
Master Parisien de Recherche en Informatique
Course 2.16 – Finite automata based computation models

7 march 2022 — Exam — Probabilistic Automata

Books and computers forbidden — Lecture and personal notes allowed.
This part should be written on separate test papers.

Notations and terminology. For any set X of words, X∗ denotes the Kleene star of X. For any alphabet A and any
word w ∈ A∗, we denote by |w| the length of w, and |w|a the number of times the letter a ∈ A appears in w. For example,
if A = {a, b, c} and w = abbcab then |w| = 6, |w|a = 2, |w|b = 3 and |w|c = 1. We use the usual convention that x0 = 1
for all nonzero x ∈ R. Recall that for a probabilistic automaton A and an isolated cut-point λ, we say that the isolation
threshold of λ is the largest δ > 0 such that |A(w) − λ| ⩾ δ for all words w.

Deterministic versus probabilistic automata
Let m ⩾ 1 and A = {a1, . . . , am} be an alphabet of size m. We consider the language Lm over A that contains each letter
of the alphabet exactly m times:

Lm = {w ∈ A∗ : ∀a ∈ A, |w|a = m}.

(a1) By using Myhill-Nerode theorem, show that the smallest deterministic complete finite automaton recognizing Lm

has exactly (m + 1)m + 1 states.

Let Σ = {x} be a unary alphabet. For any n ∈ N, let Cn = {xn} be the language over Σ consisting of a single word xn.
We admit the following result, proven in the (exercise sheet of the) course.

Lemma 1. There exists δ > 0 such that for every n, there exists a probabilistic automaton An with O
(

ln2 n
ln ln n

)
states that

recognizes Cn with an isolated cut-point and isolation threshold at least δ.

(a2) Explain why we can assume that the cut-point Lemma 1 is 9/10, i.e. Cn = LAn
(9/10). You will need to justify that

this cut-point is still isolated with constant threshold δ′ independent of n.

Let p be a prime greater than αm for some α ∈ N to fix later. For any i ∈ {1, . . . , αm} and v ∈ N, consider the language

L′
i,v =

{
w ∈ A∗ :

m∑
t=1

(it−1 mod p)|w|at = v

}
.

(a3) By using Lemma 1, show that for any i and v, there exists a probabilistic automaton Bi,v with O
(

ln2 v
ln ln v

)
states

that recognizes L′
i,v with isolated cut-point 9/10 and isolation threshold at least δ. Hint: reading one letter in Bi,v

corresponds to reading several letters at once in Av.

(a4) Show that for every i ∈ {1, . . . , αm}, Lm ⊆ L′
m,i,vi

for a certain value vi ∈ {0, . . . , m2p} that you will identify.

We admit the following lemma, whose proof is deferred to question (a10)

Lemma 2. Let y1, . . . , ym ∈ {1, . . . , αm} be pairwise distinct, then the vectors z0, . . . , zm−1 defined by

zj = (yj
1 mod p, yj

2 mod p, . . . , yj
m mod p)

are linearly independent.
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(a5) Let S ⊆ {1, . . . , αm}. Show that if |S| ⩾ m then
⋂

i∈S L′
m,i,vi

⊆ Lm using Lemma 2.

We now consider the probabilistic automaton Cm = 1
αm

∑αm
i=1 Bi,vi

where vi is defined as in question (a4).

(a6) Show that if w ∈ Lm then C(w) ⩾ 9/10 + δ.

(a7) Show that if w /∈ Lm then C(w) ⩽ 9
10 − δ + 1/10+δ

α .

(a8) Show that there exists a choice of α, independent of m, such that Cm recognizes Lm with an isolated cut-point and
isolation threshold at least δ/2. Show that Cm has O

(
m ln2 n

ln ln n

)
states. Hint: you can use the fact that we can choose

p such that p = αn + o(αn).

(a9) Show that there exists δ > 0 such that for infinitely many n, there exists a regular language recognized by a
probabilistic automaton with n states and an isolated cut-point with isolation threshold at least δ, such that the
smallest deterministic finite automaton recognizing it has Ω(2 n ln ln n

ln n ) states. Compare with the result in the course
about isolated cut-points.

(a10) Let y1, . . . , ym be as in Lemma 2 and assume that z1, . . . , zm are linearly dependent. Show that there exists
c0, . . . , cm−1 not all zero such that c0 + c1x + · · · + cm−1xm−1 = 0 mod p for all x ∈ {y1, . . . , ym}. Prove Lemma 2.
Hint: you can use the fact that a degree d polynomial with integer coefficients has at most d distinct roots modulo
any prime number p > d.
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Solutions to exercises
(a1) Intuitively, the automaton needs to count each of the m letters up to m, and as soon as one goes above m, we can

reject. Hence we need (m + 1)m states to count {0, . . . , m}m, and one extra state to reject.
Let ≡Lm denote the Myhill-Nerode equivalence relation for Lm. For any k1, . . . , km ∈ N, define w(k1, . . . , km) =
ak1

1 · · · akm
m . Let (k1, . . . , km) ̸= (k′

1, . . . , k′
m) ∈ {0, . . . , m}m, then w(k1, . . . , km) ̸≡Lm w(k′

1, . . . , k′
m). Indeed, on the

one hand we have w(k1, . . . , km)w(m − k1, . . . , m − km) ∈ Lm since each letter ai appears ki + m − ki = m times
(note that we used that ki ⩽ m for m − ki to be nonnegative). On the other hand, there is i such that ki ̸= k′

i

and therefore the word w(k′
1, . . . , k′

m)w(m − k1, . . . , m − km) /∈ Lm because it contains k′
i + m − ki ̸= m times the

letter ai. Furthermore, for any (k1, . . . , km) ∈ {0, . . . , m}m, w(k1, . . . , km) ̸≡Lm am+1
1 . Indeed, we have seen that

w(k1, . . . , km)w(m − k1, . . . , m − km) ∈ Lm but am+1
1 w(m − k1, . . . , m − km) /∈ Lm because the letter a1 appears at

least m + 1 + m − k1 > m times (since k1 ⩽ m).
We have therefore shown that ≡Lm

has at least (m + 1)m + 1 equivalences classes ((m + 1)m is the cardinal of
{0, . . . , m}m and the +1 is for the word am+1

1 ). By the Myhill-Nerode theorem, any DFA that recognizes Lm has
at least that many states On the other hand, it is trivial to build a DFA with (m + 1)m + 1 states that recognizes
Lm by counting the number of each letters up to m and adding one extra state to reject as soon as a letter appears
> m times.

(a2) Let An be the automaton of the lemma, then Cn = LAn
(λn) for some λn. Clearly λn ̸= 0, 1 because Cn is not the

empty language, nor the universal one. There are two cases:

• If λn ⩾ 9/10 then we can let A′
n = 9

10λn
An by multiplying the probability of the intial states of An by

9
10λn

∈ [0, 1]. We immediately have that LA′
n
(9/10) = LAn

(λn) = Cn. Furthermore, for all w ∈ A∗,

|A′
n(w) − 9

10 | = | 9
10λn

An(w) − 9
10 | = 9

10λn
|An(w) − λn| ⩾ 9δ

10λn
⩾ 9

10 δ

since λn ⩽ 1, and is therefore independent of n.
• If λn < 9/10 then we can let A′

n = αAn + (1 − α), where α = 1−9/10
1−λn

= 1
10(1−λn) , by doing a convex

combination with the automata that accepts all words. Note there that α ∈ [0, 1] because 0 < λn < 9/10. A
small computation shows that LA′

n
(9/10) = LAn

(λn) = Cn. Furthermore, for all w ∈ A∗,

|A′
n(w) − 9

10 | = |αAn(w) + (1 − α) − 9
10 | = α|An(w) − λn| ⩾ αδ ⩾ δ

10

since λn ⩾ 0, and is therefore independent of n.

In summary, we have shown that the isolation threshold is always at least δ
10 which is independent of n.

(a3) We consider the automaton Bi,v that has the same states as Av (including the same initial and final states). We
modify the transitions so that for any pair of states q, q′ and letter at ∈ A,

PBi,v

(
q

at−→ q′
)

= PAv

(
q

xℓat−−−→ q′
)

where ℓat
= it−1 mod p.

Technically, this can be done by defining the transition matrix of at in Bi,v to be equal to µℓat where µ is the
transition matrix of Av. In other words, reading at in Bi,v is like reading xℓat in Av. Note that ℓat

only depends on
t (and i is fixed) and is positive (since p ∤ it−1 by primality of p and the fact that i ⩽ αm < p) so this is well-defined.
Now given a word w ∈ A∗, it follows that the probability of acceptance of w is Bi,v(w) = Av(xM ) where

M =
|w|∑
k=1

ℓwk
=

m∑
t=1

ℓat
|w|at

=
m∑

t=1
(it−1 mod p)|w|at

.

Again, technically, this can be shown by using the matrix definition above (call S and T the initial and final vectors
of both Av and Bi,v):

Bi,v(w) = Sµℓw1 · · · µ
ℓw|w| T = Sµ

∑|w|
i=1

ℓwi T = Av(xM ).

Finally, we conclude by the fact that Av only recognizes those words xM such that M = v. Note that this construction
has the same cut-point and isolation threshold as Av. By question (a2), we can assume that the Av have cut-point
9/10.
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(a4) If w ∈ Lm then |w|at
= m for all t. Therefore, for all i,

m∑
t=1

(it−1 mod p)|w|at = m

m∑
t=1

(it−1 mod p).

Hence if we let vi be the right-hand side, we indeed have that w ∈ L′
i,vi

. We finally check that

vi = m

m∑
t=1

(it−1 mod p) ⩽ m2p.

(a5) We will show the result for |S| = m. This will imply the result for all |S| ⩾ m since having more elements only
makes the intersection smaller. Denote the elements of S by y1, . . . , ym. If w ∈

⋂
i∈S L′

m,i,vi
then, by definition,∑m

t=1(it−1 mod p)|w|at = vi = m
∑m

t=1(it−1 mod p) for all i ∈ S. Therefore

m∑
t=1

(|w|at
− m)(it−1 mod p) = 0

for all i ∈ S. Using the notation of Lemma 2, this can be written as
∑m

t=1(|w|at
− m)(zt)j = 0 for all j ∈ {1, . . . , m}

since S = {y1, . . . , ym}. Therefore
∑m

t=1(|w|at
− m)zt = 0. But the yi are pairwise distinct by definition, so by

Lemma 2, z0, . . . , zm−1 are linearly independent, hence |w|at
− m = 0 for all t. This shows that w ∈ Lm.

(a6) If w ∈ Lm then w ∈ L′
i,vi

for all i = 1, . . . , αm, by question (a4). By question (a3), Bi,vi
recognizes L′

i,vi
so

Bi,vi
(w) ⩾ 9/10 + δ since the cut-point has isolation threshold δ. By construction of Cm, it immediately follows that

Cm(w) ⩾ 9/10 + δ.

(a7) Let w /∈ Lm and let S = {i : w ∈ L′
i,vi

} ⊆ {1, . . . , αm}. By question (a5), |S| < m for otherwise we would
have w ∈ Lm. For i ∈ S, we have Bi,vi

⩽ 1 since it is a probability. But since Bi,vi
has isolation threshold δ by

question (a3), if i /∈ S, then Bi,vi
⩽ 9/10 − δ. Therefore,

C(w) = 1
αm

αm∑
i=1

Bi,vi
(w)

= 1
αm

(∑
i∈S

Bi,vi
(w) +

∑
i/∈S

Bi,vi
(w)
)

⩽
1

αm

(
|S| + |{1, . . . , αm} \ S|( 9

10 − δ)
)

⩽
1

αm

(
m + (α − 1)m( 9

10 − δ)
)

= 9
10 − δ + 1/10 + δ

α
.

(a8) It suffices to choose α such that −δ + 1/10+δ
α ⩽ 0 which is always possible because 1/10+δ

α → 0 as α → ∞. Note
that this choice does not depend on m. The number of states of C is the sum of the number of states of the Bi,vi

for i = 1, . . . , αm. Automaton Bi,vi
has as many states as Avi

which is O
(

ln2 vi

ln ln vi

)
. On the other hand, vi ⩽ m2p

by question (a4). By the distribution of primes, we can always choose p = αm + o(αm) and α was chosen to be a
constant that only depends on δ and is independent of m. Therefore vi = O(m3) and C has

αm · O

(
ln2 O(m3)
ln ln O(m3)

)
= O

(
m

ln2 m

ln ln m

)
states.

(a9) Putting questions (a1) and (a8) together, for every m, we have found a language Lm recognized by a probabilistic
automaton with n = O

(
m ln2 m

ln ln m

)
states, but whose smallest DFA that recognizes it has N = (m + 1)m states. First

observe that N = (m + 1)m = 2O(m ln m) and that n ln ln m
ln m = O(m ln m). Furthermore, observe that

n = O

(
m

ln2 m

ln ln m

)
⇒ n = Ω(m) and n = O(m2) ⇒ ln n = Θ(ln m) ⇒ ln ln n = Θ(ln ln m).
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It follows that
N = 2O(n ln ln m

ln m ) = 2O(n ln ln n
ln n ).

By comparison, the result from the lecture says that for a cut-point language with isolation threshold δ, the number
of states for DFA is bounded by (1 + r

δ )n−1 where r is the number of accepting states. Clearly r is smaller than the
number of states which is O(m2), and recall that δ is constant, therefore the upper bound of the theorem is

2(n−1) ln(1+ r
δ ) = 2O(n ln m) = 2O(n ln n).

Therefore there is a still a gap between this upper bound and what we obtain but the two bounds are quite close.

(a10) If there are linearly dependent, there exists c0, . . . , cm−1 such that c0z0 + · · · + cm−1zm−1 = 0. Therefore, for all t,

0 = (c0z0 + · · · + cm−1zm−1)t = c0y0
t + c1y1

t · · · + cm−1ym−1
t mod p.

Since y1, . . . , ym ∈ {1, . . . , αm} then in particular yi < p so the yi are pairwise distinct modulo p. Therefore the
polynomial P (x) = c0 + c1x + · · · + cm−1xm−1, which has degree at most m − 1, has at least m distinct roots modulo
p. This is a contradiction with the hint since p > m.
Note: the hint can be proven by induction on the degree of P . If P has degree 1 then P (x) = a + bx for some a
and b ̸= 0 mod p (otherwise this is trivial). If x, y are such that P (x) = P (y) = 0 mod p then a + bx = a + by mod p
so x = y mod p (b is invertible modulo p, by primality of p) so P has only one root modulo p. Now if P has degree
d > 1, assume that P has at least one root modulo p (otherwise the result is proved already): P (x0) = 0 mod p for
some x0. Then we can write P (x) = (x − x0)Q(x) mod p for some polynomial Q of degree d − 1 (simply consider the
expansion of P (x0 + x) mod p to find Q). But now, if y is such that y ̸= x0 mod p and P (y) = 0 mod p then it must
be the case that Q(y) = 0 mod p (again by primality of p). By induction, Q has at most d − 1 solutions modulo p,
therefore there can only be d roots of P modulo p.
This can also be shown more abstractly: any nonzero polynomial P ∈ R[x] of degree d, where R is an (integral)
domain, has at most d roots in R. In fact this is a characterization of integral domains.
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