
Master Parisien de Recherche en Informatique
Course 2.16 – Finite automata based computation models

4 december 2020 — Exam (1) — Part A

Internet searches forbidden — Lecture and personal notes allowed.

The two parts are independent and can be done in any order.

Notations. For any set X of words, X∗ denotes the Kleene star of X and X+ = XX∗ denotes the Kleene plus of X.
For any vector or matrix A, AT denotes its transpose. For any n ∈ N, 1n is the column vector of dimension n consisting
of all ones. We simply write 1 when the dimension is clear. For any vector v, we let vc = 1− v be the complement of v.
For any n,m ∈ N, 0n,m denotes the n ×m matrix consisting of all zeroes. We simply write 0 when the dimensions are
clear. For any set X ⊆ Rn, X denotes the topological closure of X (smallest closed set containing X).

1 Counting with stochastic language
Let Σ = {a} be a unary alphabet. For any n ∈ N, let Cn = {an} be the language consisting of a single word an.

(a1) By using Myhill-Nerode theorem, show that for any n ∈ N, the smallest deterministic complete finite automaton
recognizing Cn has exactly n+ 2 states.

(a2) Let δ ∈ [0, 1], build a probabilistic automaton A with 3 states (including any sink state) such that A(ε) = 0 and
A(a`) = (1− δ)`−1δ for any ` > 1.

(a3) Modify your automaton (still with 3 states) so that A(a`) = (1− δ)`−1δ` for any ` > 1.

(a4) Show that for any n ∈ N, there exists a choice of δ such that ` 7→ A(a`) has unique maximum at ` = n.

(a5) Show that for any n ∈ N, the language Cn is recognized by a 3−state probabilistic automaton with an isolated
cut-point. What is your conclusion?

2 Existence of a cut-point in a probabilistic automata
Let u ∈ [0, 1

4 ] and letDu ⊆ [0, 1] be the smallest set such that 0 ∈ Du and if x ∈ Du then fi(u, x) ∈ Du for all i ∈ {0, 1, 2, 3},
where fi(u, x) := 1−u

3 i+ ux.

(b1) Show that Du is dense in [0, 1] if u = 1
4 .

(b2) Show that Du is not dense in [0, 1] if u < 1
4 . Hint: show that Du ⊆ [0, 1

4 − ε] ∪ [ 1
4 , 1] for some ε > 0.

Consider the probabilistic automaton Au = (A,Q, S, T, µ) where A = {0, 1, 2, 3}, Q = {1, 2}, S =
[
1 0

]
and T =

[
0
1

]
.

(b3) Explain how to choose µ so that {Au(w) : w ∈ A∗} = Du.

(b4) Show that Au has an isolated cut-point if and only if u < 1
4 .

1



Let B, C be two arbitrary probabilistic automata over some alphabet Σ. Write B = (Σ, Q1, D1, T1, µ1) and C = (Σ, Q2, D2, T2, µ2).
We consider the automaton D = (A′, Q′, S′, T ′, µ′) where Σ′ = Σ ∪ {]} for some fresh ] /∈ Σ, Q′ = Q1 ∪Q2,

S′ = 1
α

[
(T c1 )T (T c2 )T

]
, µ′(σ) =

[
µ1(σ) 0

0 µ2(σ)

]
, µ′(]) =

[
T c1 T1
T c2 T2

] [
D1 0
0 D2

]
=
[
T c1D1 T1D2
T c2D1 T2D2

]
, T ′ =

[
0
1

]
and α = (T c1 + T c2 )T1 is such that S′ is stochastic.

(b5) Show that µ′(]) is stochastic. Show that for all k > 0 and w(1), . . . , w(k) ∈ Σ∗, we have

D(]w(1)]w(2)] · · · ]w(k)]) =
[
1 0

] k∏
i=1

M(w(i))
[
0
1

]
, where M(w) :=

[
1− B(w) B(w)
1− C(w) C(w)

]
∀w ∈ Σ∗.

Let Bi and Ci, for i ∈ A = {0, 1, 2, 3}, be arbitrary automata on some alphabet Γ such that A ∩ Γ = ∅.

(b6) Show that there exist automata B and C on alphabet Σ = A ∪ Γ such that for any word w ∈ Γ∗ and i ∈ A we have
B(iw) = Bi(w) and C(iw) = Ci(w), and for any word w′ /∈ AΓ∗, we have B(w′) = C(w′) = 0.

Let E be an arbitrary probabilistic automaton on alphabet Γ.

(b7) Show that there exist automata Bi and Ci on alphabet Γ such that for all i ∈ A and any word w ∈ Γ∗, we have

Bi(w) = 1−E(w)
3 i, Ci(w) = E(w) + Bi(w).

(b8) Show that with this choice of Bi and Ci (and hence of B and C as above), for all i ∈ A, w ∈ Γ∗ and x ∈ [0, 1] we have[
1− x x

]
M(iw) =

[
1− fi(E(w), x) fi(E(w), x)

]
.

and for all w′ /∈ AΓ∗ we have [
1− x x

]
M(w′) =

[
1 0

]
.

(b9) Show that for any w ∈ Γ∗, DE(w) ⊆ {D(v) : v ∈ Σ′∗}.

(b10) By continuity in x and the uniform continuity in u of the fi(u, x) on [0, 1]2, show that if (un) ∈ [0, 1]N converges
to some u∗ then

⋃∞
n=0 Dun contains Du∗ . Hint: show that Du∗ ⊆ {x : ∃(sn)n such that x = limn→∞ sn and sn ∈

Dun for all n}.

(b11) Show that if 1
4 is not an isolated cut-point of E then D has no isolated cut-points.

(b12) Let u < 1
4 and D′u be the smallest set such that 0 ∈ D′u and for all x ∈ D′u, i ∈ A and u′ 6 u, fi(u′, x) ∈ D′. Show

that D′u is not dense in [0, 1]. Hint: proceed as in question (b2).

(b13) Show that if there exists ε > 0 such that E(w) 6 1
4 − ε for all w ∈ Σ∗, then D has at least one isolated cut-point.

Hint: show that {D(w) : w ∈ Σ′∗} ⊆ D′u for some u < 1
4 .

(b14) Show that the following problem is undecidable: given a probabilistic automaton, decide whether it has at least
one isolated cut-point. Hint: consider applying the construction above to the automaton E = F · (1 − F) for some
arbitrary automaton F .
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Solutions to exercises
(a1) First observe that for any i < j 6 n+ 1, ai 6≡L aj , since for u = an−i (note that i 6 n so n− i > 0), aiu ∈ Cn but

aju /∈ L. On the other hand, for any i > n + 1, an+1 ≡L ai since for all u ∈ Σ∗, an+1u /∈ L and aiu /∈ L. Hence,
there are exactly n+ 2 equivalence classes and by Myhill-Nerode theorem, that’s exactly the number of states of a
minimal DFA recognizing Cn.

(a2) Consider the following automaton:

0 1 2δ 1

1− δ 1

1− δ

It is clear that the probability of a` being accepted is the probability of going from state 0 to state 1 (δ) and the
probability of staying `− 1 times state 1 (1− δ).

(a3) Consider the following automaton:

0 1 2δ

1− δ

1

1− δ 1

An accepting run for a` first stay i times in state 0 then transitions to state 1 and stays `− i− 1 times in state 1.
Therefore the probability is

`−1∑
i=0

(1− δ)iδ(1− δ)n−1−i = (1− δ)`−1δ

`−1∑
i=0

1 = (1− δ)`−1δ`.

(a4) Let f(`) = (1− δ)`−1δ`, then f ′(`) = log(1− δ)(1− δ)`−1δ` + (1− δ)`−1δ = (1− δ)`−1(1 + ` log(1− δ)). Since the
derivate at 0 is positive and negative at the infinity, the maximum is attained once at ` such that 1 + ` log(1 − δ).
Hence we choose δ such that the maximum is attained at ` = n, that is 1 + n log(1− δ), so δ = 1− e−1/n.

(a5) If we let δ = 1 − e−1/n, then A(a`) is increasing from ` = 0 to ` = n and decreasing from ` = n to infinity. Hence
if we take λ = 1

2 (A(`n) + max(A(an−1),A(an+1))) then LA(λ) = Cn and by construction λ is isolated. There is a
striking comparison between DFAs and PFAs since the former requires n states to recognize Cn whereas the latter
only requires 3 independently of n.

(b1) If u = 1
4 then 0 ∈ Du and for all i ∈ {0, 1, 2, 3}, fi(u, x) = 1−u

3 i + ux = i+x
4 ∈ Du. In other words, Du contains of

4−adic rationals which are clearly dense in [0, 1].

(b2) Let u < 1
4 and ε = 1

4 − u > 0. Let X = [0, 1
4 − ε] ∪ [ 1

4 , 1]. Observe that

f0(u,X) = uX ⊆ [0, u] ⊆ [0, 1
4 − ε] ⊆ X

and for i ∈ {1, 2, 3},

fi(u,X) = 1−u
3 i+ uX ⊆ 1−u

3 i+ [0, u] ⊆ [ 1−u
3 i, 1] ⊆ [ 1−u

3 , 1] ⊆ [ 1
4 , 1]

since 1−u
3 > 1

4 since u < 1
4 . It follows that 0 ∈ X and fi(X) ⊆ X, therefore Du ⊆ X since Du is the smallest such

set. Clearly X is not dense in [0, 1] so Du is not either.

(b3) Observe that by stochasticity, Sµ(w) =
[
1− x x

]
for some x and Sµ(w)T = x. Hence, we are looking for matrices

µ(i) such that [
1− x x

]
µ(i) =

[
1− fi(u, x) fi(u, x)

]
.

By stochasticity, µ(i) is of the form

µ(i) =
[
1− ai ai
1− bi bi

]
and thus we must have fi(u, x) = 1−u

3 i+ ux = ai(1− x) + bix. Hence we put ai = 1−u
3 i and bi = u+ ai which are

indeed in [0, 1].
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(b4) By the previous question, if u = 1
4 then {Au(w) : w ∈ A∗} = Du is dense in [0, 1] so it has no isolated cut-point.

Conversely, if u < 1
4 then Du is not dense in [0, 1] so its complement contains an open interval I and therefore Au

has an isolated cut-point (the middle of the interval I).

(b5) µ′(c) is the product of two stochastic (non-rectangular) matrices. Let w(1), . . . , w(k) ∈ A∗, then

D(]c(1)]c(2)c · · · ]c(k)c) = S′µ′(])µ′(w(1))µ′(]) · · ·µ′(])µ′(w(k))µ′(]) = S′
[
T c1 T1
T c2 T2

]
A1 · · ·Ak

[
D1 0
0 D2

]
T ′

where

Ai =
[
D1 0
0 D2

] [
µ1(w(i)) 0

0 µ2(w(i))

] [
T c1 T1
T c2 T2

]
=
[
D1µ1(w(i)) 0

0 D2µ2(w(i))

] [
T c1 T1
T c2 T2

]
=
[
D1µ1(w(i))T c1 D1µ1(w(i))T1
D2µ2(w(i))T c2 D2µ2(w(i))T2

]
=
[
1− B(w(i)) B(w(i))
1− C(w(i)) C(w(i))

]
.

Furthermore,

S′
[
T c1 T1
T c2 T2

]
= 1

α

[
(T c1 )T (T c2 )T

] [T c1 T1
T c2 T2

]
= 1

α

[
(T c1 )TT c1 + (T c2 )TT c2 (T c1 )TT1 + (T c2 )TT2

]
=
[
1 0

]
.

Indeed, if v ∈ {0, 1}n then vT vc = 0 and vT v = vT (1 − vc) = vT1 − vT vc = vT1, therefore (T c1 )TT c1 + (T c2 )TT c2 =
(T c1 )T1 + (T c2 )T1 = α. Finally, [

D1 0
0 D2

]
T ′ =

[
D1 0
0 D2

] [
0
1

]
=
[
D10
D21

]
=
[
0
1

]
by stochasticity of D1 and D2. This shows the result.

(b6) Consider the automaton B below:

1B0

B1 B2

B3
0 3

1 2

It is sub-stochastic and can be made stochastic with a sink state. Clearly B(ε) = 0 and B(iw) = Bi(w) for all w ∈ Γ∗.
Furthermore, if w /∈ Γ∗ then B(iw) = 0 since there Bi only has letters labelled by Γ (ie the transition will lead to the
sink state). Finally, if the first letter is not in A, it will also lead to a sink state. The construction for C is exactly
the same.

(b7) For each i, 1 − E(w) corresponds to the complement and multiplying by i
3 can be done trivially by a convex

combination of 1− E(w) and the automaton that has constant probability 0 for all words. Hence Bi is immediately
seen to be a probabilistic automaton. Similarly, observe that Ci(w) = i

3 + (1 − i
3 )E(w) and hence is also a convex

combination of E and the automaton that has constant probability 1.

(b8) By the previous questions, for all i ∈ A and w ∈ Γ∗ we have (? denotes that the value is computed by stochasticity)

[
1− x x

]
M(iw) =

[
1− x x

] [1− B(iw) B(iw)
1− C(iw) C(iw)

]
=
[
1− x x

] [1− Bi(w) Bi(w)
1− Ci(w) Ci(w)

]
=
[
? (1− x)Bi(w) + Ci(w)

]
=
[
? Bi(x) + (Ci(w)−Bi(w))x

]
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=
[
? 1−E(w)

3 i+ E(w)x
]

=
[
? fi(E(w), x)

]
.

For any w′ /∈ AΓ∗, we have [
1− x x

]
M(w′) =

[
1− x x

] [1− B(w′) B(w′)
1− C(w′) C(w′)

]
=
[
1− x x

] [1 0
1 0

]
=
[
1 0

]
.

(b9) We show a slightly stronger result. Let X = {D(v) : v ∈ ](Σ∗])∗}, then 0 ∈ X since D(]) = 0 by the calculations of
question (b5). Furthermore, if x ∈ X then there exists v ∈ ](Σ∗])∗ such that S′µ′(v) =

[
1− x x

]
. But then, by

question (b5) and question (b8), for every i ∈ A,

D(viw]) = S′µ′(viw])T ′ =
[
1− x x

]
M(iw)

[
0
1

]
=
[
1− fi(E(w), x) fi(E(w), x)

] [0
1

]
= fi(E(w), x).

It follows that fi(E(w), x) ∈ X. But DE(w) is the smallest set that is stable under those operations, hence DE(w) ⊆ X.

(b10) Let X = {x : ∃(sn)n such that x = limn→∞ sn and sn ∈ Dun
for all n}. Clearly X ⊆ Y :=

⋃∞
n=0 Dun

. Therefore if
we show that Du∗ ⊆ X, we will have Du∗ ⊆ Y and hence Du∗ ⊆ Y = Y since Y is closed; which shows the result.
It remains to see that Du∗ ⊆ X: clearly 0 ∈ X since 0 ∈ Dun for all n. Let x ∈ X and write x = limn→∞ sn where
sn ∈ Du∗ . Then that for any i ∈ A,

fi(u∗, x) = fi(u∗, lim
n
sn) = lim

n
fi(u∗, sn)

by continuity of fi. Furthermore, by the uniform continuity of fi (continuity of the compact set [0, 1]2), there exists
α such that for any n, |fi(u∗, sn)− fi(un, sn)| 6 α|u∗ − un|. Hence we can write fi(u∗, sn) = fi(un, sn) + εn where
|εn| 6 α|u∗ − un| → 0 as n → ∞. Now let s′n = fi(un, sn), then s′n ∈ Dun since sn ∈ Dun and (s′n)n has a limit
since s′n = fi(u∗, sn)− εn → fi(u∗, s) as shown above. Therefore,

fi(u∗, x) = lim
n
fi(u∗, sn) = lim

n
s′n + εn = lim

s
s′n ∈ X.

This shows that X is stable under the application of the fi(u∗, ·), hence it contains Du∗ which is the smallest set to
satisfy this condition.

(b11) If 1
4 is not isolated then there exists a sequence (wn)n of words such that E(wn) → 1

4 . But then by the previous
questions, we have ⋃

n

DE(wn) ⊆ {D(v) : v ∈ Γ′∗}

and hence
D1/4 ⊆

⋃
n

DE(wn) ⊆ {D(v) : v ∈ Γ′∗}.

But D1/4 = [0, 1] by question (b1), hence {D(v) : v ∈ Γ′∗} = [0, 1] and therefore D cannot have an isolated cut-point.

(b12) The proof is essentially the same as in question (b2). Let ε = 1
4 − u > 0 and X = [0, 1

4 − ε] ∪ [ 1
4 , 1]. Observe that

for all u′ 6 u,
f0(u′, X) = u′X ⊆ [0, u′] ⊆ [0, u] ⊆ [0, 1

4 − ε] ⊆ X
and for i ∈ {1, 2, 3},

fi(u′, X) = 1−u′
3 i+ u′X ⊆ 1−u′

3 i+ [0, u′] ⊆ [ 1−u′
3 i, 1] ⊆ [ 1−u′

3 , 1] ⊆ [ 1
4 , 1]

since 1−u′
3 > 1

4 since ′ 6 u < 1
4 . It follows that 0 ∈ X and fi(X) ⊆ X, therefore D′u ⊆ X since D′u is the smallest

such set. Clearly X is not dense in [0, 1] so D′u is not either.

(b13) Let X = {D(w) : w ∈ Σ′∗}. By questions (b5) and (b8), we have that every x ∈ X is either 0 or of the form
fi(E(v), x′) for some v ∈ Γ∗ and x′ ∈ X. But E(v) 6 1

4 − ε, hence by letting u = 1
4 − ε <

1
4 , we get that X ⊆ X ′u. It

follows by question (b12) that X is not dense in [0, 1]. Consequently, there is an open interval I in [0, 1] that does
not intersect X and the center of this interval is an isolated cut-point of D.
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(b14) We show that the problem is undecidable by reducing from the problem of deciding whether 1
2 is an isolated cut-point

of a given automaton. The will show the result since the latter is an undecidable problem.

Let F be any automaton on alphabet Γ. We can build E such that E(w) = F(w) · (1 − F(w)) for all w ∈ Γ∗ by
the product construction. Then observe that E(w) 6 1

4 for all w. Furthermore, 1
4 is isolated for E if and only if 1

2
is isolated for F . We now build D as done in the questions above. By questions (b11) and (b13), we have that D
has an isolated cut-point if and only if 1

4 is isolated for E . Therefore we have reduced the problem of whether 1
2 is

isolated for F to the problem of deciding whether D has an isolated cut-point.
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