Master Parisien de Recherche en Informatique
Course 2.16 — Finite automata based computation models

6 march 2019 — Ezam (2) — Part B

Books and computers forbidden — Lecture and personal notes allowed.
This part should be written on separate test papers.

Markov chains and linear dynamical systems

Build a Markov chain M such that Pa(n) = 27" for all n € N.

Consider the Markov chain M = (S, M, T') defined by
1 19 0
_ I S _
S=[1 00, M=|0 3 3|/, T=|1
0 0 1 0

Show that Paq(n) =27 "n for all n € N.

Build a Markov chain M such that Paq(n) = 2‘"% for all n > 1 and 0 otherwise.

Show that for any p € N, there exists a Markov chain M, such that P, (n) = 27" (’;) for all n € N, where we recall that
(") = ﬁip)! if p < n and 0 otherwise, is a binomial coefficient.

p

Show any for any polynomial p with rational coefficients, there exists d € N and ao, .. ., aq € Q such that p(n) = Zg:() a; (T;)
for all n € N.

Let My,..., M4 be d Markov chains, and «q,...,aq € [0,1] be such that ag + --- + ag < 1. Then show that there a
Markov chain N such that

Puy(n) = aoPay () + -+ - + agPag, (n).

Show that for any polynomial p with rational coefficients, there exists some nonzero constant § € Q and a Markov chain
M such that Paq(n) = 3 +27"8p(n) for all n € N. Hint: start with the case where all a; are nonnegative in (1-e).

Probabilistic automata: one undecidability result to rule them all

Recall that the value of a probabilistic automaton A is val(A) = sup{P4(w) : w € A*}. The goal of this exercise is to
show the following result and see why it subsumes several classical theorems.

Theorem 1. There is no algorithm such that given a probabilistic automaton A,
o if val(A) = 1, then the algorithm outputs “yes”,
e if val(A) < 1, then the algorithm outputs “no”,
e otherwise, the algorithm can output anything or not terminate.

In the course, we have shown that the following problem (known as “value 1”) is undecidable: given A, decide whether
val(A) = 1. Explain why Theorem 1 implies this result from the course.

Let A ={0,1}, given a word w € A*, we define its binary encoding by [w] = Zii‘l w27t € [0,1].



Show that for any word w € A*, [w0] = [w] and [w1] = [w] + 27 1*I~1,

Consider automata A from Figure la: give its complete description (A, @, S, i, T) and show (by induction) that it satisfies
Pa(w) = [w] for all w € {0,1}*.

Let € [0,1] and consider automaton B, from Figure 1b. Show that for any n € N,

IPBm (p M L) = %.’En and PBI (p M} R) — %(1 _x)n‘

We fix an integer N and now analyze the outcome of reading (check - sim™)". After reading check - sim™ from p, the
automaton can in states p, L or R.
Compute the probability of staying in p, that is P, (p Checksim p).

What happens when reading check - sim™ from L 7

What happens when reading check - sim”™ from R ?

Show that
-sim™)V
P, ((check - sin")"*!) = Pg, ((check - sin”)™) + Py, (p (eheck sta™)Y L) .
Show that
check-sim”) 1 check-sim™)N check-sim™
Ps, <pu>L> — Py, (pup)% (p sess”, 1)
Show that

Py, (pd@ — B, (pecket, )"

(1 —z)™. Show that

Let p, = %:r” and ¢, = %

Pg, ((check - sim™)™V) = @ (1-(=po—a)").

We now let N = 2™ and assume that x > %

Show that Z—Z and (1 — p, — ¢,)V ! converges to 0, when n tends to infinity.

What is the value of B, (when z > 1) ?

Let C be any probabilistic automaton on some alphabet A, which we assume (without loss of generality) to only have
one initial state gy that is not accepting, and consider automaton D on alphabet ¥ = A U {check, end} from Figure 2.
The transitions coming out of C are from the accepting states of C, the dashed transitions coming out of C are from the
non-accepting the states, the dotted transitions coming out of C are only from ¢y. We rename the state gg to L in C; and
to R in Cg.

Let w € A*, describe the possible outcomes when reading w - end from p, L, R, q;, and gr and theirs probabilities. Show
that w - end has the same transition probabilities as sim in B, where z = P¢(w).

Show that if Pc(w) > % then val(D) = 1.

Let w € ¥*, show that
Pp (piHJL) <Pp (piHJR) and ]PD(]O&L) <Pp (pﬁR)

by induction by considering the following cases: w = w’ - check - A* - end w = w’ - check - A* and w € (AU {end})*.
Explain why this case distinction is exhaustive.

Show that if Pe(w) < % for all w € A* then val(D) < 3.

Using the fact that the emptiness problem for stochastic languages is undecidable, show Theorem 1.



sim, check sim, check

(a) Automaton A. (b) Automaton B, with z € [0, 1].

Figure 1: Probabilistic automata for the proof of Theorem 1.

A, end, check end end A, end, check

Figure 2: Probabilistic automaton D for the proof of Theorem 1.






Solutions to exercises

(1-a) Let

(1-b)

(1-¢)

(1-d)

(1-1)

11 1
S=1[1 0], M:[(Q) ﬂ, T:M.
Then for all n € N,
SM"T =11 0] F" ! 21"] H =2
0 1 0

We will show by induction that
SM™=[2"" 27"n 1-2""(1+n)]
Indeed (x denotes anything),
1 1 9
2
27" 27"n x| |0 % sl =132 327"+ 327"n «]=[27""1 27" I(n+1) «].
0 0 1
Let
i1 00 0
S=[1 0 0 0 M—O§%O 7=1"
’ 00 3 ip° 1
0 0 0 1 0

Then for all n € N, we will show by induction that
SM™ = [an 9-n, 9-nnn=1) |

2

Indeed (* denotes anything),

1 1
5 5 0 0
_ _ —_nn(n—1) (2) % z 0 1o— 1o— _ 1o— 1o— (n—1)
[2"2%2”T *}0025:[52’152’@2% lo-ny 4 log—nnln *}
0 0 0 1
n(n=1) _ 2pn4n—n _ n(nt+l)

and conclude by noting n +

5 =

i~}

Consider the following Markov chain in dimension p + 2:

% % 0 0 0
S=[1 0 o, M=|0 " 0 =

o o 4+ 1 1
0o 0 0 1 0

Then check by induction that

sur=27"[(5) () () ]
Indeed,
27 [G) () () AMm=27[30) 36+ 26"+ () ]

and conclude using Pascal’s rule: (pfl) + (;) = (”:1).

n

Proceed by induction on the degree of p: if p(x) = ag is constant then p(n) = ao(}) for all n € N. Otherwise, write
p(z) = agz® + r(z) where ¢ has degree at most d — 1 and consider ¢(z) = p(z) — adw

most d — 1 because

. Then ¢ has degree at

adw = agz® + monomials of degree less than d

has the same leading monomial. By induction, there exists ao, . .
p(n) = E?:o a;(7) for all n € N.

The automaton below answers the question:

.,a4—1 such that ¢(n) = Z?;()l a;(7) for all n € N. Then

%



Qo Qq

(1-g) Let ag,...,aq be as in (1-e). For each i € {0,...,d}, write a; = aj — a; where a;,a; > 0 and let 8 = max(af + -+ +
+
af,ag +---+ay). For each i, let M; be such that M;(n) = 27" (7). Then let N'* be such that Pyr+(n) = Z?:o %Mz(n)
+ + F——
for all n, and similarly for N~. This is possible because % € [0,1] and Z?:o % = % < 1. Then build N such
that Py~ (n) = 1 — Py (n) and finally N such that Py(n) = 1P+ (n)%]P’NC_ (n). Putting everything together, we get
Py (n) =1+ 1 (Pr+(n) — Pp—(n)) by definition of NV~
d d
+ —
=1+1 <Z aé Ppy, (n) — Z aé ]P’M(n)> by definition of N'*
i=0 i=0
d
1 1 aj—a; _n(n o
=s+3 Z 7 2 (z) by definition of M;
i=0
d n
Sz Sa()
i=0
=1+ %2_"p(n) by definition of the a;.

(2—a) Assume that the “value 1” was decidable: then there is an algorithm that outputs “yes” when val(A) = 1 and “no” when
val(A) < 1. But Theorem 1 says that such an algorithm does not exist. Thus the “value 1” problem is undecidable.

(2-b) For any a € A, [wa] = 2@1 w270 + a2~ 1= = [w] 4 271w,

(2-¢) Let @ = {p,q, s} and

1l g 1 1 1 9 0
2 2 2 2

S=[1 0 0], p0) =10 1 0], pw(l)y=10 1 0, T=|1
0 0 1 0 0 1 0

We can prove the result either by matrix computation or by reasoning on the automaton:

e Since p is not accepting, P4(¢) = 0. Note that for any word w, P4 (p Rt p) = 271"l gince s and ¢ are sinks. Then,
since only ¢ is accepting and there are no transitions between s and ¢, for any word w and letter a we have

Pa(wa) =Py (p = p) P4 (p — q) +P4 (p = q) Py (q 5 q) =271vIp, (p = Q) + Pa(w).

It follows that P4(w0) = P 4(w) since P4 (p BN q) =0 and P4(wl) = 27171 4+ P4 (w) since P4 (p EN q) = 1. By
induction, this proves that P 4(w) = [w].
e We can then check that Sp(w) = [271*l [w] 1 — [w] —271*] by induction:
271l ] 1 - [w] =271 p(0) = [270I71 [w] 1 - [w] — 271wl 4 27 lwi=1]
= [27lwI=1 [w0] 1 — [w0] — 271w since [w0] = [w]
and
271l [w] 1 —[w] =27 p(1) = 2771 [w] 427w 1 — ] — 27 1v]
= [271wI=1 [wl] 1 [wl] - 27wl since [wl] = [w] +271%I71

and therefore, Su(w)T = [w].



(2-d) Clearly L and R are symmetric in the automaton (by replacing « by 1 — x) so we prove it for L. After reading check, the
automaton can be in state L or R. But there is no path labelled by sim* from R to L. Once in L, reading sim can make
the automaton stay in L or go back to p. But again there is no path labelled by sim* from p to L. Therefore the only
path from p to L with positive probability goes to L first and then stays in L. In other words,

. n : n
PB,I (p check-sim L) _ PB,I (p check L) PBE (L sim L) _ %Jf”
(2—e) By stochasticity,
check-sim” check-sim”

Ps, (pmp)zl—]?sm (p—>L)—IP’Bw (p—>R) =1-ia"— (1 —2)"

(2-f) When reading check - sim™ from L, the word is accepted with probability 1.
(2-g) When reading check - sim” from R, the word is rejected, i.e. accepted with probability 0.

(2-h) After reading (check - sim™)", the automaton can be in any state, but the only states that lead to an accepting state
when reading check-sim are L and q;,. When reading check-sim” from either, it is accepted with probability 1, therefore

. \N+1y (check-sim™) N (check-sim™)N
Pg, ((check - sim™) y=Pg, [p———————qr | +Pp, (p————— L.

(2-i) The only state from which L is reacheable by reading check - sim™ is p. Therefore

check-sim™ )N 1 check-sim™)V check-sim™
Py, (,auw) Py, (pupﬁ& (=)

(2-j) The only state from which p is reacheable by reading check - sim™ is p. Therefore
Py, <p (eheckain) p> — Py, (,, (ehocksia®)", p> Pa, (p 222557, )

and the result follows by induction since P, (p 5 p) =1.

(2-k)
-1 (check-sin™)?
P, ((enock-s1a)") = 3 By, (p S, ) by 21
i=1
N-1 (check-si n)i—l n
. <p {cnocksta”) 1, p) Py, (p skt 1) by (2-1)
i=1
N-1
= (1=pn—qn) 'pn by (2-§)
i=1
N—2
= DPn Z(l_pn_Qn)
i=0
_ o 1=(—pa—g)¥
=Pn 1-(1—pn—qn)
= pnp%qn (1 —(1=pn— Qn)Nil)
= 14}@ (1 _ (1 - qn)N_l) .
Pn
(2-1) Since I_Tx < 1, % = (1—T£)n — 0 as n — oo. Similarly, 1 —p, — ¢, < 1 — %x" <1 —% for all n. Therefore

(I=pn—@)V'<(1-1) "5 0asn— .

(2-m) By definition, val(B,) > Pg, ((check - sim™)?") for all n € N. But we have that Pg, ((check - sim™)?") — 1 as n — 00

therefore, val(B,) = 1.

x

(2-n) When reading w - end



e from p, qr,qr: we stay in this state with probability 1
e from L: we stay in L with probability  and go to p with probability 1 — z,
e from R: we stay in R with probability 1 — z and go to p with probability x.

We observe that this is the same transition table as sim in B,.

(2-0) We have shown in (2-m) that if 2 > 1 then val(B,) = 1. Specifically, Pp, ((check - sim™)?") — 1 as n — co. But we have
observed in the last question that Pp, ((check sim™)?") = Pp((check- (w-end)”)?") since the transition table is the same
for sim (and is obviously the same for other letters). Therefore val(D) = 1.

(2p) If w € (AU {end})*, then the automaton is always in p, thus all other probabilities are 0 and the inequalities hold. Note
that this covers the initial induction step (w = ). Otherwise, w must contain at least one check and it either finishes by
end or by a (possibly empty) word in A*:

e if w = w' - check - u with u € A* then after reading w’ - check the automaton must be in state L,qr, R or gg.
Furthermore, for any s,t € {L,R,qr,qr}, if s # t then there is no transition from s to ¢ labelled by u, i.e.
Pp (s 2 t) = 0. Therefore, for any s € {L, R, qr,qr}, Pp (p = s) Pp (p Lh“*% s) Pp (s 2 s) Therefore

w’-check )

Pp (p 2 qL) Pp (p ——qr since Pp (qL =y qL) =1

= (p — L) since check comes from L only
Pp (p w—> ) by induction
=Pp (p Ra qR) by a symmetric reasoning.
Similarly,
Pp (p 2 L) =Pp (p M L) Pe (qo = qo) since Pp (L = L) =Pc <q0 = qo)
=Pp (p w—/> p) Pe (qo 2 q0> since check comes from p only
=Pp (p 2 R) by a symmetric reasoning.

e if w = w’ - check-u-end with u € A* then after reading w’ - check the automaton must be in state L, qr, R or ¢g.
The analysis for ¢, and gg is the same because there are no transitions from L or R to gz, or gr labelled by w - end.
The analysis for L and R is a bit different: note that for L to be reachable w, the automaton must be in state p
when reading check - u - end and similarly for R. Therefore

Pp (p = L) =Pp (p w—,> p) Pp (p Checkuend, L) by the above remark
—Pp (pw—’>p)PD( ML)PB (LﬂL)

=1Pp (p = p) Pe(u) since end goes to L only from accepting states

N

iPp (p R p) (1 ="Pe(u)) since Pe(u) < 3

Pp (p = p) Pp (p check, R) Pp (R Lwend, R) since end goes to R from non-accepting states

_ PD (p w_/>p> PD (p check-u-end R)

=Pp (p et R) by the above remark.

(2-q) By the previous question, we get that Pp (p Rt L) < Pp (p et R) but by stochasticity Pp (p = L) +Pp (p = R) <1

therefore Pp(w) = Pp (p B L) < % for every word w € X*.



(2-r) Assume there was an algorithm X as described in Theorem 1. Then consider the algorithm (call it Y) that given an
automaton C as input, builds the automaton D and runs X on it. If £Z (1) = @ then P¢(w) < § for all words w therefore
val(D) < 4 by the previous question and therefore X will output “no” on D. Conversely, if £Z (1) # @ then Pe(w) > §
for some word w therefore val(D) = 1 by (2-0) and therefore X will output “yes” on D. But then algorithm Y decides
the emptiness of stochastic languages which is a contradiction.



