Master Parisien de Recherche en Informatique
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Internet searches forbidden — Lecture and personal notes allowed.

The two parts are independent and can be done in any order.

Notations. For any set X of words, X* denotes the Kleene star of X and X+ = X X* denotes the Kleene plus of X.
For any vector or matrix A, AT denotes its transpose. For any n € N, 1,, is the column vector of dimension n consisting
of all ones. We simply write 1 when the dimension is clear. For any vector v, we let v = 1 — v be the complement of v.
For any n,m € N, 0, ,,, denotes the n x m matrix consisting of all zeroes. We simply write 0 when the dimensions are
clear. For any set X C R", X denotes the topological closure of X (smallest closed set containing X).

1 Counting with stochastic language

Let ¥ = {a} be a unary alphabet. For any n € N, let C,, = {a"} be the language consisting of a single word a™.

(al) By using Myhill-Nerode theorem, show that for any n € N, the smallest deterministic complete finite automaton
recognizing C,, has exactly n + 2 states.

(a2) Let 6 € [0,1], build a probabilistic automaton A with 3 states (including any sink state) such that A(e) = 0 and
A(a®) = (1 —6)*~1§ for any £ > 1.

(a3) Modify your automaton (still with 3 states) so that A(a’) = (1 — §)*~16/ for any £ > 1.
(a4) Show that for any n € N, there exists a choice of § such that £ — A(a’) has unique maximum at £ = n.

(a5) Show that for any n € N, the language C,, is recognized by a 3—state probabilistic automaton with an isolated
cut-point. What is your conclusion?

2 Existence of a cut-point in a probabilistic automata

Let u € [0, 1] and let D,, C [0, 1] be the smallest set such that 0 € D,, and if € D,, then f;(u,x) € D, forall i € {0,1,2,3},

where fi(u, ) == 5% + ux.

(b1) Show that D, is dense in [0,1] if u = 1.

(b2) Show that D, is not dense in [0,1] if u < §. Hint: show that D, C [0, 5 — €] U [1,1] for some € > 0.

Consider the probabilistic automaton A, = (4,Q, S, T, 1) where A ={0,1,2,3}, Q = {1,2}, S = [1 O] and T = {(1)]

(b3) Explain how to choose p so that {A,(w) : w € A*} = D,,.

(b4) Show that A, has an isolated cut-point if and only if u < 1.



Let B, C be two arbitrary probabilistic automata over some alphabet ¥. Write B = (X, Q1, D1,T1, 1) and C = (2, Q2, D2, T, p12).
We consider the automaton D = (A',Q’', 5", T', ') where X' = X U {t} for some fresh § ¢ ¥, Q' = Q1 U Q2,

r_ 1 T T ’ . ,U/I(U) 0 / o Tlc T1 D1 0 . Tchl T1D2 ;. 0
S I [(TI) (TQ) ] ] 1% (U) - |: 0 /’L2(U) ) 1% (ﬁ) - T2(' T2 0 D2 - T2CD1 T2D2 ) T = 1
and a = (T¢ + T5)T1 is such that S’ is stochastic.

(b5) Show that z/(#) is stochastic. Show that for all £ > 0 and w™, ..., w®*) € £* we have

k
D(ﬁw(l)ﬂw@)ﬁ e ﬂw(k)ﬁ) = [1 0] HM(w(i)> {ﬂ ; where M (w) := E :lg((z)}; lcg((:ﬂu;] Yw € ¥*.

i=1

Let B; and C;, for i € A = {0, 1,2,3}, be arbitrary automata on some alphabet I' such that ANT = .

(b6) Show that there exist automata B and C on alphabet 3 = A UT such that for any word w € I'* and ¢ € A we have
B(iw) = B;(w) and C(iw) = C;(w), and for any word w’ ¢ AI'*, we have B(w') = C(w’) = 0.

Let &£ be an arbitrary probabilistic automaton on alphabet T'.

(b7) Show that there exist automata B; and C; on alphabet I" such that for all ¢ € A and any word w € I'*, we have
—&(w) -
Bi(w) = =5 Ci(w) = E(w) + Bi(w).
(b8) Show that with this choice of B; and C; (and hence of B and C as above), for all i € A, w € I'* and = € [0, 1] we have

1—z z] M(iw) =[1- fi(E(w),z) fi(E(w),z)].

and for all w’ ¢ AT we have
1—z z]M@)=[1 0].

(b9) Show that for any w € I'*, Dg(yy C {D(v) : v € X"}

(b10) By continuity in x and the uniform continuity in u of the f;(u,z) on [0,1]?, show that if (u,) € [0,1]" converges
to some u* then UZOZO D, contains D,«. Hint: show that D,~ C {x : 3(sn)n such that x = lim, . S, and s, €
D, for alln}.

(b11) Show that if I is not an isolated cut-point of £ then D has no isolated cut-points.

(b12) Let u < 1 and D!, be the smallest set such that 0 € D/, and for all z € D!, i € A and v’ < u, f;(v/,z) € D’. Show
that D!, is not dense in [0, 1]. Hint: proceed as in question (b2).

(b13) Show that if there exists ¢ > 0 such that £(w) < 1 — ¢ for all w € £*, then D has at least one isolated cut-point.

Hint: show that {D(w) : w € ¥'"} C D, for some u < ;.

(b14) Show that the following problem is undecidable: given a probabilistic automaton, decide whether it has at least
one isolated cut-point. Hint: consider applying the construction above to the automaton €& = F - (1 — F) for some
arbitrary automaton F.
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Solutions to exercises

(al)

(a2)

(a3)

(ad)

(a5)

First observe that for any i < j < n+1, a® £, a;, since for u = a"~* (note that i <nson—i>0), a'u € C,, but
a’u ¢ L. On the other hand, for any i > n + 1, a"*! =p, a’ since for all u € ¥*, a"u ¢ L and a’u ¢ L. Hence,
there are exactly n + 2 equivalence classes and by Myhill-Nerode theorem, that’s exactly the number of states of a
minimal DFA recognizing C,,.

Consider the following automaton:

1—-6 1
a9 A 1
0 Kl// 2
1-46

It is clear that the probability of a’ being accepted is the probability of going from state 0 to state 1 (§) and the
probability of staying £ — 1 times state 1 (1 — ).

Consider the following automaton:

1-46 1-6 1
S g
O——@——=¢C

An accepting run for a’ first stay i times in state 0 then transitions to state 1 and stays £ — i — 1 times in state 1.
Therefore the probability is

1 -1
Y A=)l -o)" =101y 1= (1) "4
=0 i=0

Let f(£) = (1 —6)*715¢, then f'(¢) = log(1 — §)(1 — )"~ 160+ (1 —6)10 = (1 — 6)*" (1 + £log(1 — 6)). Since the
derivate at 0 is positive and negative at the infinity, the maximum is attained once at ¢ such that 1 + £log(1 — §).
Hence we choose § such that the maximum is attained at ¢ = n, that is 1 + nlog(1 —§),s0 d =1 — e~ 1/,

If welet § =1 —e /" then A(a’) is increasing from ¢ = 0 to £ = n and decreasing from ¢ = n to infinity. Hence
if we take A = (A(¢") + max(A(a""1), A(a""))) then L4(\) = C, and by construction A is isolated. There is a
striking comparison between DFAs and PFAs since the former requires n states to recognize C,, whereas the latter
only requires 3 independently of n.

(b1)

(b2)

(b3)

Ifu= i then 0 € D,, and for all ¢ € {0,1,2,3}, fi(u,z) = 1’?"1 + ux = ”T”J € D,. In other words, D, contains of
4—adic rationals which are clearly dense in [0, 1].

Let u< } and e = 1 —u > 0. Let X = [0, 1 — ] U[},1]. Observe that
folu, X) =uX C[0,u] C [O,i —e]CX
and for i € {1, 2,3},
filu, X) =54 +uX C 1244 [0,u] C [1540,1] € [15%,1] € [, 1]

since 1_7“ > i since u < %. It follows that 0 € X and f;(X) C X, therefore D,, C X since D, is the smallest such

set. Clearly X is not dense in [0, 1] so D, is not either.

Observe that by stochasticity, Su(w) = [1 -z x} for some x and Su(w)T = z. Hence, we are looking for matrices
1(2) such that

M-z zp@)=[1-fi(u,z) fi(u,z)].

. 1-— a; a;
uii) = {1 —b; bZ}
and thus we must have f;(u,z) = PT’U’Z +ux = a;(1 — x) + b;x. Hence we put a; = 1’%2 and b; = u + a; which are
indeed in [0, 1].

By stochasticity, p(¢) is of the form



(b4) By the previous question, if u = § then {A,(w) : w € A*} = D, is dense in [0,1] so it has no isolated cut-point.
Conversely, if u < % then D, is not dense in [0, 1] so its complement contains an open interval I and therefore A,
has an isolated cut-point (the middle of the interval I).

(b5) 1/(c) is the product of two stochastic (non-rectangular) matrices. Let w(®,... w®) € A*, then

D(tcMic®e- - ge®Me) = '/ (8 (wM)! (1) - () (™)' (8) = & {TQ ;ﬂ Ap - Ay, [Dl O]T’

0 Dy
where
A__'D1 01 [u1(w®) 0 ¢ Ty
T |0 Dy 0 po(wN | | TS Ty
_ [P (w) o |[17 T
| 0 Dopip(w) | T T
Dzuz(w Z))Tzc Dapug(w )Ty
_ [1=Bw®) Bw?)
S 1-C@®) Cw™)]
Furthermore,

e T

s|m ] =ater apn | B = et arn @ atn =0 o).

Indeed, if v € {0,1}" then v"v® = 0 and v"v = 0" (1 — v°) = 071 — vTv° = 071, therefore (T7)TTY + (T5)"T5 =
(T9)T1 + (T5)"1 = a. Finally,

D1 0 T/_ Dl 0 O_DlO_O

0 D2 B 0 D2 1 o D21 - 1

by stochasticity of Dy and Ds. This shows the result.

Q=

(b6) Consider the automaton B below:

i
Fae

It is sub-stochastic and can be made stochastic with a sink state. Clearly B(e) = 0 and B(iw) = B;(w) for all w € T'*.
Furthermore, if w ¢ I'"* then B(iw) = 0 since there B; only has letters labelled by I' (ie the transition will lead to the
sink state). Finally, if the first letter is not in A, it will also lead to a sink state. The construction for C is exactly
the same.

(b7) For each i, 1 — &(w) corresponds to the complement and multiplying by % can be done trivially by a convex
combination of 1 — £(w) and the automaton that has constant probability 0 for all words. Hence B; is immediately
seen to be a probabilistic automaton. Similarly, observe that C;(w) = £ + (1 — £)&(w) and hence is also a convex
combination of £ and the automaton that has constant probability 1.

(b8) By the previous questions, for all i € A and w € I'* we have (x denotes that the value is computed by stochasticity)
T

— - x (w) Bz (’U))

=1 ] [ Ci(w) C; (w)}

=[x (1-2)Bi(w) + Ci(w)]
— [* Bi() + (Ci(w) — By(w))z]

K2



(b9)

(b10)

(b11)

(b12)

(b13)

=[x 2504 g(w)a
= [* f,(c‘,’(w),x)] )
For any w’ ¢ AT*, we have

-z 2| M@)=[l-2 q] {1‘5’(“)') B(“”)]

1-C(w) C(w')

-2 4] B 8}

oo

We show a slightly stronger result. Let X = {D(v) : v € §(X*f)*}, then 0 € X since D(#) = 0 by the calculations of
question (b5). Furthermore, if z € X then there exists v € §(X*f)* such that $’y/(v) = [I —z z]. But then, by
question (b5) and question (b8), for every i € A,

D(viw) = S"p/ (viwg) T" = [1 —x :z:] M (iw) [(1)] = [1 — fi(E(w), z) fi(é'(w),a:)} [(1)] = fi(E(w), z).
It follows that f;(€(w),r) € X. But Dg(,) is the smallest set that is stable under those operations, hence Dg () € X.

Let X = {x : 3(sn)n such that x = lim,,_, s, and s,, € D,,, for all n}. Clearly X CY :=J -, Dy, . Therefore if
we show that D, C X, we will have D, C Y and hence D CY =Y since Y is closed; which bhOWb the result.

It remains to see that D,~ C X: clearly 0 € X since 0 € D,,, for all n. Let z € X and write x = lim,,_,o s, Where
Sn € Dy». Then that for any i € A,

filu®, 2) = fi(u*,lim s,) = lim f;(u*, s,,)

by continuity of f;. Furthermore, by the uniform continuity of f; (continuity of the compact set [0, 1]?), there exists
a such that for any n, |f;(u*, s,) — fi(tn, sn)| < alu™ — u,|. Hence we can write f;(u*, s,) = fi(un, sn) + &, where
len| < alu* —u,| — 0 as n — co. Now let s, = fi(un, $n), then s, € D, since s, € D, and (s,), has a limit
since s, = fi(u*,s,) —en — fi(u*,s) as shown above. Therefore,

fi(u”,x) =lim fi(u", sn) = lim Sy +En = lim s, € X.
This shows that X is stable under the application of the f;(u*,-), hence it contains D, which is the smallest set to
satisfy this condition.

If 1 is not isolated then there exists a sequence (wy,), of words such that £(w,) — ;. But then by the previous
questions, we have

U De(w,) S{P®): v e}

and hence
D1 €| De(w,) € {D(v) : v eI}

But Dy /4 = [0, 1] by question (b1), hence {D(v) : v € I'*} = [0, 1] and therefore D cannot have an isolated cut-point.

The proof is essentially the same as in question (b2). Let e =+ —u > 0 and X = [0,1 — ] U [4,1]. Observe that
for all v’ < u,
fo(w/, X)=u'X C[0,u'] C[0,u] C[0,7—¢]CX

and for 7 € {1,2, 3},

[0,] € ['5

] C s

fild, X) =

since 1_3”, > i since ' < u < i. It follows that 0 € X and f;(X) C X, therefore D/, C X since D), is the smallest

such set. Clearly X is not dense in [0, 1] so D, is not either.

Let X = {D(w) : w € ¥'"}. By questions (b5) and (b8), we have that every x € X is either 0 or of the form
fi(€(v),a’) for some v € I'* and 2’ € X. But £(v) < § — ¢, hence by letting u = § —e < 1, we get that X C X/. It
follows by question (b12) that X is not dense in [0, 1]. Consequently, there is an open interval I in [0, 1] that does
not intersect X and the center of this interval is an isolated cut-point of D.



(b14) We show that the problem is undecidable by reducing from the problem of deciding whether % is an isolated cut-point
of a given automaton. The will show the result since the latter is an undecidable problem.

Let F be any automaton on alphabet I'. We can build & such that £(w) = F(w) - (1 — F(w)) for all w € I'* by
the product construction. Then observe that £(w) < 1 for all w. Furthermore,  is isolated for & if and only if %
is isolated for F. We now build D as done in the questions above. By questions (b11) and (b13), we have that D
has an isolated cut-point if and only if i is isolated for £. Therefore we have reduced the problem of whether % is
isolated for F to the problem of deciding whether D has an isolated cut-point.
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