Master Parisien de Recherche en Informatique

Course 2.16 – Finite automata based computation models

6 march 2019 — Exam (2) — Part B

Books and computers forbidden — Lecture and personal notes allowed. This part should be written on separate test papers.

Markov chains and linear dynamical systems

- (1–a) Build a Markov chain \mathcal{M} such that $\mathbb{P}_{\mathcal{M}}(n) = 2^{-n}$ for all $n \in \mathbb{N}$.
- (1-b) Consider the Markov chain $\mathcal{M} = \langle S, M, T \rangle$ defined by

$$S = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \qquad M = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}, \qquad T = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Show that $\mathbb{P}_{\mathcal{M}}(n) = 2^{-n}n$ for all $n \in \mathbb{N}$.

- (1-c) Build a Markov chain \mathcal{M} such that $\mathbb{P}_{\mathcal{M}}(n) = 2^{-n} \frac{n(n-1)}{2}$ for all $n \ge 1$ and 0 otherwise.
- (1-d) Show that for any $p \in \mathbb{N}$, there exists a Markov chain \mathcal{M}_p such that $\mathbb{P}_{\mathcal{M}_p}(n) = 2^{-n} \binom{n}{p}$ for all $n \in \mathbb{N}$, where we recall that $\binom{n}{p} = \frac{n!}{p!(n-p)!}$ if $p \leq n$ and 0 otherwise, is a binomial coefficient.
- (1-e) Show any for any polynomial p with rational coefficients, there exists $d \in \mathbb{N}$ and $a_0, \ldots, a_d \in \mathbb{Q}$ such that $p(n) = \sum_{i=0}^d a_i \binom{n}{i}$ for all $n \in \mathbb{N}$.
- (1-f) Let $\mathcal{M}_0, \ldots, \mathcal{M}_d$ be d Markov chains, and $\alpha_0, \ldots, \alpha_d \in [0, 1]$ be such that $\alpha_0 + \cdots + \alpha_d \leq 1$. Then show that there a Markov chain \mathcal{N} such that

$$\mathbb{P}_{\mathcal{N}}(n) = \alpha_0 \mathbb{P}_{\mathcal{M}_0}(n) + \dots + \alpha_d \mathbb{P}_{\mathcal{M}_d}(n).$$

(1-g) Show that for any polynomial p with rational coefficients, there exists some nonzero constant $\beta \in \mathbb{Q}$ and a Markov chain \mathcal{M} such that $\mathbb{P}_{\mathcal{M}}(n) = \frac{1}{2} + 2^{-n}\beta p(n)$ for all $n \in \mathbb{N}$. *Hint: start with the case where all* a_i *are nonnegative in (1-e).*

Probabilistic automata: one undecidability result to rule them all

Recall that the value of a probabilistic automaton \mathcal{A} is $\operatorname{val}(\mathcal{A}) = \sup\{\mathbb{P}_{\mathcal{A}}(w) : w \in A^*\}$. The goal of this exercise is to show the following result and see why it subsumes several classical theorems.

Theorem 1. There is no algorithm such that given a probabilistic automaton \mathcal{A} ,

- if $val(\mathcal{A}) = 1$, then the algorithm outputs "yes",
- if $\operatorname{val}(\mathcal{A}) \leq \frac{1}{2}$, then the algorithm outputs "no",
- otherwise, the algorithm can output anything or not terminate.
- (2-a) In the course, we have shown that the following problem (known as "value 1") is undecidable: given \mathcal{A} , decide whether $\operatorname{val}(\mathcal{A}) = 1$. Explain why Theorem 1 implies this result from the course.

Let $A = \{0, 1\}$, given a word $w \in A^*$, we define its binary encoding by $[w] = \sum_{i=1}^{|w|} w_i 2^{-i} \in [0, 1]$.

- (2-b) Show that for any word $w \in A^*$, [w0] = [w] and $[w1] = [w] + 2^{-|w|-1}$.
- (2-c) Consider automata \mathcal{A} from Figure 1a: give its complete description $\langle A, Q, S, \mu, T \rangle$ and show (by induction) that it satisfies $\mathbb{P}_{\mathcal{A}}(w) = [w]$ for all $w \in \{0, 1\}^*$.
- (2-d) Let $x \in [0,1]$ and consider automaton \mathcal{B}_x from Figure 1b. Show that for any $n \in \mathbb{N}$,

$$\mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{\mathsf{check} \cdot \sin^n} L\right) = \frac{1}{2}x^n \quad \text{and} \quad \mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{\mathsf{check} \cdot \sin^n} R\right) = \frac{1}{2}(1-x)^n$$

We fix an integer N and now analyze the outcome of reading $(\operatorname{check} \cdot \sin^n)^N$. After reading $\operatorname{check} \cdot \sin^n$ from p, the automaton can in states p, L or R.

- (2–e) Compute the probability of staying in p, that is $\mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{\mathsf{check} \cdot \mathsf{sim}^n} p\right)$.
- (2-f) What happens when reading $check \cdot sim^n$ from L?
- (2–g) What happens when reading $check \cdot sim^n$ from R?
- (2-h) Show that

$$\mathbb{P}_{\mathcal{B}_x}((\texttt{check} \cdot \texttt{sim}^n)^{N+1}) = \mathbb{P}_{\mathcal{B}_x}((\texttt{check} \cdot \texttt{sim}^n)^N) + \mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{(\texttt{check} \cdot \texttt{sim}^n)^N} L\right).$$

(2-i) Show that

$$\mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{(\mathsf{check} \cdot \sin^n)^{N+1}} L\right) = \mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{(\mathsf{check} \cdot \sin^n)^N} p\right) \mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{\mathsf{check} \cdot \sin^n} L\right).$$

(2-j) Show that

$$\mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{(\mathsf{check} \cdot \mathtt{sim}^n)^N} p\right) = \mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{\mathsf{check} \cdot \mathtt{sim}^n} p\right)^N.$$

(2-k) Let $p_n = \frac{1}{2}x^n$ and $q_n = \frac{1}{2}(1-x)^n$. Show that

$$\mathbb{P}_{\mathcal{B}_x}((\texttt{check}\cdot \texttt{sim}^n)^N) = \tfrac{1}{1+\frac{q_n}{p_n}} \left(1-(1-p_n-q_n)^{N-1}\right).$$

We now let $N = 2^n$ and assume that $x > \frac{1}{2}$.

- (2–1) Show that $\frac{q_n}{p_n}$ and $(1 p_n q_n)^{N-1}$ converges to 0, when n tends to infinity.
- (2-m) What is the value of \mathcal{B}_x (when $x > \frac{1}{2}$)?

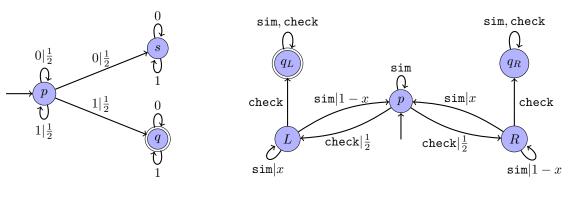
Let C be any probabilistic automaton on some alphabet A, which we assume (without loss of generality) to only have one initial state q_0 that is not accepting, and consider automaton \mathcal{D} on alphabet $\Sigma = A \cup \{\text{check}, \text{end}\}$ from Figure 2. The transitions coming out of C are from the accepting states of C, the *dashed* transitions coming out of C are from the *non-accepting* the states, the *dotted* transitions coming out of C are only from q_0 . We rename the state q_0 to L in C_l and to R in C_R .

- (2-n) Let $w \in A^*$, describe the possible outcomes when reading $w \cdot \text{end}$ from p, L, R, q_L and q_R and theirs probabilities. Show that $w \cdot \text{end}$ has the same transition probabilities as sim in \mathcal{B}_x where $x = \mathbb{P}_{\mathcal{C}}(w)$.
- (2-o) Show that if $\mathbb{P}_{\mathcal{C}}(w) > \frac{1}{2}$ then $\operatorname{val}(\mathcal{D}) = 1$.
- (2–p) Let $w \in \Sigma^*$, show that

$$\mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w} q_{L}\right) \leqslant \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w} q_{R}\right) \quad \text{and} \quad \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w} L\right) \leqslant \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w} R\right)$$

by induction by considering the following cases: $w = w' \cdot \operatorname{check} \cdot A^* \cdot \operatorname{end} w = w' \cdot \operatorname{check} \cdot A^*$ and $w \in (A \cup \{\operatorname{end}\})^*$. Explain why this case distinction is exhaustive.

- (2-q) Show that if $\mathbb{P}_{\mathcal{C}}(w) \leq \frac{1}{2}$ for all $w \in A^*$ then $\operatorname{val}(\mathcal{D}) \leq \frac{1}{2}$.
- (2-r) Using the fact that the emptiness problem for stochastic languages is undecidable, show Theorem 1.



(a) Automaton \mathcal{A} .

(b) Automaton \mathcal{B}_x , with $x \in [0, 1]$.

Figure 1: Probabilistic automata for the proof of Theorem 1.

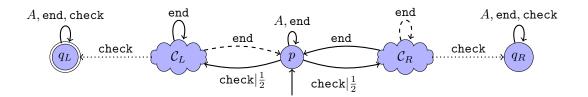


Figure 2: Probabilistic automaton \mathcal{D} for the proof of Theorem 1.

Solutions to exercises

(1-a) Let

$$S = \begin{bmatrix} 1 & 0 \end{bmatrix}, \qquad M = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{bmatrix}, \qquad T = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

$$CM^{nT} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2n} & 1 - \frac{1}{2n} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 2^{-n}$$

Then for all $n \in \mathbb{N}$,

$$SM^nT = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2^n} & 1 - \frac{1}{2^n} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 2^{-n}.$$

(1-b) We will show by induction that

$$SM^n = \begin{bmatrix} 2^{-n} & 2^{-n}n & 1 - 2^{-n}(1+n) \end{bmatrix}$$

Indeed (* denotes anything),

$$\begin{bmatrix} 2^{-n} & 2^{-n}n & * \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ 0 & \frac{1}{2} & \frac{1}{2}\\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}2^{-n} & \frac{1}{2}2^{-n} + \frac{1}{2}2^{-n}n & * \end{bmatrix} = \begin{bmatrix} 2^{-n-1} & 2^{-n-1}(n+1) & * \end{bmatrix}.$$

(1-c) Let

$$S = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}, \qquad M = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad T = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}.$$

Then for all $n \in \mathbb{N}$, we will show by induction that

$$SM^n = \begin{bmatrix} 2^{-n} & 2^{-n}n & 2^{-n}\frac{n(n-1)}{2} & * \end{bmatrix}.$$

Indeed (* denotes anything),

$$\begin{bmatrix} 2^{-n} & 2^{-n}n & 2^{-n}\frac{n(n-1)}{2} & * \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0\\ 0 & \frac{1}{2} & \frac{1}{2} & 0\\ 0 & 0 & \frac{1}{2} & \frac{1}{2}\\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}2^{-n} & \frac{1}{2}2^{-n}n & \frac{1}{2}2^{-n}n + \frac{1}{2}2^{-n}\frac{n(n-1)}{2} & * \end{bmatrix}$$

and conclude by noting $n + \frac{n(n-1)}{2} = \frac{2n+n^2-n}{2} = \frac{n(n+1)}{2}$.

(1-d) Consider the following Markov chain in dimension p + 2:

$$S = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}, \qquad M = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad T = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix}.$$

Then check by induction that

$$SM^n = 2^{-n} \begin{bmatrix} \binom{n}{0} & \binom{n}{1} & \cdots & \binom{n}{p} & * \end{bmatrix}$$

Indeed,

 $2^{-n} \begin{bmatrix} \binom{n}{0} & \binom{n}{1} & \cdots & \binom{n}{p} & * \end{bmatrix} M = 2^{-n} \begin{bmatrix} \frac{1}{2}\binom{n}{0} & \frac{1}{2}\binom{n}{0} + \frac{1}{2}\binom{n}{1} & \cdots & \frac{1}{2}\binom{n}{p-1} + \binom{n}{p} & * \end{bmatrix}$

and conclude using Pascal's rule: $\binom{n}{p-1} + \binom{n}{p} = \binom{n+1}{p}$.

(1-e) Proceed by induction on the degree of p: if $p(x) = a_0$ is constant then $p(n) = a_0 \binom{n}{0}$ for all $n \in \mathbb{N}$. Otherwise, write $p(x) = a_d x^d + r(x)$ where q has degree at most d-1 and consider $q(x) = p(x) - a_d \frac{x(x-1)\cdots(x-d+1)}{d!}$. Then q has degree at most d-1 because $a_1 \frac{x(x-1)\cdots(x-d+1)}{d!} = a_1 x^d + \text{monomials of degree less then } d$

 $a_d \frac{x(x-1)\cdots(x-d+1)}{d!} = a_d x^d +$ monomials of degree less than d

has the same leading monomial. By induction, there exists a_0, \ldots, a_{d-1} such that $q(n) = \sum_{i=0}^{d-1} a_i \binom{n}{i}$ for all $n \in \mathbb{N}$. Then $p(n) = \sum_{i=0}^{d} a_i \binom{n}{i}$ for all $n \in \mathbb{N}$.

(1–f) The automaton below answers the question:

(1-g) Let a_0, \ldots, a_d be as in (1-e). For each $i \in \{0, \ldots, d\}$, write $a_i = a_i^+ - a_i^-$ where $a_i^+, a_i^- \ge 0$ and let $\beta = \max(a_0^+ + \cdots + a_d^+, a_0^- + \cdots + a_d^-)$. For each i, let \mathcal{M}_i be such that $\mathcal{M}_i(n) = 2^{-n} \binom{n}{i}$. Then let \mathcal{N}^+ be such that $\mathbb{P}_{\mathcal{N}^+}(n) = \sum_{i=0}^d \frac{a_i^+}{\beta} \mathcal{M}_i(n)$ for all n, and similarly for \mathcal{N}^- . This is possible because $\frac{a_i^+}{\beta} \in [0, 1]$ and $\sum_{i=0}^d \frac{a_i^+}{\beta} = \frac{a_0^+ + \cdots + a_d^+}{\beta} \le 1$. Then build \mathcal{N}_c^- such that $\mathbb{P}_{\mathcal{N}_c^-}(n) = 1 - \mathbb{P}_{\mathcal{N}^-}(n)$ and finally \mathcal{N} such that $\mathbb{P}_{\mathcal{N}}(n) = \frac{1}{2}\mathbb{P}_{\mathcal{N}^+}(n)\frac{1}{2}\mathbb{P}_{\mathcal{N}_c^-}(n)$. Putting everything together, we get

$$\begin{split} \mathbb{P}_{\mathcal{N}}(n) &= \frac{1}{2} + \frac{1}{2} \left(\mathbb{P}_{\mathcal{N}^{+}}(n) - \mathbb{P}_{\mathcal{N}^{-}}(n) \right) & \text{by definition of } \mathcal{N}_{c}^{-} \\ &= \frac{1}{2} + \frac{1}{2} \left(\sum_{i=0}^{d} \frac{a_{i}^{+}}{\beta} \mathbb{P}_{\mathcal{M}_{i}}(n) - \sum_{i=0}^{d} \frac{a_{i}^{-}}{\beta} \mathbb{P}_{\mathcal{M}_{i}}(n) \right) & \text{by definition of } \mathcal{N}^{\pm} \\ &= \frac{1}{2} + \frac{1}{2} \sum_{i=0}^{d} \frac{a_{i}^{+} - a_{i}^{-}}{\beta} 2^{-n} \binom{n}{i} & \text{by definition of } \mathcal{M}_{i} \\ &= \frac{1}{2} + \frac{1}{2\beta} 2^{-n} \sum_{i=0}^{d} a_{i} \binom{n}{i} \\ &= \frac{1}{2} + \frac{1}{2\beta} 2^{-n} p(n) & \text{by definition of the } a_{i}. \end{split}$$

- (2–a) Assume that the "value 1" was decidable: then there is an algorithm that outputs "yes" when $val(\mathcal{A}) = 1$ and "no" when $val(\mathcal{A}) < 1$. But Theorem 1 says that such an algorithm does not exist. Thus the "value 1" problem is undecidable.
- (2-b) For any $a \in A$, $[wa] = \sum_{i=1}^{|w|} w_i 2^{-i} + a 2^{-|w|-1} = [w] + a 2^{-|w|-1}$.
- (2–c) Let $Q = \{p, q, s\}$ and

$$S = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \qquad \mu(0) = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad \mu(1) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad T = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

We can prove the result either by matrix computation or by reasoning on the automaton:

• Since p is not accepting, $\mathbb{P}_{\mathcal{A}}(\varepsilon) = 0$. Note that for any word w, $\mathbb{P}_{\mathcal{A}}\left(p \xrightarrow{w} p\right) = 2^{-|w|}$ since s and q are sinks. Then, since only q is accepting and there are no transitions between s and q, for any word w and letter a we have

$$\mathbb{P}_{\mathcal{A}}(wa) = \mathbb{P}_{\mathcal{A}}\left(p \xrightarrow{w} p\right) \mathbb{P}_{\mathcal{A}}\left(p \xrightarrow{a} q\right) + \mathbb{P}_{\mathcal{A}}\left(p \xrightarrow{w} q\right) \mathbb{P}_{\mathcal{A}}\left(q \xrightarrow{a} q\right) = 2^{-|w|} \mathbb{P}_{\mathcal{A}}\left(p \xrightarrow{a} q\right) + \mathbb{P}_{\mathcal{A}}(w).$$

It follows that $\mathbb{P}_{\mathcal{A}}(w0) = \mathbb{P}_{\mathcal{A}}(w)$ since $\mathbb{P}_{\mathcal{A}}\left(p \xrightarrow{0} q\right) = 0$ and $\mathbb{P}_{\mathcal{A}}(w1) = 2^{-|w|-1} + \mathbb{P}_{\mathcal{A}}(w)$ since $\mathbb{P}_{\mathcal{A}}\left(p \xrightarrow{1} q\right) = \frac{1}{2}$. By induction, this proves that $\mathbb{P}_{\mathcal{A}}(w) = [w]$.

• We can then check that $S\mu(w) = \begin{bmatrix} 2^{-|w|} & [w] & 1 - [w] - 2^{-|w|} \end{bmatrix}$ by induction:

$$\begin{bmatrix} 2^{-|w|} & [w] & 1 - [w] - 2^{-|w|} \end{bmatrix} \mu(0) = \begin{bmatrix} 2^{-|w|-1} & [w] & 1 - [w] - 2^{-|w|} + 2^{-|w|-1} \end{bmatrix}$$

=
$$\begin{bmatrix} 2^{-|w|-1} & [w0] & 1 - [w0] - 2^{-|w|-1} \end{bmatrix}$$
since
$$[w0] = [w]$$

and

$$\begin{bmatrix} 2^{-|w|} & [w] & 1 - [w] - 2^{-|w|} \end{bmatrix} \mu(1) = \begin{bmatrix} 2^{-|w|-1} & [w] + 2^{-|w|-1} & 1 - [w] - 2^{-|w|} \end{bmatrix}$$
$$= \begin{bmatrix} 2^{-|w|-1} & [w1] & 1 - [w1] - 2^{-|w|-1} \end{bmatrix}$$
since $[w1] = [w] + 2^{-|w|-1}$

and therefore, $S\mu(w)T = [w]$.

(2-d) Clearly L and R are symmetric in the automaton (by replacing x by 1-x) so we prove it for L. After reading check, the automaton can be in state L or R. But there is no path labelled by sim^* from R to L. Once in L, reading sim can make the automaton stay in L or go back to p. But again there is no path labelled by sim^* from p to L. Therefore the only path from p to L with positive probability goes to L first and then stays in L. In other words,

$$\mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{\text{check} \cdot \sin^n} L\right) = \mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{\text{check}} L\right) \mathbb{P}_{\mathcal{B}_x}\left(L \xrightarrow{\text{sim}} L\right)^n = \frac{1}{2}x^n$$

(2–e) By stochasticity,

$$\mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{\text{check} \cdot \sin^n} p\right) = 1 - \mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{\text{check} \cdot \sin^n} L\right) - \mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{\text{check} \cdot \sin^n} R\right) = 1 - \frac{1}{2}x^n - \frac{1}{2}(1-x)^n + \frac{1}{2}(1-x)^$$

- (2-f) When reading $check \cdot sim^n$ from L, the word is accepted with probability 1.
- (2-g) When reading $check \cdot sim^n$ from R, the word is rejected, *i.e.* accepted with probability 0.
- (2-h) After reading $(\texttt{check} \cdot \texttt{sim}^n)^N$, the automaton can be in any state, but the only states that lead to an accepting state when reading $\texttt{check} \cdot \texttt{sim}^n$ are L and q_L . When reading $\texttt{check} \cdot \texttt{sim}^n$ from either, it is accepted with probability 1, therefore

$$\mathbb{P}_{\mathcal{B}_x}((\mathtt{check} \cdot \mathtt{sim}^n)^{N+1}) = \mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{(\mathtt{check} \cdot \mathtt{sim}^n)^N} q_L\right) + \mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{(\mathtt{check} \cdot \mathtt{sim}^n)^N} L\right)$$

(2-i) The only state from which L is reacheable by reading $\texttt{check} \cdot \texttt{sim}^n$ is p. Therefore

$$\mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{(\mathsf{check} \cdot \sin^n)^{N+1}} L\right) = \mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{(\mathsf{check} \cdot \sin^n)^N} p\right) \mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{\mathsf{check} \cdot \sin^n} L\right).$$

(2-j) The only state from which p is reacheable by reading $check \cdot sim^n$ is p. Therefore

$$\mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{(\mathsf{check} \cdot \sin^n)^{N+1}} p\right) = \mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{(\mathsf{check} \cdot \sin^n)^N} p\right) \mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{\mathsf{check} \cdot \sin^n} p\right)$$

and the result follows by induction since $\mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{\varepsilon} p\right) = 1.$

(2-k)

$$\mathbb{P}_{\mathcal{B}_x}((\operatorname{check} \cdot \operatorname{sim}^n)^N) = \sum_{i=1}^{N-1} \mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{(\operatorname{check} \cdot \operatorname{sim}^n)^i} L\right) \qquad \text{by (2-h)}$$

$$= \sum_{i=1}^{N-1} \mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{(\mathsf{check} \cdot \sin^n)^{i-1}} p\right) \mathbb{P}_{\mathcal{B}_x}\left(p \xrightarrow{\mathsf{check} \cdot \sin^n} L\right) \qquad \text{by (2-i)}$$

$$=\sum_{i=1}^{N-1} (1-p_n-q_n)^{i-1} p_n$$
 by (2-j)

$$= p_n \sum_{i=0}^{N-2} (1 - p_n - q_n)^i$$

= $p_n \frac{1 - (1 - p_n - q_n)^{N-1}}{1 - (1 - p_n - q_n)}$
= $\frac{p_n}{p_n + q_n} \left(1 - (1 - p_n - q_n)^{N-1} \right)$
= $\frac{1}{1 + \frac{q_n}{p_n}} \left(1 - (1 - p_n - q_n)^{N-1} \right).$

- (2-l) Since $\frac{1-x}{x} < 1$, $\frac{q_n}{p_n} = \left(\frac{1-x}{x}\right)^n \to 0$ as $n \to \infty$. Similarly, $1 p_n q_n < 1 \frac{1}{2}x^n \leqslant 1 \frac{1}{2}$ for all n. Therefore $(1 p_n q_n)^{N-1} \leqslant (1 \frac{1}{2})^{2^n 1} \to 0$ as $n \to \infty$.
- (2-m) By definition, $\operatorname{val}(\mathcal{B}_x) \ge \mathbb{P}_{\mathcal{B}_x}((\operatorname{check} \cdot \operatorname{sim}^n)^{2^n})$ for all $n \in \mathbb{N}$. But we have that $\mathbb{P}_{\mathcal{B}_x}((\operatorname{check} \cdot \operatorname{sim}^n)^{2^n}) \to 1$ as $n \to \infty$ therefore, $\operatorname{val}(\mathcal{B}_x) = 1$.
- (2–n) When reading $w \cdot end$

- from p, q_L, q_R : we stay in this state with probability 1,
- from L: we stay in L with probability x and go to p with probability 1 x,
- from R: we stay in R with probability 1 x and go to p with probability x.

We observe that this is the same transition table as sim in \mathcal{B}_x .

- (2-o) We have shown in (2-m) that if $x > \frac{1}{2}$ then $\operatorname{val}(\mathcal{B}_x) = 1$. Specifically, $\mathbb{P}_{\mathcal{B}_x}((\operatorname{check} \cdot \sin^n)^{2^n}) \to 1$ as $n \to \infty$. But we have observed in the last question that $\mathbb{P}_{\mathcal{B}_x}((\operatorname{check} \cdot \sin^n)^{2^n}) = \mathbb{P}_{\mathcal{D}}((\operatorname{check} \cdot (w \cdot \operatorname{end})^n)^{2^n})$ since the transition table is the same for sim (and is obviously the same for other letters). Therefore $\operatorname{val}(\mathcal{D}) = 1$.
- (2-p) If $w \in (A \cup \{end\})^*$, then the automaton is always in p, thus all other probabilities are 0 and the inequalities hold. Note that this covers the initial induction step $(w = \varepsilon)$. Otherwise, w must contain at least one **check** and it either finishes by **end** or by a (possibly empty) word in A^* :
 - if $w = w' \cdot \operatorname{check} \cdot u$ with $u \in A^*$ then after reading $w' \cdot \operatorname{check}$ the automaton must be in state L, q_L, R or q_R . Furthermore, for any $s, t \in \{L, R, q_L, q_R\}$, if $s \neq t$ then there is no transition from s to t labelled by u, *i.e.* $\mathbb{P}_{\mathcal{D}}\left(s \xrightarrow{u} t\right) = 0$. Therefore, for any $s \in \{L, R, q_L, q_R\}$, $\mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w} s\right) = \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w' \cdot \operatorname{check}} s\right) \mathbb{P}_{\mathcal{D}}\left(s \xrightarrow{u} s\right)$. Therefore

$$\begin{split} \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w} q_{L}\right) &= \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w' \cdot \mathsf{check}} q_{L}\right) & \text{since } \mathbb{P}_{\mathcal{D}}\left(q_{L} \xrightarrow{u} q_{L}\right) = 1 \\ &= \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w'} L\right) & \text{since check comes from } L \text{ only} \\ &\leq \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w'} R\right) & \text{by induction} \\ &= \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w} q_{R}\right) & \text{by a symmetric reasoning.} \end{split}$$

Similarly,

$$\mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w} L\right) = \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w' \cdot \text{check}} L\right) \mathbb{P}_{\mathcal{C}}\left(q_0 \xrightarrow{u} q_0\right) \qquad \text{since } \mathbb{P}_{\mathcal{D}}\left(L \xrightarrow{u} L\right) = \mathbb{P}_{\mathcal{C}}\left(q_0 \xrightarrow{u} q_0\right) \\ = \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w'} p\right) \mathbb{P}_{\mathcal{C}}\left(q_0 \xrightarrow{u} q_0\right) \qquad \text{since check comes from } p \text{ only} \\ = \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w} R\right) \qquad \text{by a symmetric reasoning.}$$

• if $w = w' \cdot \text{check} \cdot u \cdot \text{end}$ with $u \in A^*$ then after reading $w' \cdot \text{check}$ the automaton must be in state L, q_L, R or q_R . The analysis for q_L and q_R is the same because there are no transitions from L or R to q_L or q_R labelled by $u \cdot \text{end}$. The analysis for L and R is a bit different: note that for L to be reachable w, the automaton must be in state pwhen reading $\text{check} \cdot u \cdot \text{end}$ and similarly for R. Therefore

$$\begin{split} \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w} L\right) &= \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w'} p\right) \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{\operatorname{check} \cdot u \cdot \operatorname{end}} L\right) \\ &= \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w'} p\right) \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{\operatorname{check}} L\right) \mathbb{P}_{\mathcal{D}}\left(L \xrightarrow{u \cdot \operatorname{end}} L\right) \\ &= \frac{1}{2} \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w'} p\right) \mathbb{P}_{\mathcal{C}}(u) \\ &\leqslant \frac{1}{2} \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w'} p\right) \left(1 - \mathbb{P}_{\mathcal{C}}(u)\right) \\ &= \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w'} p\right) \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{\operatorname{check}} R\right) \mathbb{P}_{\mathcal{D}}\left(R \xrightarrow{u \cdot \operatorname{end}} R\right) \\ &= \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w'} p\right) \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{\operatorname{check} \cdot u \cdot \operatorname{end}} R\right) \\ &= \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w'} R\right) \end{split}$$

by the above remark

since end goes to L only from accepting states

since
$$\mathbb{P}_{\mathcal{C}}(u) \leq \frac{1}{2}$$

since end goes to R from non-accepting states

by the above remark.

(2-q) By the previous question, we get that $\mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w} L\right) \leq \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w} R\right)$ but by stochasticity $\mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w} L\right) + \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w} R\right) \leq 1$, therefore $\mathbb{P}_{\mathcal{D}}(w) = \mathbb{P}_{\mathcal{D}}\left(p \xrightarrow{w} L\right) \leq \frac{1}{2}$ for every word $w \in \Sigma^*$.

(2-r) Assume there was an algorithm X as described in Theorem 1. Then consider the algorithm (call it Y) that given an automaton \mathcal{C} as input, builds the automaton \mathcal{D} and runs X on it. If $\mathcal{L}^{>}_{\mathcal{C}}(\frac{1}{2}) = \emptyset$ then $\mathbb{P}_{\mathcal{C}}(w) \leq \frac{1}{2}$ for all words w therefore $\operatorname{val}(\mathcal{D}) \leq \frac{1}{2}$ by the previous question and therefore X will output "no" on \mathcal{D} . Conversely, if $\mathcal{L}^{>}_{\mathcal{C}}(\frac{1}{2}) \neq \emptyset$ then $\mathbb{P}_{\mathcal{C}}(w) > \frac{1}{2}$ for some word w therefore $\operatorname{val}(\mathcal{D}) = 1$ by (2-o) and therefore X will output "yes" on \mathcal{D} . But then algorithm Y decides the emptiness of stochastic languages which is a contradiction.