Master Parisien de Recherche en Informatique

Course 2.16 – Finite automata based computation models

26 november 2019 — Exam (1) — Part B

Books and computers forbidden — Lecture and personal notes allowed. This part should be written on separate test papers.

The two exercices are independent and can be done in any order.

Remark: the original version had several minor errors, in **3.**, **2.** and **9.**, that are fixed in this version. This changed $\cup \{\varepsilon\}$ into $\setminus \{\varepsilon\}$ everywhere, although almost no student noticed that there was a subtlety about the empty word.

1 Probabilistic automata

- **1.** Show that if L is a regular language then there exists a probabilistic automaton \mathcal{A} such that for every word w, $\mathbb{P}_{\mathcal{A}}(w)$ is 1 if $w \in L$ and 0 otherwise.
- **2.** Show that if L is stochastic language and L' is a regular language then $L \cap L'$ and $L \setminus L'$ are stochastic.

Recall that L is λ -stochastic if there a probabilistic automaton \mathcal{A} such that $L = \mathcal{L}_{\mathcal{A}}(\lambda) = \{w : \mathbb{P}_{\mathcal{A}}(w) > \lambda\}$. The goal is to show that one can change the cut-point arbitrarily:

Lemma 1. If L is a stochastic language and $\lambda \in (0, 1)$, then L is λ -stochastic.

Let $\lambda \in (0, 1)$ and L be a η -stochastic language for some $\eta \in [0, 1]$.

- **3.** Show Lemma 1 when $\eta \in \{0, \lambda, 1\}$.
- **4.** Show Lemma 1 when $0 < \lambda < \eta$. *Hint: build* \mathcal{B} such that $\mathbb{P}_{\mathcal{B}}(w) = \frac{\lambda}{\eta} \mathbb{P}_{\mathcal{A}}(w)$.
- 5. Let $\alpha \in (0, 1)$, show that there exists an automaton \mathcal{B} such that $\mathbb{P}_{\mathcal{B}}(w) = \alpha \mathbb{P}_{\mathcal{A}}(w) + (1 \alpha)$. Assume that $\eta < \lambda < 1$ and show that there is a value of $\alpha \in (0, 1)$ such that $L = \mathcal{L}_{\mathcal{B}}(\lambda)$. Conclude.

2 Generalized automata

Definition 2. A generalized automaton (GA) is a tuple $\mathcal{A} = \langle A, Q, S, \mu, T \rangle$ where A is a finite alphabet, Q is a finite set of states, $S \in \mathbb{R}^{1 \times Q}$ is the initial (row) vector, $\mu(a) \in \mathbb{R}^{Q \times Q}$ is a matrix of transition weights for every $a \in A$ and $T \in \mathbb{R}^{Q \times 1}$ is the final (column) vector. The weight of a word w is $\mathbb{P}_{\mathcal{A}}(w) = S\mu(w)T$. For any cut-point $\lambda \in \mathbb{R}$, we define the cut-point language $\mathcal{L}_{\mathcal{A}}(\lambda) = \{w : \mathbb{P}_{\mathcal{A}}(w) > \lambda\}$. For any real number λ and language L, we say that L is a generalized λ -language if there exists a GA \mathcal{A} such that $L = \mathcal{L}_{\mathcal{A}}(\lambda)$. We say that L is a generalized language if it is a generalized λ -language for some $\lambda \in \mathbb{R}$.

Note that contrary to probabilistic automata, the matrices and vectors are not stochastic anymore and we can use negative and bigger than one values, such as -1 or 3/2. This also applies to cut-points. Clearly a probabilistic automaton is a GA and a stochastic language is a generalized language. The goal is to show that the converse is also true.

1. Show that any generalized language is a generalized 0-language, *i.e.* of the form $\mathcal{L}_{\mathcal{A}}(0)$ for some \mathcal{A} .

2. Let $\mathcal{A} = \langle A, Q, S, \mu, T \rangle$ be GA of dimension *n*. Let $\mathbf{0}_n$ denote the all-zero column vector of length *n* and $\mathbf{0}_n^T$ its transpose. Consider the GA $\mathcal{B} = \langle A, Q, S', \mu', T' \rangle$ defined by

$$S' = \begin{bmatrix} \mathbf{0}_n^T & 0 & 1 \end{bmatrix}, \qquad \mu'(a) = \begin{bmatrix} \mu(a) & \mu(a)T & \mathbf{0}_n \\ \mathbf{0}_n^T & 0 & 0 \\ S\mu(a) & S\mu(a)T & 0 \end{bmatrix}, \qquad T' = \begin{bmatrix} \mathbf{0}_n \\ 1 \\ 0 \end{bmatrix}.$$

Show that for any nonempty word w,

$$\mu'(w) = \begin{bmatrix} \mu(w) & \mu(w)T & \mathbf{0}_n \\ \mathbf{0}_n^T & 0 & 0 \\ S\mu(w) & S\mu(w)T & 0 \end{bmatrix}.$$

What happens for the empty word ε ? Show that $\mathcal{L}_{\mathcal{B}}(0) = \mathcal{L}_{\mathcal{A}}(0) \setminus \{\varepsilon\}$.

- **3.** We say that a matrix M is *doubly zero sum* (*DZS*) if every row and column of M sums to zero, *i.e.* $\sum_k M_{ik} = \sum_k M_{kj} = 0$ for every i and j. Show that the product of two DZS matrices is DZS.
- **4.** Given a square matrix $M \in \mathbb{R}^{n \times n}$, show that there exists numbers $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n$ and γ such that

$$\widehat{M} = \begin{bmatrix} 0 & 0 \cdots & 0 & 0 \\ \hline \alpha_1 & & 0 \\ \vdots & M & \vdots \\ \hline \alpha_n & & 0 \\ \hline \gamma & \beta_1 \cdots \beta_n & 0 \end{bmatrix}$$

is DZS. Why are those numbers uniquely defined?

- **5.** Show that for any two matrices M, N we have $\widehat{MN} = \widehat{MN}$.
- 6. Show that for every generalized language $L, L \setminus \{\varepsilon\}$ is accepted by some GA with cut-point 0 such that all transition matrices are DZS, and the initial and final vectors have entries in $\{0, 1\}$.
- 7. Let J denote the $n \times n$ matrix whose entries are all 1. Show that $J^2 = nJ$ and that JM = MJ = 0 for any DZS matrix M.
- 8. Given a DSZ matrix M and $\delta \in \mathbb{R}$, define $\widetilde{M}(\delta) = M + \delta J$. Show that $\widetilde{M}(\delta)\widetilde{M}(\delta') = \widetilde{MN}(n\delta\delta')$ for any two DZS M, N.
- 9. Let L be some generalized 0-language recognized by $\mathcal{A} = \langle A, Q, S, \mu, T \rangle$ as in question 6. Let $\delta \in \mathbb{R}$ and consider the GA $\mathcal{B} = \langle A, Q, S', \mu', T' \rangle$ defined by

$$S' = \begin{bmatrix} S & S \end{bmatrix}, \qquad \mu'(a) = \begin{bmatrix} \widetilde{\mu(a)}(\delta) & 0 \\ 0 & \delta J \end{bmatrix}, \qquad T' = \begin{bmatrix} T \\ -T \end{bmatrix}.$$

Show that $\mathcal{L}_{\mathcal{B}}(0) = \mathcal{L}_{\mathcal{A}}(0) \setminus \{\varepsilon\}$ and that there exists a choice of δ such that all transitions matrices of \mathcal{B} have nonnegative entries. What can we say about the entries of S' and T'?

- 10. Show how to construct an automaton C from \mathcal{B} such that $\mathcal{L}_{\mathcal{C}}(0) = \mathcal{L}_{\mathcal{B}}(0)$, the initial vector and all transition matrices of C are stochastic, and the final vector has entries in $\{-1, 0, 1\}$. *Hint: rescale the entries so that they become small.*
- 11. We now modify \mathcal{C} into \mathcal{D} by adding 1 to all entries of the final vector. Show that $\mathcal{L}_{\mathcal{D}}(1) = \mathcal{L}_{\mathcal{C}}(0)$.
- 12. Let $\mathcal{D} = \langle A, Q, S, \mu, T \rangle$ be the automaton obtained at the previous question and consider $\mathcal{E} = \langle A, Q, S', \mu', T' \rangle$ defined by

$$S' = \begin{bmatrix} S & 0 \end{bmatrix}, \qquad \mu'(a) = \frac{1}{3} \begin{bmatrix} \mu(a) & \mu(a)T \\ \mathbf{0}_n^T & 0 \end{bmatrix}, \qquad T' = \begin{bmatrix} \mathbf{0}_n & 1 \end{bmatrix}.$$

Show that \mathcal{E} is substochastic and that for any word w, $\mathbb{P}_{\mathcal{E}}(w) = 3^{-|w|} \mathbb{P}_{\mathcal{D}}(w)$.

- 13. Explain how to modify \mathcal{E} into a *stochastic automaton* \mathcal{F} such that $\mathbb{P}_{\mathcal{F}}(w) = \frac{1}{2}\mathbb{P}_{\mathcal{E}}(w) + \frac{1}{2}(1 3^{-|w|})$. Conclude that $\mathcal{L}_{\mathcal{F}}(\frac{1}{2}) = \mathcal{L}_{\mathcal{D}}(1)$. What have we shown overall?
- 14. Show that every generalized language is stochastic. Hint: show that if L is stochastic then $L \cup \{\varepsilon\}$ is stochastic.
- 15. For any word $w = w_1 \cdots w_k$, denote by $w^R = w_k \cdots w_1$ the reverse of w. Define the reverse of a language L by $L^R = \{w^R : w \in L\}$. Show that the reverse image of a stochastic language is stochastic. *Hint: observe that for any two matrices A and B*, $(AB)^T = B^T A^T$.

Solutions to exercises

- 1. Consider a *complete*¹ deterministic finite automaton that recognizes L and transform it into a probabilistic automaton \mathcal{A} by putting a weight of 1 on every edge. This is indeed a probabilistic automaton because it is deterministic (there is a single non-zero entry on every row of every matrix). By construction, for every word w, $\mathbb{P}_{\mathcal{A}}(w) = 1$ if $w \in L$ and 0 otherwise.
- 2. Apply the previous question to L' to get \mathcal{B} . Let \mathcal{A} be such that $L = \mathcal{L}_{\mathcal{A}}(\lambda)$ for some $\lambda \in [0, 1]$. We then build the product automaton \mathcal{C} such that $\mathbb{P}_{\mathcal{C}}(w) = \mathbb{P}_{\mathcal{A}}(w)\mathbb{P}_{\mathcal{B}}(w)$. Then there are three cases to consider:
 - if $w \in L \cap L'$ then $\mathbb{P}_{\mathcal{C}}(w) = \mathbb{P}_{\mathcal{A}}(w) > \lambda$,
 - if $w \notin L'$ then $\mathbb{P}_{\mathcal{C}}(w) = 0 \leqslant \lambda$,
 - otherwise $w \in L'$ but $w \notin L$ then $\mathbb{P}_{\mathcal{C}}(w) = \mathbb{P}_{\mathcal{A}}(w) \leq \lambda$.

Therefore $\mathcal{L}_{\mathcal{C}}(\lambda) = L \cap L'$. We get the result for $L \setminus L'$ by noticing that $L \setminus L' = L \cap L''$ where L'' is the complement of L', a regular language.

- **3.** If $\eta = \lambda$ then there is nothing to prove. If $\eta = 0$ then L is regular so we can apply question **1.** By construction, for every word w, $\mathbb{P}_{\mathcal{A}}(w) = 1$ if $w \in L$ and 0 otherwise. It follows that $\mathcal{L}_{\mathcal{A}}(\lambda) = L$ because $\lambda \in (0, 1)$. If $\eta = 1$ then $L = \emptyset$ which is trivially λ -stochastic (take any automaton without any accepting state).
- **4.** Build automaton \mathcal{B} from \mathcal{A} by multiplying the initial distribution by $\frac{\lambda}{\eta} \in (0, 1)$: this gives a substochastic automaton that can be made stochastic. Then $\mathbb{P}_{\mathcal{B}}(w) = \frac{\lambda}{\eta} \mathbb{P}_{\mathcal{A}}(w)$ for every word w. It follows that $x \in L$ if and only if $\mathbb{P}_{\mathcal{A}}(w) > \lambda$ if and only if $\mathbb{P}_{\mathcal{B}}(w) > \eta$.
- 5. The first part is immediate: \mathcal{B} is the convex combination of \mathcal{A} and the automaton with constant probability 1. We then have that $w \in \mathcal{L}_{\mathcal{B}}(\lambda)$ if and only if $\alpha \mathbb{P}_{\mathcal{A}}(w) + (1 \alpha) > \lambda$ if and only if $\mathbb{P}_{\mathcal{A}}(w) > \frac{\lambda + \alpha 1}{\alpha}$. We then choose α so that this number corresponds to L: $\frac{\lambda + \alpha 1}{\alpha} = \eta$ if and only if $\lambda + \alpha 1 = \alpha \eta$ if and only if $\alpha = \frac{1 \lambda}{1 \eta}$ and this is indeed a number in (0, 1) because $\eta < \lambda < 1$. We have therefore shown Lemma 1 in all possible cases.

1. Let $L = \mathcal{L}_{\mathcal{A}}(\lambda)$ be a GA recognized by $\mathcal{A} = \langle A, Q, S, \mu, T \rangle$. Consider the GA $\mathcal{B} = \langle A, Q, S', \mu', T' \rangle$ defined by

$$S' = \begin{bmatrix} S & -\lambda \end{bmatrix}, \qquad \mu'(a) = \begin{bmatrix} \mu(a) & 0 \\ 0 & 1 \end{bmatrix}, \qquad T' = \begin{bmatrix} T \\ 1 \end{bmatrix}.$$

Then we immediately check that for any word w,

$$S'\mu'(w)T' = \begin{bmatrix} S & -\lambda \end{bmatrix} \begin{bmatrix} \mu(w) & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} T\\ 1 \end{bmatrix} = S\mu(w)T - \lambda$$

Therefore $S\mu(w)T > \lambda$ if and only if $S'\mu'(w)T' > 0$.

2. One checks

$$\begin{bmatrix} \mu(w) & \mu(w)T & \mathbf{0}_n \\ \mathbf{0}_n^T & 0 & 0 \\ S\mu(w) & S\mu(w)T & 0 \end{bmatrix} \begin{bmatrix} \mu(a) & \mu(a)T & \mathbf{0}_n \\ \mathbf{0}_n^T & 0 & 0 \\ S\mu(a) & S\mu(w)T & 0 \end{bmatrix} = \begin{bmatrix} \mu(wa) & \mu(wa)T & \mathbf{0}_n \\ \mathbf{0}_n^T & 0 & 0 \\ S\mu(wa) & S\mu(wa)T & 0 \end{bmatrix}$$

and therefore it follows by induction that for any nonempty word w,

$$S'\mu'(w)T' = \begin{bmatrix} \mathbf{0}_n^T & 1 & 0 \end{bmatrix} \begin{bmatrix} \mu(w) & \mu(w)T & \mathbf{0}_n \\ \mathbf{0}_n^T & 0 & 0 \\ S\mu(w) & S\mu(w)T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{0}_n \\ 1 \\ 0 \end{bmatrix} = S\mu(w)T.$$

On the other hand, the empty word has weight S'T' = 0 which might be different from its weight ST in \mathcal{A} . It follows that $\mathcal{L}_{\mathcal{B}}(0)$ never contains the empty word, even if $\mathcal{L}_{\mathcal{A}}(0)$ did.

3. Let M, N be DZS. Then

$$\sum_{i} (MN)_{ij} = \sum_{i} \sum_{k} M_{ik} N_{kj} = \sum_{k} N_{kj} \left(\sum_{i} M_{ik} \right) = 0$$

and similarly for row sums.

¹For every state q and letter a, there is a transition from q labelled by a.

4. We have no choice (unicity is clear) since every row and column must sum to zero: take $\alpha_i = \sum_{j=1}^n M_{ij}$ and $\beta_j = \sum_{i=1}^n M_{ij}$. Then we must take $\gamma = -\sum_{i=1}^n \alpha_i = -\sum_{j=1}^n \beta_j$ so we need to check that those sums are indeed equal:

$$\sum_{i=1}^{n} \alpha_i = \sum_{i=1}^{n} \sum_{j=1}^{n} M_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{n} M_{ij} = \sum_{j=1}^{n} \beta_j.$$

5. A simple blockwise product shows that

$$\widehat{M}\widehat{N} = \begin{bmatrix} 0 & 0 & 0 \\ \alpha & M & 0 \\ \gamma & \beta & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ \alpha' & N & 0 \\ \gamma' & \beta' & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ * & MN & 0 \\ * & * & 0 \end{bmatrix}$$

for some values (*). And since the product is DZS by **3.**, it must be \widehat{MN} by unicity.

6. Let *L* be a GA, then by questions **1.** and **2.**, $L \setminus \{\varepsilon\} = \mathcal{L}_{\mathcal{A}}(0)$ for some GA $\mathcal{A} = \langle A, Q, S, \mu, T \rangle$ such that *S* and *T* have entries in $\{0, 1\}$. Now consider $\mathcal{B} = \langle A, Q, S', \mu', T' \rangle$ where $S' = \begin{bmatrix} 0 & S & 0 \end{bmatrix}$, $\mu'(a) = \widehat{\mu(a)}$ and $T' = \begin{bmatrix} 0 & T & 0 \end{bmatrix}^T$. The transition matrices are DZS by construction and for any word nonempty w,

$$\mathbb{P}_{\mathcal{B}}(w) = S'\mu'(w)T' = S'\widehat{\mu(w)}T' = \begin{bmatrix} 0 & S & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ * & \mu(w) & 0 \\ * & * & 0 \end{bmatrix} \begin{bmatrix} 0 \\ T \\ 0 \end{bmatrix} = S\mu(w)T = \mathbb{P}_{\mathcal{A}}(w)$$

using 5., and $\mathbb{P}_{\mathcal{B}}(\varepsilon) = ST = \mathbb{P}_{\mathcal{A}}(\varepsilon)$. Therefore $\mathcal{L}_{\mathcal{B}}(0) = \mathcal{L} \setminus \{\varepsilon\}$ and clearly S' and T' have entries in $\{0, 1\}$.

7. An immediate calculation shows that $J^2 = nJ$. Now if M is DZS, then

$$(JM)_{ij} = \sum_{k=1}^{n} J_{ik} M_{kj} = \sum_{k=1}^{n} M_{kj} = 0$$

and similarly for JM.

8. By definition and using 7.,

$$\widetilde{M}(\delta)\widetilde{M}(\delta') = (M + \delta J)(N + \delta'J) = MN + \delta JN + \delta'MJ + \delta\delta'J^2 = MN + n\delta\delta'J = \widetilde{MN}(n\delta\delta')$$

9. Using question **8.**, check that for every nonempty word w,

$$S'\mu'(w)T = \begin{bmatrix} S & S \end{bmatrix} \begin{bmatrix} \widetilde{\mu(w)}(n^{|w|-1}\delta^{|w|}) & 0\\ 0 & (\delta J)^{|w|} \end{bmatrix} \begin{bmatrix} T\\ -T \end{bmatrix}$$
$$= \widetilde{S\mu(w)}(n^{|w|-1}\delta^{|w|})T - S\delta^n J^n T$$
$$= S\mu(w)T + n^{|w|-1}\delta^{|w|}SJT - n^{|w|-1}\delta^{|w|}SJT$$
$$= S\mu(w)T.$$

It follows that $S'\mu'(w)T > 0$ if and only if $S\mu(w)T > 0$. On the other hand, $\mathbb{P}_{\mathcal{B}}(\varepsilon) = S'T' = ST - ST = 0$ so $\varepsilon \notin \mathcal{L}_{\mathcal{B}}(0)$. Therefore $\mathcal{L}_{\mathcal{B}}(0) = \mathcal{L}_{\mathcal{A}}(0) \setminus \{\varepsilon\}$. Clearly for a matrix M, since $\widetilde{M}(\delta) = M + \delta J$, we can ensure that it has nonnegative entries by taking δ large enough. The entries of S are still in $\{0,1\}$ whereas the entries of T' are now in $\{-1,0,1\}$.

10. For every $a, \mu'(a)$ is nonnegative, and S' is also nonnegative. Therefore there exists $\delta > 0$ such that $\delta \mu'(a)$ and $\delta S'$ are substochastic. Now consider $\mathcal{C} = \langle A, Q, S'', \mu'', T'' \rangle$ defined by

$$S'' = \begin{bmatrix} \delta S' & \alpha \end{bmatrix}, \qquad \mu''(a) = \begin{bmatrix} \delta \mu'(a) & v_a \\ 0 & 1 \end{bmatrix}, \qquad T' = \begin{bmatrix} T' \\ 0 \end{bmatrix}$$

where $v_a \in \mathbb{R}^n$ and α are such that S'' and $\mu''(a)$ are stochastic, which is possible by the choice of δ . It follows that for every word w,

$$S''\mu''(w)T'' = \begin{bmatrix} S' & 1 \end{bmatrix} \begin{bmatrix} \delta^{-|w|}\mu'(w) & * \\ 0 & 1 \end{bmatrix} \begin{bmatrix} T' \\ 0 \end{bmatrix} = \delta^{-|w|}S'\mu'(w)T'$$

and therefore $S''\mu''(w)T'' > 0$ if and only if $S'\mu'(w)T' > 0$. By construction, the entries of T'' are in $\{-1, 0, 1\}$.

11. Let $\mathbf{1}_n$ be the all-one vector of size n, then for every word w,

$$S''\mu''(w)(T'' + \mathbf{1}_n) = S''\mu''(w)T'' + S''\mathbf{1}_n = S''\mu''(w)T'' + 1$$

since the $M\mathbf{1}_n = \mathbf{1}_n$ for any stochastic matrix, and $S\mathbf{1}_n = 1$ for a stochastic vector S. Therefore $\mathcal{L}_{\mathcal{D}}(1) = \mathcal{L}_{\mathcal{C}}(0)$.

12. One easily checks by induction that for every word w,

$$S'\mu'(w)T' = \begin{bmatrix} S & 0 \end{bmatrix}, \qquad 3^{-|w|} \begin{bmatrix} \mu(w) & \mu(w)T \\ \mathbf{0}_n^T & 0 \end{bmatrix} \begin{bmatrix} \mathbf{0}_n & 1 \end{bmatrix} = 3^{-|w|} S\mu(w)T.$$

Furthermore, since for every a, $\mu(a)$ is stochastic and T has entries in $\{0, 1, 2\}$, the sum of each line in $\mu'(a)$ is positive and at most (1+2)/3 = 1. Clearly the initial vector S' is stochastic and the final vector has entries in $\{0, 1\}$.

13. It is trivial to build a PA such that the probability of every word w is $1-3^{-|w|}$, then by taking the convex combination of this automaton and \mathcal{E} we get the result. It follows that

 $\mathbb{P}_{\mathcal{F}}(w) > \frac{1}{2} \quad \Leftrightarrow \quad \frac{1}{2}\mathbb{P}_{\mathcal{E}}(w) + \frac{1}{2}(1 - 3^{-|w|}) > \frac{1}{2} \quad \Leftrightarrow \quad \mathbb{P}_{\mathcal{E}}(w) > 3^{-|w|} \quad \Leftrightarrow \quad 3^{-|w|}\mathbb{P}_{\mathcal{D}}(w) > 3^{-|w|} \quad \Leftrightarrow \quad \mathbb{P}_{\mathcal{D}}(w) > 1.$

Overall, we have shown that for every generalized language $L, L \setminus \{\varepsilon\}$ is a stochastic language.

- 14. Let L be a generalized language: then $L' = L \setminus \{\varepsilon\}$ is stochastic by the previous question. If L = L' then we have shown the result. Otherwise $L = L' \cup \{\varepsilon\}$ is stochastic by question 2. of the first exercice since $\{\varepsilon\}$ is regular.
- **15.** Let $L = \mathcal{L}_{\mathcal{A}}(\lambda)$ be a stochastic language recognized by $\mathcal{A} = \langle A, Q, S, \mu, T \rangle$. Consider the GA $\mathcal{B} = \langle A, Q, S', \mu', T' \rangle$ defined by

$$S' = T^T \qquad \mu'(a) = \mu(a)^T \qquad T' = S^T.$$

Now we check that for any word $w = w_1 \cdots w_k$,

$$S'\mu'(w)T = T^T\mu(w_1)^T \cdots \mu(w_k)^T S^T = (S\mu(w_n) \cdots \mu(w_1)T)^T = (S\mu(w^R)T)^T = S\mu(w^R)T$$

since the transpose of a real is itself. It follows that L^R is a generalized language and therefore a stochastic language.