |w| ⩽ n} for all n ∈ N. Show that if Vn = Vn+1 for some n, then Vn+1 = Vn+2.

(c) Define V = span{Sµ(w) : w ∈ A∗}, show that V = Vd+d′ where d (resp. d′) is the number of states of A (resp. B).

(d) Show that A and B are equivalent if and only if vT̃ = 0 for all v ∈ V .

(e) Show that if A and B are not equivalent then there exists w of length at most d + d′ such that A(w) ̸= B(w).

(f) Show that the equivalence problem is in coNP.

Exercise 91 ([Bal14]). Let Σ = {a} be a unary alphabet. For any n ∈ N, let Cn = {an} be the language consisting of a
single word an.

(a) By using Myhill-Nerode theorem, show that for any n ∈ N, the smallest deterministic complete finite automaton
recognizing Cn has exactly n + 2 states.

(b) Let δ ∈ [0, 1], build a probabilistic automaton A with 3 states (including any sink state) such that A(ε) = 0 and
A(aℓ) = (1− δ)ℓ−1δ for any ℓ ⩾ 1.

(c) Modify your automaton (still with 3 states) so that A(aℓ) = (1− δ)ℓ−1δℓ for any ℓ ⩾ 1.

(d) Show that for any n ∈ N, there exists a choice of δ such that ℓ 7→ A(aℓ) has unique maximum at ℓ = n.

(e) Show that for any n ∈ N, the language Cn is recognized by a 3−states probabilistic automaton with an isolated
cut-point. What is your conclusion?

(f) Show that the isolation threshold at the previous question is equivalent to (2ne)−1 as n goes infinity.

The automaton A is small but has one drawback: the isolation threshold of the cut-point decreases to 0 as n increases.
We will now see how to build an automaton with a constant isolation threshold. Let p1, p2, . . . , be the infinite sequence
of primes in increasing order. Fix n, k ∈ N, δ ∈ [0, 1]. and consider the automaton Bn,k in Figure 5. It has states qi

j for
i = 1, . . . , k and j = 0, . . . , pi− 1, and an extra sink state s. For each i, j, there is a transition from qi

j to qi
(j+1) mod pi

with
probability 1 − δ, and a transition to s with probability δ. The initial probability distribution is 1

k in each of the states
q1

0 , . . . , qk
0 . The state qi

j is final if and only if n ≡ j mod pi. Finally, we set δ = 1− ε1/n where ε ∈ (0, 1) is fixed.

(g) Let ℓ ∈ N, show that Bn,k(aℓ) = 1
k

k∑
i=1

1
[
n ≡ ℓ mod pi

]
(1− δ)ℓ and Bn,k(aℓ) = ε.

(h) Show that Bn,k(aℓ) ⩽ ε2 for all ℓ ⩾ 2n.

We now assume k is chosen so that p1 · · · pk > n and we let r(n) = min{i : p1 · · · pi ⩾ n}.

(i) Let 0 ⩽ ℓ < 2n be distinct from n and m = |{i : n ≡ ℓ mod pi}|. Show that Bn,k(aℓ) ⩽ m
k and if m > r(n) then

ℓ ⩾ 2n.

(j) Show that for a certain choice of ε and α, Cn is recognised by Bn,αr(n) with a constant isolation threshold.

Some well-known results on the distribution of primes imply that r(n) = O
( ln n

ln ln n

)
and that

∑k
i=1 pi ⩽ k ln k.

(k) Show that the automaton Bn,αr(n) has O
(

ln2 n
ln ln n

)
states.

Exercise 92. The goal of this exercise is to show Theorem 19, following [Amb96]. Let m ⩾ 1 and A = {a1, . . . , am} be
an alphabet of size m. We consider the language Lm over A that contains each letter of the alphabet exactly m times:

Lm = {w ∈ A∗ : ∀a ∈ A, |w|a = m}.

(a) By using Myhill-Nerode theorem, show that the smallest deterministic complete finite automaton recognizing Lm

has exactly (m + 1)m + 1 states.
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Figure 5: Automaton Bn,k; for readability all edges have probability 1− δ when there is no label.

Let Σ = {x} be a unary alphabet. For any n ∈ N, let Cn = {xn} be the language over Σ consisting of a single word xn.
We admit the following result, proven in Exercise 91.

Lemma 93. There exists δ > 0 such that for every n, there exists a probabilistic automaton An with O
(

ln2 n
ln ln n

)
states

that recognizes Cn with an isolated cut-point and isolation threshold at least δ.

(b) Explain why we can assume that the cut-point Lemma 93 is 9/10, i.e. Cn = LAn(9/10). You will need to justify
that this cut-point is still isolated with constant threshold δ′ independent of n.

Let p be a prime greater than αm for some α ∈ N to fix later. For any i ∈ {1, . . . , αm} and v ∈ N, consider the language

L′
i,v =

{
w ∈ A∗ :

m∑
t=1

(it−1 mod p)|w|at
= v

}
.

(c) By using Lemma 93, show that for any i and v, there exists a probabilistic automaton Bi,v with O
(

ln2 v
ln ln v

)
states

that recognizes L′
i,v with isolated cut-point 9/10 and isolation threshold at least δ. Hint: reading one letter in Bi,v

corresponds to reading several letters at once in Av.

(d) Show that for every i ∈ {1, . . . , αm}, Lm ⊆ L′
m,i,vi

for a certain value vi ∈ {0, . . . , m2p} that you will identify.

We admit the following lemma, whose proof is deferred to question (j)

Lemma 94. Let y1, . . . , ym ∈ {1, . . . , αm} be pairwise distinct, then the vectors z0, . . . , zm−1 defined by

zj = (yj
1 mod p, yj

2 mod p, . . . , yj
m mod p)

are linearly independent.

(e) Let S ⊆ {1, . . . , αm}. Show that if |S| ⩾ m then
⋂

i∈S L′
m,i,vi

⊆ Lm using Lemma 94.

We now consider the probabilistic automaton Cm = 1
αm

∑αm
i=1 Bi,vi

where vi is defined as in question (d).

(f) Show that if w ∈ Lm then C(w) ⩾ 9/10 + δ.

(g) Show that if w /∈ Lm then C(w) ⩽ 9
10 − δ + 1/10+δ

α .

30



Ve
rs

io
n

0.
99

93

(h) Show that there exists a choice of α, independent of m, such that Cm recognizes Lm with an isolated cut-point and
isolation threshold at least δ/2. Show that Cm has O

(
m ln2 n

ln ln n

)
states. Hint: you can use the fact that we can choose

p such that p = αn + o(αn).

(i) Show that there exists δ > 0 such that for infinitely many n, there exists a regular language recognized by a
probabilistic automaton with n states and an isolated cut-point with isolation threshold at least δ, such that the
smallest deterministic finite automaton recognizing it has Ω(2 n ln ln n

ln n ) states. Compare with the result in the course
about isolated cut-points.

(j) Let y1, . . . , ym be as in Lemma 94 and assume that z1, . . . , zm are linearly dependent. Show that there exists
c0, . . . , cm−1 not all zero such that c0 + c1x + · · ·+ cm−1xm−1 = 0 mod p for all x ∈ {y1, . . . , ym}. Prove Lemma 94.
Hint: you can use the fact that a degree d polynomial with integer coefficients has at most d distinct roots modulo
any prime number p > d.
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B Solutions to exercises
Exercise 2. We check that 1 + 0 + 0 = 1 for I. Then each line of µ(a) and µ(b), for example 0 + 1

2 + 1
2 = 1 and 0 + 1

4 + 3
4 .

Exercise 3. Let M ∈ [0, 1]P ×Q and N ∈ [0, 1]Q×R then (MN)p,r =
∑

q∈Q Mp,qNq,r. It follows that on line p we have∑
r∈R

(MN)p,r =
∑
r∈R

∑
q∈Q

Mp,qNq,r =
∑
q∈Q

Mp,q

∑
r∈R

Nq,r =
∑
q∈Q

Mp,q = 1.

Exercise 4. Intuitively, µ(w)q,q′ is the probability that we end up in state q′ by reading word w from state q. Formally,
µ(w)q,q′ is the sum of the weights (probabilities) of all paths from q to q′ that are labelled by w. Indeed, this is true when
w is just one letter, by definition. Let w ∈ Σ∗ and a ∈ Σ then any path q

wa|x−−−→ q′ is of the form q
w|y−−→ q′′ a|z−−→ q where

q′′ ∈ A, z = µ(a)q′′,q and x = yz. Summing over all such paths with fixed q′′ gives a probability of µ(w)q,q′′µ(a)q′′,q by
induction. Therefore the sum of all paths from q to q′ labelled by wa is∑

q′′∈Q

µ(w)q,q′′µ(a)q′′,q′ = (µ(w)µ(a))q,q′ = µ(wa)q,q′ .

Then Sµ(w) is the probability distribution of the states starting from the initial distribution I. This is indeed a distribution
because it is a stochastic vector.

Exercise 5. In the first approach, we simply write B using a substochastic matrix: B = ⟨A, Q, S, µ, T ⟩ where A = {a, b},
Q = {p, q, r} and

S =
[
1 0 0

]
, µ(a) =

0 1 0
0 0 1

2
0 0 0

 , µ(b) =

0 0 0
0 0 0
1 0 0

 , and T =

0
0
1

 .

In the second approach, we create a sink state ⊥ to account for the missing probability: B′ = ⟨A, Q′, S′, µ′, T ′⟩ where
Q′ = {p, q, r,⊥} and

S′ =
[
1 0 0 0

]
, µ′(a) =


0 1 0 0
0 0 1

2
1
2

0 0 0 1
0 0 0 1

 , µ′(b) =


0 0 0 1
0 0 0 1
1 0 0 0
0 0 0 1

 , and T ′ =


0
0
1
0

 .

Notice that indeed µ′(a) and µ′(b) are stochastic. Furthermore, we have the following relationship between the two
automata, for every letter x ∈ A, vector v ∈ Q3 and “sink probability“ ε ∈ Q:

µ′(x)
[
v
ε

]
=
[
µ(x)v

ε′

]
for some ε′. Thus for every word w,

S′µ′(w)T =
[
I 0

]
µ′(w)

[
T
0

]
=
[
I 0

] [µ(w)T
ε

]
= Sµ(w)T.

Exercise 7. Check that A(bba) = 1
12 and A(abb) = 2

3 . Thus bba /∈ LA( 1
2 ) and abb ∈ LA(λ) for all λ < 2

3 . In fact
LA( 2

3 ) = ∅ as we will see. Check that A((ab)nb) = 2
3 for every n ∈ N, thus (ab)∗b ⊆ LA(λ) for all λ < 2

3 .

Exercise 8. The edges of B are exactly the edges of A labelled by a, thus LB(λ) = LA(λ) ∩ a∗.

Exercise 9. TODO

Exercise 10. Each regular language can be described by a regular expression, that is a finite word over the finite alphabet
A ∪ {(, ), +, ∗, ε}. The set of words over a finite alphabet is countable.

Exercise 12. One immediately checks that ≡L is reflexive, symmetric and transitive. Let L be a regular language and let
A = ⟨A, Q, q0, δ, qf ⟩ be a deterministic finite automaton, where q0, qf are the initial and final states and δ : Q×A→ Q is
the transition function (which we can assume is total), which we naturally extend to words in the obvious way. For each
state q, define Lq = {w ∈ A∗ : δ(q0, w) = q} to be the set of words w such that the automaton is in state q after reading w
from q0. We claim that for all u, v ∈ Lq, u ≡L v. Indeed, if u ∈ Lq and w ∈ A∗, then δ(q0, uw) = δ(δ(q0, u), w) = δ(q, w)
thus uw ∈ L if and only if δ(q, w) = qf . Note that this condition is independent of u ∈ Lq and thus uw ∈ L if and only if
vw ∈ L.
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Conversely, assume that the number of equivalence classes is finite. We denote by [u] the equivalence class of every
u ∈ W . Now consider the deterministic finite automaton A = ⟨A, Q, q0, δ, F ⟩ where Q = {[u] : u ∈ A∗} which is finite by
asssumption, q0 = [ε], F = {[u] : u ∈ L} and δ([u], a) = [ua]. Note that F is well-defined because the condition u ∈ L
is independent of the particular u we choose since if [u] = [v] then u = uε ∈ L if and only if v = vε ∈ L. Similarly, δ is
well-defined because if [u] = [v] then [ua] = [va]. Indeed, (ua)w ∈ L if and only if u(aw) ∈ L if and only if v(aw) ∈ L (by
[u] = [v]) if and only if (va)w ∈ L. We now prove that A recognizes L: A recognizes u if and only if δ(q0, u) ∈ F if and
only if δ([ε], u) ∈ F if and only if [u] ∈ F if and only if u ∈ L.

Exercise 15. This probabilistic automaton is represented by the tuple C = ⟨A, Q, S, µ, T ⟩ where A = {a, b}, Q = {p, q}
and

S =
[
1 0

]
, µ(a) =

[ 1
2

1
2

0 1

]
, µ(b) =

[
0 0
1 0

]
and T =

[
1
0

]
.

One checks that

µ(a)n

[
x
y

]
=
[
2−nx + (1− 2−n)y

y

]
, µ(b)

[
x
y

]
=
[

0
x

]
, µ(a)nµ(b)

[
x
y

]
=
[
(1− 2−n)x

x

]
.

Therefore,

Sµ(x(n1, . . . , nk))T = Sµ(a)n1µ(b) · · ·µ(a)nk µ(b)T

= Sµ(a)n1µ(b) · · ·µ(a)nk−1µ(b)
[
(1− 2−nk )

1

]
= S

[
(1− 2−n1) · · · (1− 2−nk )
(1− 2−n2) · · · (1− 2−nk )

]
=

k∏
i=1

(1− 2−ni).

Let u = x(n1, . . . , nk) and w = x(nk+1, . . . , nℓ) then uw = x(n1, . . . , nℓ) thus C(uw) = C(u)C(w) by a straightforward
calculation. To see the density, fix λ ∈ (0, 1) and let µ∞ = log λ < 0. Now consider the sequence defined by µ0 = 0
and µi+1 = µi + log(1 − 2−ni) where ni+1 = min{k ⩾ 1 : νi + log(1 − 2−k) > µ∞}. Such a k exists because µi > ν∞
and log(1 − 2−k) → 0 as k → ∞. Then µk → µ∞ as k → ∞ thus eµk → λ as k → ∞. But eµk =

∏k
i=1(1 − 2−ni) =

C(x(n1, . . . , nk)). The proof that C is universally non-regular is then the same as for Theorem 14.

Exercise 18. Since L is nonempty, there exists x ∈ L, which must therefore have length |x| ⩾ n. For every 1 ⩽ i ⩽ n,
let ui = x1 · · ·xi. Then ui ̸≡L uj for i < j. Indeed, if we let w = xj+1 · · ·xn then ujw = x ∈ L but |uiw| = i + n− j < n
thus uiw /∈ L. It follows that ≡L has at least n equivalence classes. By Theorem 11, any deterministic finite automaton
that recognizes L must therefore have at least n states.

Exercise 28. Let A and λ, µ ∈ (0, 1). There are two cases depending on whether λ ⩾ µ or not. If λ ⩾ µ then we can
let B = µ

λA and then for any word w, B(w) ⩾ µ if and only if A(w) ⩾ λ. Note that we indeed have µ
λ ∈ [0, 1] so B is a

stochastic automaton. If λ < µ, define B = (1− α) + αA where α = 1−µ
1−λ ∈ [0, 1] Then check that for any word w,

B(w) ⩾ λ ⇔ αA(w) ⩾ λ + α− 1 ⇔ A(w) ⩾ λ.

Exercise 30. Let A = ⟨A, Q, S, µ, T ⟩ be a probabilistic automaton and let p be the smallest integer such that for all
a ∈ A, 2pµ(a) has integer entries. In other words, p is the highest power of 2 appearing in the denominators of the
transition probabilities. If p = 0 or p = 1 then A is simple already. We now give the intuition: for each state q and letter
a, we will build a tree of height p such that each leaf has probability 2−p to be reached from q after reading ap. But since
p is such that 2pµ(a) has integer entries, it means that we simply need to choose (2pµ(a))q,p leaves for each p and put a
transition with probability 1 from this leaf to p. Graphically, for example,

q

p1

p2

p3

a| 18

a| 28

a| 38

becomes

q

p1 p2 p3

a| 12 a| 12
a|0.5 a|0.5

a|0.5 a|0.5 a|0.5 a|0.5

a|0.5a|0.5

a|0.5a|0.5a|0.5a|0.5

a a a a aaaa
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Exercise 33. If A and B are simple then it is clear that all probabilities that appear in C are product of the form xy
where x and y are multiple of 1

2 , therefore they are multiple of 1
4 . The same is true for the initial probabilities.

Exercise 38. TODO

Exercise 66. If we follow the proof of the course then we need find a, b ∈ Q such that

A2 = aA1 + bA0 ⇔
[
−1 2
−2 3

]
=
[

b a
−a 2a + b

]
⇔ a = 2 ∧ b = −1.

Therefore we get that un+2 = 2un+1 − un, u0 = SA0T = 0 and u1 = SA1T = 1. It is not hard to see that un = n. It is
also immediate that

An

[
un

un+1

]
=
[

un+1
2un+1 − un

]
=
[
un+1
un+2

]
.

One easily checks by induction that for every n ∈ N,

Bn =
[
1 n
0 1

]
and thus SBnT = n = un, but

Bn

[
un

un+1

]
=
[
un + un+1

un+1

]
̸=
[
un+1
un+2

]
.

Exercise 87. (a) We show L can be recognized by a nondeterministic automaton with one counter. The automaton
first counts to n1 until it reaches the first b. It then guesses the occurrence of a b and starts decreasing the counter
for every a until the next b. If the counter reaches 0, the word is accepted.
It is also possible to write a grammar for this language:

S → RB R→ aRa |Bb | b B → Ba |Bb | b .

Indeed let A = {a, b} then L(B) = bA∗ thus L(R) =
⋃

n>0 an(L(B)b + b)an =
⋃

n>0 an(bA∗b + b)an and therefore

L(S) =
⋃

n>0
an(bA∗b + b)anbA∗.

(b) Since µ(a) is stochastic, we get that

µ(a)

1
...
1

 =

µ(a)1,1 + · · ·+ µ(a)1,d

...
µ(a)d,1 + · · ·+ µ(a)d,d

 =

1
...
1


which shows that 1 is an eigenvalue. It follows that P (1) = 0 since P is the characteristic polynomial and thus
P (µ(a)) = 0 by Theorem 63. Unfolding the definition, we get that c0Id + c1µ(a) + · · ·+ cdµ(a)d = 0. Using that µ
is a morphism, we then have that

d∑
i=0

ciA(aiw) =
d∑

i=0
ciSµ(a)iµ(w)T = S

(
d∑

i=0
ciµ(a)i

)
µ(w)T = 0.

(c) By definition of L, aiw ∈ L if and only if i ∈ Pos. Then

d∑
i=0

ciA(aiw) =
d∑

i∈Pos
ciA(aiw) +

∑
i∈NonPos

ciA(aiw)

>
∑

i∈Pos
ciλ +

∑
i∈NonPos

ciA(aiw) since aiw ∈ L thus A(aiw) > λ

>
∑

i∈Pos
ciλ +

∑
i∈NonPos

ciλ since aiw /∈ L thus A(aiw) ⩽ λ and ci ⩽ 0

=
d∑

i=0
ciλ = 0.

This is a contradiction because have seen that
∑d

i=0 ciA(aiw) = 0 and
∑d

i=0 ciλ =
(∑d

i=0 ci

)
λ = 0 thus 0 > 0.
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Exercise 88. (a) Clearly L1 ∩ L2 ⊆ a+b+c+. Then anbmcp ∈ L1 ∩ L2 if and only if n = m (by virtue of being in L1)
and m = p (by virtue of being in L2). Thus L = L1 ∩ L2.

(b) Consider the automaton A1 below, it is substochastic only but can trivially be made stochastic.

p x f
b| 12

b| 12

c

It is clear that any word not in the language b+c has probability of acceptance 0. Furthermore, a direct computation
shows that A1(bmc) = 2−m if m > 0. We then add a self-loop to p to accept any a and a self-loop to f to accept
any c to obtain B1.

(c) Consider the automaton A2 below, again it is substochastic only.

p x f

a| 12 a

a| 12 b

Check that any word not in a+b has probability of acceptance 0. Then observe that A2

(
p

an

−−→ p
)

= 2−n and by

stochasticity A2

(
p

an

−−→ x
)

= 1−A2

(
p

an

−−→ p
)

= 1− 2−n since after reading an, the automaton is either is state p

or x. Finally, only state x leads to f when reading b therefore A2(anb) = A2

(
p

an

−−→ x
)

= 1− 2−n.

Another clever solution found by a student is the following: take A1, replace b by a and b by c and take the
complement. This automaton satisfies A2(anb) = 1 − 2−n but has probability of acceptance 1 for the other words.
But notice that a+b+ is regular so we can build C such that C(w) = 1 if w ∈ a+b+ and 0 otherwise. Then the
product of the two automata gives the result.
We then obtain obtain B2 by making f non-final, adding a state f ′ with an arrow from f to f ′ labelled by c, adding
a self-loop to f to accept any b and a self-loop to f ′ to accept any c.

(d) Build C1 such that C1(w) = 1
2B1(w) + 1

2B2(w), then

C1(anbmc+) = 1
2B1(an−1bmc+) + 1

2B2(an−1bmc+) = 1
2 2−m + 1

2 (1− 2−n) = 1
2 (1 + 2−m − 2−n).

(e) Any word not in a+b+c+ has probably of acceptance 0, and by the previous computation, C1(anbmc+) = 1
2 if and

only if n = m. Therefore L=
C1

( 1
2 ) = {anbmc+ : n = m} = L1.

(f) Clearly if x = y = 1
2 then 1

2 x(1− x) + 1
2 y(1− y) = 1

4 . Conversely, observe that x(1− x) ⩾ 1
4 for all x, and similarly

for y. Thus if 1
2 x(1− x) + 1

2 y(1− y) ̸= 1
4 then either x(1− x) > 1

4 or y(1− y) > 1
4 and thus either x ̸= 1

2 or y ̸= 1
2 .

(g) Without loss of generality we can assume that both automata have the same alphabet by taking the intersection (since
any word in the resulting intersection must be in both). Write A = ⟨A, Q1, S1, µ1, T1⟩ and B = ⟨A, Q2, S2, µ2, T2⟩,
define C = ⟨A, Q′, S′, µ′, T ′⟩ where

S = 1
2
[
S1 S2

]
, µ(a) =

[
µ1(a) 0

0 µ2(a)

]
, T =

[
T1 T2

]
.

Note that S is indeed stochastic. Then one easily checks that C(w) = Sµ(w)T = 1
2 (S1µ1(w)T1 + S2µ2(w)T2) =

1
2 (A(w) + B(w)). Using the observation of (f), we get the result.

(h) Similarly to C1, we can build C2 such that L=
C2

( 1
2 ) = L2. Then there exists C such that L=

C ( 1
4 ) = L=

C1
( 1

2 ) ∩ L=
C2

( 1
2 ) =

L1 ∩ L2 = L.

Exercise 89.

(a) Trivial.
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(b) Let B be as above for L, then build automaton C such that C(w) = 1
2A(w) + 1

2B(w). Using that B(w) ∈ {0, 1} we
get that

C(w) > λ
2 ⇔ B(w) +A(w) > λ ⇔ B(w) = 1 ∨ A(w) > λ ⇔ w ∈ L ∨ w ∈ LA(λ).

Similarly,

C(w) > 1+λ
2 ⇔ B(w) +A(w) > 1 + λ ⇔ B(w) = 1 ∧ A(w) > λ ⇔ w ∈ L ∧ w ∈ LA(λ).

(c) Use that x(1 − x) ⩾ 1
4 if and only if x = 1

2 . See Proposition 32, it works even for non-simple automata with a few
tweaks.

(d) Check that the automaton below is stochastic.

p xy f

a| 12 ba

b

aa| 12

b

b| 12

a

b| 12

Check that A(an1b · · · bank b) = 1− 21−k−n1 if k ⩾ 1. Indeed, after reading an1b · · · bank b with k ⩾ 1, the automaton
can only be in f or x. But since it is stochastic, the probability of acceptance (which is the probability of being in
f), is 1 minus the probability of being in x, which is 21−k−n1 . Any other word has probability of acceptance 0.

(e) Check that the following automaton satisfies B(an1b · · · bank b) = 21−k−nk if k > 1.

p x f
b| 12

b| 12

a

a| 12

b

(f) Build C such that C(w) = 1
2 (A(w) + B(w)). Then C(an1b · · · bank b) = 1

2 (1 + 21−k−n1 − 21−k−nk ). It follows that
L=

C ( 1
2 ) = L and thus L is stochastic.

(g) Trivial.

(h) LA∗ is not stochastic, thus concatenation of a stochastic and a regular language is not necessarily stochastic.

(i) Clearly cA∗ is regular and since c is not in the alphabet of L, LcA∗ is stochastic: the letter c acts as a reset to go
from one automaton to another. The morphism h(a) = a, h(b) = b, h(c) = ε is such that h(LcA∗) = LA∗ which is
not stochastic.

(j) Assume that L∗ = LA(λ) for some probabilistic automaton A = ⟨A, Q, S, µ, T ⟩. Let P (x) = c0 + c1x + · · · + cdxn

be the characteristic polynomial of µ(a). Recall that by Theorem 63, P (µ(a)) = 0. Since 1 is an eigenvalue
of µ(a), c0 + · · · + cd = 0 and for any word w,

∑d
i=0 ciA(aiw) = 0. Define w = bai1b(ai2b)2 · · · (aik b)2 where

{i1, . . . , ik} = {i : ci > 0}, then aiw ∈ L if and only if i ∈ {i1, . . . , ik} but similarly reasoning to Exercise 87 shows
that

∑d
i=0 ciA(aiw) >

∑d
i=0 ciλ which is absurd.

Exercise 90.

(a) Define C = ⟨A, Q′, S′, µ′, T ′⟩ where

S = 1
2
[
S1 S2

]
, µ(a) =

[
µ1(a) 0

0 µ2(a)

]
, T =

[
T1 T2

]
, T̃ =

[
T1 −T2

]
,

Note that S is indeed stochastic. Then check that

C(w) = Sµ(w)T = 1
2 (S1µ1(w)T1 + S2µ2(w)T2) = 1

2 (A(w) + B(w)).

On the other hand, we have that

Sµ(w)T̃ = 1
2 (S1µ1(w)T1 − S2µ2(w)T2) = 1

2 (A(w)− B(w))

thus Sµ(w)T̃ if and only if A(w) = B(w).
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(b) Observe8 that for any word w and letter a, Sµ(wa) = (Sµ(w))µ(a) ∈ V|w|µ(a). Thus Vn+1 = Vn ∪
⋃

a∈A Vnµ(a).
Therefore if Vn = Vn+1 for some n, then

Vn+2 = Vn+1 ∪
⋃

a∈A

Vn+1µ(a) = Vn ∪
⋃

a∈A

Vnµ(a) = Vn+1.

(c) By the previous question, for every n, either Vn = Vn+1 or dim Vn < dim Vn+1. But Vn ⊆ Rd+d′ thus dim Vn ⩽ d+d′.
It follows that the sequence Vn = Vd+d′ for all n ⩾ d + d′. But since V =

⋃
n∈N Vn, we get that V = Vd+d′ .

(d) If A and B are equivalent then Sµ(w)T̃ = 0 for all w. By linearity, and since the Sµ(w) span V , it follows that
vT̃ = 0 for all v ∈ V . Conversely if A and B are not equivalent, then there exists w ∈ A∗ such that Sµ(w)T̃ ̸= 0.
But Sµ(w) ∈ V so ∃v ∈ V such that vT̃ ̸= 0.

(e) If A and B are not equivalent, then there exists v ∈ V such that vT̃ ̸= 0. But V = Vd+d′ = span{Sµ(w) : |w| ⩽ d+d′}
thus there must exists w with |w| ⩽ d + d′ and Sµ(w)T̃ ̸= 0 (otherwise by linearity every vector v ∈ V would satisfy
vT̃ = 0). Finally Sµ(w)T̃ ̸= 0 implies that A(w) ̸= B(w).

(f) To show that the equivalence problem is in coNP, it is equivalent to show that the disequivalence problem (decide
whether two automata are not equivalent) is in NP. Thanks to the previous question, this is equivalent to searching
a word w of linear size (d + d′) such that A(w) ̸= B(w). This can be done in NP by guessing such a word, computing
A(w) and B(w) and comparing them. Note that we can compute A(w) in polynomial time because the numbers are
rational and their size remains bounded by a polynomial.

Exercise 91.

(a) First observe that for any i < j ⩽ n + 1, ai ̸≡L aj , since for u = an−i (note that i ⩽ n so n− i ⩾ 0), aiu ∈ Cn but
aju /∈ L. On the other hand, for any i ⩾ n + 1, an+1 ≡L ai since for all u ∈ Σ∗, an+1u /∈ L and aiu /∈ L. Hence,
there are exactly n + 2 equivalence classes and by Myhill-Nerode theorem, that’s exactly the number of states of a
minimal DFA recognizing Cn.

(b) Consider the following automaton:

0 1 2δ 1

1− δ 1

1− δ

It is clear that the probability of aℓ being accepted is the probability of going from state 0 to state 1 (δ) and the
probability of staying ℓ− 1 times state 1 (1− δ).

(c) Consider the following automaton:

0 1 2δ

1− δ

1

1− δ 1

An accepting run for aℓ first stay i times in state 0 then transitions to state 1 and stays ℓ− i− 1 times in state 1.
Therefore the probability is

ℓ−1∑
i=0

(1− δ)iδ(1− δ)n−1−i = (1− δ)ℓ−1δ

ℓ−1∑
i=0

1 = (1− δ)ℓ−1δℓ.

(d) Let f(ℓ) = (1− δ)ℓ−1δℓ, then f ′(ℓ) = log(1− δ)(1− δ)ℓ−1δℓ + (1− δ)ℓ−1δ = (1− δ)ℓ−1(1 + ℓ log(1− δ)). The sign of
the derivative is given by 1 + ℓ log(1− δ), a linear function of ℓ. Since the derivative at 0 is positive and negative at
infinity, the maximum is attained once at ℓ such that 1+ℓ log(1−δ) = 0. Hence we choose δ such that the maximum
is attained at ℓ = n, that is 1 + n log(1− δ), so δ = 1− e−1/n.

8If X is a set and M a matrix, XM := {xM : x ∈ X}.
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(e) If we let δ = 1 − e−1/n, then A(aℓ) is increasing from ℓ = 0 to ℓ = n and decreasing from ℓ = n to infinity. Hence
if we take λ = 1

2 (A(ℓn) + max(A(an−1),A(an+1))) then LA(λ) = Cn and by construction λ is isolated. There is a
striking comparison between DFAs and PFAs since the former requires n states to recognize Cn whereas the latter
only requires 3 independently of n.

(f) First note that

A(an+1)
A(an−1) = (1− δ)2(n + 1)

n− 1 = e−2/n(n + 1)
n− 1 ⩾

(
1− 2

n + 4
n2

)
(n + 1)

n− 1 =
n− 1 + 2

n + 4
n2

n− 1 > 1.

Therefore A(an+1) > A(an−1) so the isolation threshold is

1
2
(
A(an)−A(an−1)

)
= 1

2
(
(1− δ)n−1δn− (1− δ)nδ(n + 1)

)
=
(
n− (1− δ)2(n + 1)

)
(1− δ)n−1 δ

2

=
(

n− e− 2
n (n + 1)

)
e− n−1

n 1−e
−

1
n

2

∼ 1
2ne as n→∞.

(g) Starting from each initial state qi
0, the automaton goes in a loop: at each step there is a probability 1−δ to continue,

and otherwise we go to a sink state. Hence, the probability to stay in the loop ℓ times is (1− δ)ℓ and we end up in
state qi

ℓ mod pi
which is final if and only if ℓ ≡ ℓ mod pi. The result follows since each initial state has probability

1/k. It follows that Bn,k(an) = (1− δ)n = ε.

(h) If ℓ ⩾ 2n then (1− δ)ℓ ⩽ (1− δ)2n and hence

Bn,k(aℓ) ⩽ (1− δ)ℓ < (1− δ)2n = ε2.

(i) By the previous questions we have that

Bn,k(aℓ) = 1
k

k∑
i=1

1
[
n ≡ ℓ mod pi

]
(1− δ)ℓ ⩽

1
k

k∑
i=1

1
[
n ≡ ℓ mod pi

]
= m

k
.

Assume that m > r(n) and let X = {i : n ≡ ℓ mod pi}. Note that m = |X|. By the Chinese remainder theorem, we
must have n ≡ ℓ mod N where N =

∏
p∈X p. Since (pi)i is the sequence of all primes in increasing order, we must

have have N ⩾
∏m

i=1 pi = (
∏r(n)

i=1 pi)
∏m

i=r(n)+1 pi >
∏r(n)

i=1 pi ⩾ n by definition of r(n). Since n ̸= ℓ, we must have in
particular that |n− ℓ| ⩾ N > n so ℓ > 2n.

(j) By the previous questions, we have Bn,k(an) = ε and Bn,k(aℓ) ⩽ max(ε2, r(n)/k) for all ℓ ̸= n. If we choose k = 3r(n)
(i.e. α = 3) and ε = 1

2 then ε2 < r(n)/k = 1
3 so we can choose λ = 5

12 and we have an isolation threshold of 1
12 .

(k) The automaton Bn,k has Nn := 1 +
∑k

i=1 pi states. Since k = αr(n), by the bounds we admitted, we have

Nn ⩽ 1 +
αr(n)∑
i=1

pi

⩽ 1 + αr(n) ln(αr(n))
= O(r(n) ln r(n)) since r(n)→∞

= O

(
ln n

ln ln n
ln ln n

ln ln n

)
= O

(
ln2 n

ln ln n

)
.

Exercise 92.

(a) Intuitively, the automaton needs to count each of the m letters up to m, and as soon as one goes above m, we can
reject. Hence we need (m + 1)m states to count {0, . . . , m}m, and one extra state to reject.
Let ≡Lm

denote the Myhill-Nerode equivalence relation for Lm. For any k1, . . . , km ∈ N, define w(k1, . . . , km) =
ak1

1 · · · akm
m . Let (k1, . . . , km) ̸= (k′

1, . . . , k′
m) ∈ {0, . . . , m}m, then w(k1, . . . , km) ̸≡Lm

w(k′
1, . . . , k′

m). Indeed, on the
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one hand we have w(k1, . . . , km)w(m − k1, . . . , m − km) ∈ Lm since each letter ai appears ki + m − ki = m times
(note that we used that ki ⩽ m for m − ki to be nonnegative). On the other hand, there is i such that ki ̸= k′

i

and therefore the word w(k′
1, . . . , k′

m)w(m − k1, . . . , m − km) /∈ Lm because it contains k′
i + m − ki ̸= m times the

letter ai. Furthermore, for any (k1, . . . , km) ∈ {0, . . . , m}m, w(k1, . . . , km) ̸≡Lm
am+1

1 . Indeed, we have seen that
w(k1, . . . , km)w(m− k1, . . . , m− km) ∈ Lm but am+1

1 w(m− k1, . . . , m− km) /∈ Lm because the letter a1 appears at
least m + 1 + m− k1 > m times (since k1 ⩽ m).
We have therefore shown that ≡Lm

has at least (m + 1)m + 1 equivalences classes ((m + 1)m is the cardinal of
{0, . . . , m}m and the +1 is for the word am+1

1 ). By the Myhill-Nerode theorem, any DFA that recognizes Lm has
at least that many states On the other hand, it is trivial to build a DFA with (m + 1)m + 1 states that recognizes
Lm by counting the number of each letters up to m and adding one extra state to reject as soon as a letter appears
> m times.

(b) Let An be the automaton of the lemma, then Cn = LAn
(λn) for some λn. Clearly λn ̸= 0, 1 because Cn is not the

empty language, nor the universal one. There are two cases:

• If λn ⩾ 9/10 then we can let A′
n = 9

10λn
An by multiplying the probability of the intial states of An by

9
10λn

∈ [0, 1]. We immediately have that LA′
n
(9/10) = LAn

(λn) = Cn. Furthermore, for all w ∈ A∗,

|A′
n(w)− 9

10 | = |
9

10λn
An(w)− 9

10 | =
9

10λn
|An(w)− λn| ⩾ 9δ

10λn
⩾ 9

10 δ

since λn ⩽ 1, and is therefore independent of n.
• If λn < 9/10 then we can let A′

n = αAn + (1 − α), where α = 1−9/10
1−λn

= 1
10(1−λn) , by doing a convex

combination with the automata that accepts all words. Note there that α ∈ [0, 1] because 0 < λn < 9/10. A
small computation shows that LA′

n
(9/10) = LAn

(λn) = Cn. Furthermore, for all w ∈ A∗,

|A′
n(w)− 9

10 | = |αAn(w) + (1− α)− 9
10 | = α|An(w)− λn| ⩾ αδ ⩾ δ

10

since λn ⩾ 0, and is therefore independent of n.

In summary, we have shown that the isolation threshold is always at least δ
10 which is independent of n.

(c) We consider the automaton Bi,v that has the same states as Av (including the same initial and final states). We
modify the transitions so that for any pair of states q, q′ and letter at ∈ A,

Bi,v

(
q

at−→ q′
)

= Av

(
q

xℓat−−−→ q′
)

where ℓat
= it−1 mod p.

Technically, this can be done by defining the transition matrix of at in Bi,v to be equal to µℓat where µ is the
transition matrix of Av. In other words, reading at in Bi,v is like reading xℓat in Av. Note that ℓat

only depends on
t (and i is fixed) and is positive (since p ∤ it−1 by primality of p and the fact that i ⩽ αm < p) so this is well-defined.
Now given a word w ∈ A∗, it follows that the probability of acceptance of w is Bi,v(w) = Av(xM ) where

M =
|w|∑
k=1

ℓwk
=

m∑
t=1

ℓat |w|at =
m∑

t=1
(it−1 mod p)|w|at .

Again, technically, this can be shown by using the matrix definition above (call S and T the initial and final vectors
of both Av and Bi,v):

Bi,v(w) = Sµℓw1 · · ·µℓw|w| T = Sµ
∑|w|

i=1
ℓwi T = Av(xM ).

Finally, we conclude by the fact thatAv only recognizes those words xM such that M = v. Note that this construction
has the same cut-point and isolation threshold as Av. By question (b), we can assume that the Av have cut-point
9/10.

(d) If w ∈ Lm then |w|at = m for all t. Therefore, for all i,
m∑

t=1
(it−1 mod p)|w|at

= m

m∑
t=1

(it−1 mod p).

Hence if we let vi be the right-hand side, we indeed have that w ∈ L′
i,vi

. We finally check that

vi = m

m∑
t=1

(it−1 mod p) ⩽ m2p.
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(e) We will show the result for |S| = m. This will imply the result for all |S| ⩾ m since having more elements only
makes the intersection smaller. Denote the elements of S by y1, . . . , ym. If w ∈

⋂
i∈S L′

m,i,vi
then, by definition,∑m

t=1(it−1 mod p)|w|at
= vi = m

∑m
t=1(it−1 mod p) for all i ∈ S. Therefore

m∑
t=1

(|w|at
−m)(it−1 mod p) = 0

for all i ∈ S. Using the notation of Lemma 94, this can be written as
∑m

t=1(|w|at
−m)(zt)j = 0 for all j ∈ {1, . . . , m}

since S = {y1, . . . , ym}. Therefore
∑m

t=1(|w|at
− m)zt = 0. But the yi are pairwise distinct by definition, so by

Lemma 94, z0, . . . , zm−1 are linearly independent, hence |w|at −m = 0 for all t. This shows that w ∈ Lm.

(f) If w ∈ Lm then w ∈ L′
i,vi

for all i = 1, . . . , αm, by question (d). By question (c), Bi,vi
recognizes L′

i,vi
so

Bi,vi
(w) ⩾ 9/10 + δ since the cut-point has isolation threshold δ. By construction of Cm, it immediately follows that

Cm(w) ⩾ 9/10 + δ.

(g) Let w /∈ Lm and let S = {i : w ∈ L′
i,vi
} ⊆ {1, . . . , αm}. By question (e), |S| < m for otherwise we would have

w ∈ Lm. For i ∈ S, we have Bi,vi ⩽ 1 since it is a probability. But since Bi,vi has isolation threshold δ by question (c),
if i /∈ S, then Bi,vi

⩽ 9/10− δ. Therefore,

C(w) = 1
αm

αm∑
i=1
Bi,vi(w)

= 1
αm

(∑
i∈S

Bi,vi
(w) +

∑
i/∈S

Bi,vi
(w)
)

⩽
1

αm

(
|S|+ |{1, . . . , αm} \ S|( 9

10 − δ)
)

⩽
1

αm

(
m + (α− 1)m( 9

10 − δ)
)

= 9
10 − δ + 1/10 + δ

α
.

(h) It suffices to choose α such that −δ + 1/10+δ
α ⩽ 0 which is always possible because 1/10+δ

α → 0 as α → ∞. Note
that this choice does not depend on m. The number of states of C is the sum of the number of states of the Bi,vi

for i = 1, . . . , αm. Automaton Bi,vi
has as many states as Avi

which is O
(

ln2 vi

ln ln vi

)
. On the other hand, vi ⩽ m2p

by question (d). By the distribution of primes, we can always choose p = αm + o(αm) and α was chosen to be a
constant that only depends on δ and is independent of m. Therefore vi = O(m3) and C has

αm ·O
(

ln2 O(m3)
ln ln O(m3)

)
= O

(
m

ln2 m

ln ln m

)
states.

(i) Putting questions (a) and (h) together, for every m, we have found a language Lm recognized by a probabilistic
automaton with n = O

(
m ln2 m

ln ln m

)
states, but whose smallest DFA that recognizes it has N = (m + 1)m states. First

observe that N = (m + 1)m = 2O(m ln m) and that n ln ln m
ln m = O(m ln m). Furthermore, observe that

n = O

(
m

ln2 m

ln ln m

)
⇒ n = Ω(m) and n = O(m2) ⇒ ln n = Θ(ln m) ⇒ ln ln n = Θ(ln ln m).

It follows that
N = 2O(n ln ln m

ln m ) = 2O(n ln ln n
ln n ).

By comparison, Theorem 16 says that for a cut-point language with isolation threshold δ, the number of states for
DFA is bounded by (1 + r

δ )n−1 where r is the number of accepting states. Clearly r is smaller than the number of
states which is O(m2), and recall that δ is constant, therefore the upper bound of the theorem is

2(n−1) ln(1+ r
δ ) = 2O(n ln m) = 2O(n ln n).

Therefore there is a still a gap between this upper bound and what we obtain but the two bounds are quite close.
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(j) If there are linearly dependent, there exists c0, . . . , cm−1 such that c0z0 + · · ·+ cm−1zm−1 = 0. Therefore, for all t,

0 = (c0z0 + · · ·+ cm−1zm−1)t = c0y0
t + c1y1

t · · ·+ cm−1ym−1
t mod p.

Since y1, . . . , ym ∈ {1, . . . , αm} then in particular yi < p so the yi are pairwise distinct modulo p. Therefore the
polynomial P (x) = c0 + c1x + · · ·+ cm−1xm−1, which has degree at most m−1, has at least m distinct roots modulo
p. This is a contradiction with the hint since p > m.
Note: the hint can be proven by induction on the degree of P . If P has degree 1 then P (x) = a + bx for some a
and b ̸= 0 mod p (otherwise this is trivial). If x, y are such that P (x) = P (y) = 0 mod p then a + bx = a + by mod p
so x = y mod p (b is invertible modulo p, by primality of p) so P has only one root modulo p. Now if P has degree
d > 1, assume that P has at least one root modulo p (otherwise the result is proved already): P (x0) = 0 mod p for
some x0. Then we can write P (x) = (x−x0)Q(x) mod p for some polynomial Q of degree d−1 (simply consider the
expansion of P (x0 + x) mod p to find Q). But now, if y is such that y ̸= x0 mod p and P (y) = 0 mod p then it must
be the case that Q(y) = 0 mod p (again by primality of p). By induction, Q has at most d− 1 solutions modulo p,
therefore there can only be d roots of P modulo p.
This can also be shown more abstractly: any nonzero polynomial P ∈ R[x] of degree d, where R is an (integral)
domain, has at most d roots in R. In fact this is a characterization of integral domains.
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