Master Parisien de Recherche en Informatique

Course 2.16 – Finite automata based computation models

4 december 2020 - Exam(1) - Part A

Internet searches forbidden — Lecture and personal notes allowed.

The two parts are independent and can be done in any order.

Notations. For any set X of words, X^* denotes the Kleene star of X and $X^+ = XX^*$ denotes the Kleene plus of X. For any vector or matrix A, A^T denotes its transpose. For any $n \in \mathbb{N}$, $\mathbf{1}_n$ is the column vector of dimension n consisting of all ones. We simply write **1** when the dimension is clear. For any vector v, we let $v^c = \mathbf{1} - v$ be the complement of v. For any $n, m \in \mathbb{N}$, $\mathbf{0}_{n,m}$ denotes the $n \times m$ matrix consisting of all zeroes. We simply write **0** when the dimensions are clear. For any set $X \subseteq \mathbb{R}^n$, \overline{X} denotes the topological closure of X (smallest closed set containing X).

1 Counting with stochastic language

Let $\Sigma = \{a\}$ be a unary alphabet. For any $n \in \mathbb{N}$, let $C_n = \{a^n\}$ be the language consisting of a single word a^n .

- (a1) By using Myhill-Nerode theorem, show that for any $n \in \mathbb{N}$, the smallest deterministic complete finite automaton recognizing C_n has exactly n + 2 states.
- (a2) Let $\delta \in [0,1]$, build a probabilistic automaton \mathcal{A} with 3 states (including any sink state) such that $\mathcal{A}(\varepsilon) = 0$ and $\mathcal{A}(a^{\ell}) = (1-\delta)^{\ell-1}\delta$ for any $\ell \ge 1$.
- (a3) Modify your automaton (still with 3 states) so that $\mathcal{A}(a^{\ell}) = (1-\delta)^{\ell-1}\delta\ell$ for any $\ell \ge 1$.
- (a4) Show that for any $n \in \mathbb{N}$, there exists a choice of δ such that $\ell \mapsto \mathcal{A}(a^{\ell})$ has unique maximum at $\ell = n$.
- (a5) Show that for any $n \in \mathbb{N}$, the language C_n is recognized by a 3-state probabilistic automaton with an isolated cut-point. What is your conclusion?

2 Existence of a cut-point in a probabilistic automata

Let $u \in [0, \frac{1}{4}]$ and let $D_u \subseteq [0, 1]$ be the smallest set such that $0 \in D_u$ and if $x \in D_u$ then $f_i(u, x) \in D_u$ for all $i \in \{0, 1, 2, 3\}$, where $f_i(u, x) := \frac{1-u}{3}i + ux$.

(b1) Show that D_u is dense in [0,1] if $u = \frac{1}{4}$.

(b2) Show that D_u is not dense in [0,1] if $u < \frac{1}{4}$. *Hint: show that* $D_u \subseteq [0, \frac{1}{4} - \varepsilon] \cup [\frac{1}{4}, 1]$ for some $\varepsilon > 0$.

Consider the probabilistic automaton $\mathcal{A}_u = (A, Q, S, T, \mu)$ where $A = \{0, 1, 2, 3\}, Q = \{1, 2\}, S = \begin{bmatrix} 1 & 0 \end{bmatrix}$ and $T = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

- (b3) Explain how to choose μ so that $\{\mathcal{A}_u(w) : w \in A^*\} = D_u$.
- (b4) Show that \mathcal{A}_u has an isolated cut-point if and only if $u < \frac{1}{4}$.

Let \mathcal{B}, \mathcal{C} be two arbitrary probabilistic automata over some alphabet Σ . Write $\mathcal{B} = (\Sigma, Q_1, D_1, T_1, \mu_1)$ and $\mathcal{C} = (\Sigma, Q_2, D_2, T_2, \mu_2)$. We consider the automaton $\mathcal{D} = (A', Q', S', T', \mu')$ where $\Sigma' = \Sigma \cup \{\sharp\}$ for some fresh $\sharp \notin \Sigma, Q' = Q_1 \cup Q_2$,

$$S' = \frac{1}{\alpha} \begin{bmatrix} (T_1^c)^T & (T_2^c)^T \end{bmatrix}, \qquad \mu'(\sigma) = \begin{bmatrix} \mu_1(\sigma) & \mathbf{0} \\ \mathbf{0} & \mu_2(\sigma) \end{bmatrix}, \qquad \mu'(\sharp) = \begin{bmatrix} T_1^c & T_1 \\ T_2^c & T_2 \end{bmatrix} \begin{bmatrix} D_1 & \mathbf{0} \\ \mathbf{0} & D_2 \end{bmatrix} = \begin{bmatrix} T_1^c D_1 & T_1 D_2 \\ T_2^c D_1 & T_2 D_2 \end{bmatrix}, \qquad T' = \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix}$$

and $\alpha = (T_1^c + T_2^c)^T \mathbf{1}$ is such that S' is stochastic.

(b5) Show that $\mu'(\sharp)$ is stochastic. Show that for all $k \ge 0$ and $w^{(1)}, \ldots, w^{(k)} \in \Sigma^*$, we have

$$\mathcal{D}(\sharp w^{(1)} \sharp w^{(2)} \sharp \cdots \sharp w^{(k)} \sharp) = \begin{bmatrix} 1 & 0 \end{bmatrix} \prod_{i=1}^{k} M(w^{(i)}) \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \text{where} \quad M(w) := \begin{bmatrix} 1 - \mathcal{B}(w) & \mathcal{B}(w) \\ 1 - \mathcal{C}(w) & \mathcal{C}(w) \end{bmatrix} \quad \forall w \in \Sigma^*.$$

Let \mathcal{B}_i and \mathcal{C}_i , for $i \in A = \{0, 1, 2, 3\}$, be arbitrary automata on some alphabet Γ such that $A \cap \Gamma = \emptyset$.

- (b6) Show that there exist automata \mathcal{B} and \mathcal{C} on alphabet $\Sigma = A \cup \Gamma$ such that for any word $w \in \Gamma^*$ and $i \in A$ we have $\mathcal{B}(iw) = \mathcal{B}_i(w)$ and $\mathcal{C}(iw) = \mathcal{C}_i(w)$, and for any word $w' \notin A\Gamma^*$, we have $\mathcal{B}(w') = \mathcal{C}(w') = 0$.
- Let \mathcal{E} be an arbitrary probabilistic automaton on alphabet Γ .
- (b7) Show that there exist automata \mathcal{B}_i and \mathcal{C}_i on alphabet Γ such that for all $i \in A$ and any word $w \in \Gamma^*$, we have

$$\mathcal{B}_i(w) = \frac{1-\mathcal{E}(w)}{3}i, \qquad \mathcal{C}_i(w) = \mathcal{E}(w) + \mathcal{B}_i(w)$$

(b8) Show that with this choice of \mathcal{B}_i and \mathcal{C}_i (and hence of \mathcal{B} and \mathcal{C} as above), for all $i \in A$, $w \in \Gamma^*$ and $x \in [0, 1]$ we have

$$\begin{bmatrix} 1 - x & x \end{bmatrix} M(iw) = \begin{bmatrix} 1 - f_i(\mathcal{E}(w), x) & f_i(\mathcal{E}(w), x) \end{bmatrix}.$$

and for all $w' \notin A\Gamma^*$ we have

$$\begin{bmatrix} 1 - x & x \end{bmatrix} M(w') = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

- (b9) Show that for any $w \in \Gamma^*$, $D_{\mathcal{E}(w)} \subseteq \{\mathcal{D}(v) : v \in {\Sigma'}^*\}$.
- (b10) By continuity in x and the uniform continuity in u of the $f_i(u, x)$ on $[0, 1]^2$, show that if $(u_n) \in [0, 1]^{\mathbb{N}}$ converges to some u^* then $\bigcup_{n=0}^{\infty} D_{u_n}$ contains $\overline{D_{u^*}}$. *Hint: show that* $D_{u^*} \subseteq \{x : \exists (s_n)_n \text{ such that } x = \lim_{n \to \infty} s_n \text{ and } s_n \in D_{u_n} \text{ for all } n\}$.
- (b11) Show that if $\frac{1}{4}$ is not an isolated cut-point of \mathcal{E} then \mathcal{D} has no isolated cut-points.
- (b12) Let $u < \frac{1}{4}$ and D'_u be the smallest set such that $0 \in D'_u$ and for all $x \in D'_u$, $i \in A$ and $u' \leq u$, $f_i(u', x) \in D'$. Show that D'_u is not dense in [0, 1]. *Hint: proceed as in question (b2).*
- (b13) Show that if there exists $\varepsilon > 0$ such that $\mathcal{E}(w) \leq \frac{1}{4} \varepsilon$ for all $w \in \Sigma^*$, then \mathcal{D} has at least one isolated cut-point. *Hint: show that* $\{\mathcal{D}(w) : w \in {\Sigma'}^*\} \subseteq D'_u$ for some $u < \frac{1}{4}$.
- (b14) Show that the following problem is undecidable: given a probabilistic automaton, decide whether it has at least one isolated cut-point. *Hint: consider applying the construction above to the automaton* $\mathcal{E} = \mathcal{F} \cdot (1 \mathcal{F})$ for some arbitrary automaton \mathcal{F} .

References

- [Bal14] Kaspars Balodis. Counting with Probabilistic and Ultrametric Finite Automata, pages 3–16. Springer International Publishing, Cham, 2014.
- [BMT77] Alberto Bertoni, Giancarlo Mauri, and Mauro Torelli. Some recursively unsolvable problems relating to isolated cutpoints in probabilistic automata. In International Colloquium on Automata, Languages, and Programming, pages 87–94. Springer, 1977.

Solutions to exercises

- (a1) First observe that for any $i < j \leq n+1$, $a^i \not\equiv_L a_j$, since for $u = a^{n-i}$ (note that $i \leq n$ so $n-i \geq 0$), $a^i u \in C_n$ but $a^j u \notin L$. On the other hand, for any $i \geq n+1$, $a^{n+1} \equiv_L a^i$ since for all $u \in \Sigma^*$, $a^{n+1}u \notin L$ and $a^i u \notin L$. Hence, there are exactly n+2 equivalence classes and by Myhill-Nerode theorem, that's exactly the number of states of a minimal DFA recognizing C_n .
- (a2) Consider the following automaton:

It is clear that the probability of a^{ℓ} being accepted is the probability of going from state 0 to state 1 (δ) and the probability of staying $\ell - 1$ times state 1 ($1 - \delta$).

(a3) Consider the following automaton:

An accepting run for a^{ℓ} first stay *i* times in state 0 then transitions to state 1 and stays $\ell - i - 1$ times in state 1. Therefore the probability is

$$\sum_{i=0}^{\ell-1} (1-\delta)^i \delta(1-\delta)^{n-1-i} = (1-\delta)^{\ell-1} \delta \sum_{i=0}^{\ell-1} 1 = (1-\delta)^{\ell-1} \delta \ell.$$

- (a4) Let $f(\ell) = (1-\delta)^{\ell-1}\delta\ell$, then $f'(\ell) = \log(1-\delta)(1-\delta)^{\ell-1}\delta\ell + (1-\delta)^{\ell-1}\delta = (1-\delta)^{\ell-1}(1+\ell\log(1-\delta))$. Since the derivate at 0 is positive and negative at the infinity, the maximum is attained once at ℓ such that $1+\ell\log(1-\delta)$. Hence we choose δ such that the maximum is attained at $\ell = n$, that is $1+n\log(1-\delta)$, so $\delta = 1-e^{-1/n}$.
- (a5) If we let $\delta = 1 e^{-1/n}$, then $\mathcal{A}(a^{\ell})$ is increasing from $\ell = 0$ to $\ell = n$ and decreasing from $\ell = n$ to infinity. Hence if we take $\lambda = \frac{1}{2}(\mathcal{A}(\ell^n) + \max(\mathcal{A}(a^{n-1}), \mathcal{A}(a^{n+1})))$ then $\mathcal{L}_{\mathcal{A}}(\lambda) = C_n$ and by construction λ is isolated. There is a striking comparison between DFAs and PFAs since the former requires n states to recognize C_n whereas the latter only requires 3 independently of n.
- (b1) If $u = \frac{1}{4}$ then $0 \in D_u$ and for all $i \in \{0, 1, 2, 3\}$, $f_i(u, x) = \frac{1-u}{3}i + ux = \frac{i+x}{4} \in D_u$. In other words, D_u contains of 4-adic rationals which are clearly dense in [0, 1].
- (b2) Let $u < \frac{1}{4}$ and $\varepsilon = \frac{1}{4} u > 0$. Let $X = [0, \frac{1}{4} \varepsilon] \cup [\frac{1}{4}, 1]$. Observe that

$$f_0(u, X) = uX \subseteq [0, u] \subseteq [0, \frac{1}{4} - \varepsilon] \subseteq X$$

and for $i \in \{1, 2, 3\}$,

$$f_i(u, X) = \frac{1-u}{3}i + uX \subseteq \frac{1-u}{3}i + [0, u] \subseteq [\frac{1-u}{3}i, 1] \subseteq [\frac{1-u}{3}, 1] \subseteq [\frac{1}{4}, 1]$$

since $\frac{1-u}{3} \ge \frac{1}{4}$ since $u < \frac{1}{4}$. It follows that $0 \in X$ and $f_i(X) \subseteq X$, therefore $D_u \subseteq X$ since D_u is the smallest such set. Clearly X is not dense in [0, 1] so D_u is not either.

(b3) Observe that by stochasticity, $S\mu(w) = \begin{bmatrix} 1 - x & x \end{bmatrix}$ for some x and $S\mu(w)T = x$. Hence, we are looking for matrices $\mu(i)$ such that

$$\begin{bmatrix} 1-x & x \end{bmatrix} \mu(i) = \begin{bmatrix} 1-f_i(u,x) & f_i(u,x) \end{bmatrix}.$$

By stochasticity, $\mu(i)$ is of the form

$$\mu(i) = \begin{bmatrix} 1 - a_i & a_i \\ 1 - b_i & b_i \end{bmatrix}$$

and thus we must have $f_i(u, x) = \frac{1-u}{3}i + ux = a_i(1-x) + b_i x$. Hence we put $a_i = \frac{1-u}{3}i$ and $b_i = u + a_i$ which are indeed in [0, 1].

- (b4) By the previous question, if $u = \frac{1}{4}$ then $\{\mathcal{A}_u(w) : w \in A^*\} = D_u$ is dense in [0, 1] so it has no isolated cut-point. Conversely, if $u < \frac{1}{4}$ then D_u is not dense in [0, 1] so its complement contains an open interval I and therefore \mathcal{A}_u has an isolated cut-point (the middle of the interval I).
- (b5) $\mu'(c)$ is the product of two stochastic (non-rectangular) matrices. Let $w^{(1)}, \ldots, w^{(k)} \in A^*$, then

$$\mathcal{D}(\sharp c^{(1)} \sharp c^{(2)} c \cdots \sharp c^{(k)} c) = S' \mu'(\sharp) \mu'(w^{(1)}) \mu'(\sharp) \cdots \mu'(\sharp) \mu'(w^{(k)}) \mu'(\sharp) = S' \begin{bmatrix} T_1^c & T_1 \\ T_2^c & T_2 \end{bmatrix} A_1 \cdots A_k \begin{bmatrix} D_1 & \mathbf{0} \\ \mathbf{0} & D_2 \end{bmatrix} T'$$

where

$$\begin{aligned} A_{i} &= \begin{bmatrix} D_{1} & \mathbf{0} \\ \mathbf{0} & D_{2} \end{bmatrix} \begin{bmatrix} \mu_{1}(w^{(i)}) & \mathbf{0} \\ \mathbf{0} & \mu_{2}(w^{(i)}) \end{bmatrix} \begin{bmatrix} T_{1}^{c} & T_{1} \\ T_{2}^{c} & T_{2} \end{bmatrix} \\ &= \begin{bmatrix} D_{1}\mu_{1}(w^{(i)}) & \mathbf{0} \\ \mathbf{0} & D_{2}\mu_{2}(w^{(i)}) \end{bmatrix} \begin{bmatrix} T_{1}^{c} & T_{1} \\ T_{2}^{c} & T_{2} \end{bmatrix} \\ &= \begin{bmatrix} D_{1}\mu_{1}(w^{(i)})T_{1}^{c} & D_{1}\mu_{1}(w^{(i)})T_{1} \\ D_{2}\mu_{2}(w^{(i)})T_{2}^{c} & D_{2}\mu_{2}(w^{(i)})T_{2} \end{bmatrix} \\ &= \begin{bmatrix} 1 - \mathcal{B}(w^{(i)}) & \mathcal{B}(w^{(i)}) \\ 1 - \mathcal{C}(w^{(i)}) & \mathcal{C}(w^{(i)}) \end{bmatrix}. \end{aligned}$$

Furthermore,

$$S' \begin{bmatrix} T_1^c & T_1 \\ T_2^c & T_2 \end{bmatrix} = \frac{1}{\alpha} \begin{bmatrix} (T_1^c)^T & (T_2^c)^T \end{bmatrix} \begin{bmatrix} T_1^c & T_1 \\ T_2^c & T_2 \end{bmatrix} = \frac{1}{\alpha} \begin{bmatrix} (T_1^c)^T T_1^c + (T_2^c)^T T_2^c & (T_1^c)^T T_1 + (T_2^c)^T T_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}.$$

Indeed, if $v \in \{0,1\}^n$ then $v^T v^c = 0$ and $v^T v = v^T (\mathbf{1} - v^c) = v^T \mathbf{1} - v^T v^c = v^T \mathbf{1}$, therefore $(T_1^c)^T T_1^c + (T_2^c)^T T_2^c = (T_1^c)^T \mathbf{1} + (T_2^c)^T \mathbf{1} = \alpha$. Finally,

$$\begin{bmatrix} D_1 & \mathbf{0} \\ \mathbf{0} & D_2 \end{bmatrix} T' = \begin{bmatrix} D_1 & \mathbf{0} \\ \mathbf{0} & D_2 \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix} = \begin{bmatrix} D_1 \mathbf{0} \\ D_2 \mathbf{1} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

by stochasticity of D_1 and D_2 . This shows the result.

(b6) Consider the automaton \mathcal{B} below:

It is sub-stochastic and can be made stochastic with a sink state. Clearly $\mathcal{B}(\varepsilon) = 0$ and $\mathcal{B}(iw) = \mathcal{B}_i(w)$ for all $w \in \Gamma^*$. Furthermore, if $w \notin \Gamma^*$ then $\mathcal{B}(iw) = 0$ since there \mathcal{B}_i only has letters labelled by Γ (ie the transition will lead to the sink state). Finally, if the first letter is not in A, it will also lead to a sink state. The construction for \mathcal{C} is exactly the same.

- (b7) For each i, $1 \mathcal{E}(w)$ corresponds to the complement and multiplying by $\frac{i}{3}$ can be done trivially by a convex combination of $1 \mathcal{E}(w)$ and the automaton that has constant probability 0 for all words. Hence \mathcal{B}_i is immediately seen to be a probabilistic automaton. Similarly, observe that $\mathcal{C}_i(w) = \frac{i}{3} + (1 \frac{i}{3})\mathcal{E}(w)$ and hence is also a convex combination of \mathcal{E} and the automaton that has constant probability 1.
- (b8) By the previous questions, for all $i \in A$ and $w \in \Gamma^*$ we have (\star denotes that the value is computed by stochasticity)

$$\begin{bmatrix} 1 - x & x \end{bmatrix} M(iw) = \begin{bmatrix} 1 - x & x \end{bmatrix} \begin{bmatrix} 1 - \mathcal{B}(iw) & \mathcal{B}(iw) \\ 1 - \mathcal{C}(iw) & \mathcal{C}(iw) \end{bmatrix}$$
$$= \begin{bmatrix} 1 - x & x \end{bmatrix} \begin{bmatrix} 1 - \mathcal{B}_i(w) & \mathcal{B}_i(w) \\ 1 - \mathcal{C}_i(w) & \mathcal{C}_i(w) \end{bmatrix}$$
$$= \begin{bmatrix} \star & (1 - x)B_i(w) + C_i(w) \end{bmatrix}$$
$$= \begin{bmatrix} \star & B_i(x) + (C_i(w) - B_i(w))x \end{bmatrix}$$

$$= \begin{bmatrix} \star & \frac{1-\mathcal{E}(w)}{3}i + \mathcal{E}(w)x \end{bmatrix}$$
$$= \begin{bmatrix} \star & f_i(\mathcal{E}(w), x) \end{bmatrix}.$$

For any $w' \notin A\Gamma^*$, we have

$$\begin{bmatrix} 1-x & x \end{bmatrix} M(w') = \begin{bmatrix} 1-x & x \end{bmatrix} \begin{bmatrix} 1-\mathcal{B}(w') & \mathcal{B}(w') \\ 1-\mathcal{C}(w') & \mathcal{C}(w') \end{bmatrix}$$
$$= \begin{bmatrix} 1-x & x \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \end{bmatrix}.$$

(b9) We show a slightly stronger result. Let $X = \{\mathcal{D}(v) : v \in \sharp(\Sigma^*\sharp)^*\}$, then $0 \in X$ since $\mathcal{D}(\sharp) = 0$ by the calculations of question (b5). Furthermore, if $x \in X$ then there exists $v \in \sharp(\Sigma^*\sharp)^*$ such that $S'\mu'(v) = \begin{bmatrix} 1 - x & x \end{bmatrix}$. But then, by question (b5) and question (b8), for every $i \in A$,

$$\mathcal{D}(viw\sharp) = S'\mu'(viw\sharp)T' = \begin{bmatrix} 1 - x & x \end{bmatrix} M(iw) \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 - f_i(\mathcal{E}(w), x) & f_i(\mathcal{E}(w), x) \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = f_i(\mathcal{E}(w), x).$$

It follows that $f_i(\mathcal{E}(w), x) \in X$. But $D_{\mathcal{E}(w)}$ is the smallest set that is stable under those operations, hence $D_{\mathcal{E}(w)} \subseteq X$.

(b10) Let $X = \{x : \exists (s_n)_n \text{ such that } x = \lim_{n \to \infty} s_n \text{ and } s_n \in D_{u_n} \text{ for all } n\}$. Clearly $X \subseteq Y := \overline{\bigcup_{n=0}^{\infty} D_{u_n}}$. Therefore if we show that $D_{u^*} \subseteq X$, we will have $D_{u^*} \subseteq Y$ and hence $\overline{D_{u^*}} \subseteq \overline{Y} = Y$ since Y is closed; which shows the result. It remains to see that $D_{u^*} \subseteq X$: clearly $0 \in X$ since $0 \in D_{u_n}$ for all n. Let $x \in X$ and write $x = \lim_{n \to \infty} s_n$ where $s_n \in D_{u^*}$. Then that for any $i \in A$,

$$f_i(u^*, x) = f_i(u^*, \lim_n s_n) = \lim_n f_i(u^*, s_n)$$

by continuity of f_i . Furthermore, by the uniform continuity of f_i (continuity of the compact set $[0,1]^2$), there exists α such that for any n, $|f_i(u^*, s_n) - f_i(u_n, s_n)| \leq \alpha |u^* - u_n|$. Hence we can write $f_i(u^*, s_n) = f_i(u_n, s_n) + \varepsilon_n$ where $|\varepsilon_n| \leq \alpha |u^* - u_n| \to 0$ as $n \to \infty$. Now let $s'_n = f_i(u_n, s_n)$, then $s'_n \in D_{u_n}$ since $s_n \in D_{u_n}$ and $(s'_n)_n$ has a limit since $s'_n = f_i(u^*, s_n) - \varepsilon_n \to f_i(u^*, s)$ as shown above. Therefore,

$$f_i(u^*, x) = \lim_n f_i(u^*, s_n) = \lim_n s'_n + \varepsilon_n = \lim_s s'_n \in X.$$

This shows that X is stable under the application of the $f_i(u^*, \cdot)$, hence it contains D_{u^*} which is the smallest set to satisfy this condition.

(b11) If $\frac{1}{4}$ is not isolated then there exists a sequence $(w_n)_n$ of words such that $\mathcal{E}(w_n) \to \frac{1}{4}$. But then by the previous questions, we have

$$\bigcup_{n} D_{\mathcal{E}(w_n)} \subseteq \{\mathcal{D}(v) : v \in {\Gamma'}^*\}$$

and hence

$$\overline{D_{1/4}} \subseteq \overline{\bigcup_n D_{\mathcal{E}(w_n)}} \subseteq \overline{\{\mathcal{D}(v) : v \in \Gamma'^*\}}.$$

But $\overline{D_{1/4}} = [0,1]$ by question (b1), hence $\overline{\{\mathcal{D}(v) : v \in {\Gamma'}^*\}} = [0,1]$ and therefore \mathcal{D} cannot have an isolated cut-point.

(b12) The proof is essentially the same as in question (b2). Let $\varepsilon = \frac{1}{4} - u > 0$ and $X = [0, \frac{1}{4} - \varepsilon] \cup [\frac{1}{4}, 1]$. Observe that for all $u' \leq u$,

$$f_0(u', X) = u'X \subseteq [0, u'] \subseteq [0, u] \subseteq [0, \frac{1}{4} - \varepsilon] \subseteq X$$

and for $i \in \{1, 2, 3\}$,

$$f_i(u',X) = \frac{1-u'}{3}i + u'X \subseteq \frac{1-u'}{3}i + [0,u'] \subseteq [\frac{1-u'}{3}i,1] \subseteq [\frac{1-u'}{3},1] \subseteq [\frac{1}{4},1]$$

since $\frac{1-u'}{3} \ge \frac{1}{4}$ since $' \le u < \frac{1}{4}$. It follows that $0 \in X$ and $f_i(X) \subseteq X$, therefore $D'_u \subseteq X$ since D'_u is the smallest such set. Clearly X is not dense in [0,1] so D'_u is not either.

(b13) Let $X = \{\mathcal{D}(w) : w \in {\Sigma'}^*\}$. By questions (b5) and (b8), we have that every $x \in X$ is either 0 or of the form $f_i(\mathcal{E}(v), x')$ for some $v \in \Gamma^*$ and $x' \in X$. But $\mathcal{E}(v) \leq \frac{1}{4} - \varepsilon$, hence by letting $u = \frac{1}{4} - \varepsilon < \frac{1}{4}$, we get that $X \subseteq X'_u$. It follows by question (b12) that X is not dense in [0, 1]. Consequently, there is an open interval I in [0, 1] that does not intersect X and the center of this interval is an isolated cut-point of \mathcal{D} .

(b14) We show that the problem is undecidable by reducing from the problem of deciding whether $\frac{1}{2}$ is an isolated cut-point of a given automaton. The will show the result since the latter is an undecidable problem.

Let \mathcal{F} be any automaton on alphabet Γ . We can build \mathcal{E} such that $\mathcal{E}(w) = \mathcal{F}(w) \cdot (1 - \mathcal{F}(w))$ for all $w \in \Gamma^*$ by the product construction. Then observe that $\mathcal{E}(w) \leq \frac{1}{4}$ for all w. Furthermore, $\frac{1}{4}$ is isolated for \mathcal{E} if and only if $\frac{1}{2}$ is isolated for \mathcal{F} . We now build \mathcal{D} as done in the questions above. By questions (b11) and (b13), we have that \mathcal{D} has an isolated cut-point if and only if $\frac{1}{4}$ is isolated for \mathcal{E} . Therefore we have reduced the problem of whether $\frac{1}{2}$ is isolated for \mathcal{F} to the problem of deciding whether \mathcal{D} has an isolated cut-point.