Master Parisien de Recherche en Informatique
Course 2.16 — Finite automata based computation models

7 march 2022 — Exam — Probabilistic Automata

Books and computers forbidden — Lecture and personal notes allowed.
This part should be written on separate test papers.

Notations and terminology. For any set X of words, X* denotes the Kleene star of X. For any alphabet A and any
word w € A*, we denote by |w| the length of w, and |w|, the number of times the letter a € A appears in w. For example,
if A= {a,b,c} and w = abbcab then |w| = 6, |w|, = 2, |w|, = 3 and |w|. = 1. We use the usual convention that z° = 1
for all nonzero x € R. Recall that for a probabilistic automaton A and an isolated cut-point A\, we say that the isolation
threshold of X is the largest § > 0 such that |A(w) — A| > ¢ for all words w.

Deterministic versus probabilistic automata

Let m > 1 and A = {a4,...,a,} be an alphabet of size m. We consider the language L,, over A that contains each letter
of the alphabet exactly m times:
L, ={we A" :Va € A, |w|, =m}.

(al) By using Myhill-Nerode theorem, show that the smallest deterministic complete finite automaton recognizing L.,
has exactly (m + 1)™ + 1 states.

Let ¥ = {z} be a unary alphabet. For any n € N, let C,, = {z™} be the language over X consisting of a single word z".
We admit the following result, proven in the (exercise sheet of the) course.

Lemma 1. There exists § > 0 such that for every n, there exists a probabilistic automaton A,, with O (ﬁ:‘fn’;) states that

recognizes Cy, with an isolated cut-point and isolation threshold at least d.

(a2) Explain why we can assume that the cut-point Lemma 1 is 9/10, i.e. C,, = L4, (9/10). You will need to justify that
this cut-point is still isolated with constant threshold ¢’ independent of n.

Let p be a prime greater than am for some « € N to fix later. For any i € {1,...,am} and v € N, consider the language

L, = {w €A™ Y (i mod p)lul,, = }

t=1

(a3) By using Lemma 1, show that for any ¢ and v, there exists a probabilistic automaton B, , with O (1]nn121 lvv) states

that recognizes L , with isolated cut-point 9/10 and isolation threshold at least 6. Hint: reading one letter in B; ,
corresponds to reading several letters at once in A,.
(a4) Show that for every i € {1,...,am}, L,, C Ly, ;. for a certain value v; € {0,... ,m?p} that you will identify.

We admit the following lemma, whose proof is deferred to question (al0)

Lemma 2. Let yi,...,ym € {1,...,am} be pairwise distinct, then the vectors zg, ..., zm—1 defined by
zj = (y{ mod p, y% mod p, ...,y mod p)

are linearly independent.



(a5)

Let S C {1,...,am}. Show that if [S| > m then ;.4 L}, ;.. € Lm using Lemma 2.

i€S

1

We now consider the probabilistic automaton C,,, = = Zfﬂ B; v, where v; is defined as in question (a4).

(a6)
(a7)
(a8)

(a9)

am

Show that if w € L,, then C(w) > 9/10 + 6.

Show that if w ¢ L, then C(w) < % — 6 + w.

Show that there exists a choice of «, independent of m, such that C,, recognizes L., with an isolated cut-point and
isolation threshold at least §/2. Show that C,, has O (m lglf;;) states. Hint: you can use the fact that we can choose
p such that p = an + o(an).

Show that there exists § > 0 such that for infinitely many n, there exists a regular language recognized by a
probabilistic automaton with n states and an isolated cut-point with isolation threshold at least &, such that the
nlnlnn

smallest deterministic finite automaton recognizing it has Q(2 1= ) states. Compare with the result in the course
about isolated cut-points.

(al0) Let y1,...,Ym be as in Lemma 2 and assume that zi,...,2,, are linearly dependent. Show that there exists
o, - .., Cm—1 not all zero such that cg +c1z + -+ + cm_12™ L = 0mod p for all = € {y1,-.-,Ym}. Prove Lemma 2.
Hint: you can use the fact that a degree d polynomial with integer coefficients has at most d distinct roots modulo
any prime number p > d.
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Solutions to exercises

(al)

(a2)

(a3)

Intuitively, the automaton needs to count each of the m letters up to m, and as soon as one goes above m, we can
reject. Hence we need (m + 1)™ states to count {0,...,m}™, and one extra state to reject.

Let =1, denote the Myhill-Nerode equivalence relation for L,,. For any ki,...,k, € N, define w(ky,..., k) =
afoakm et (ki .. k) # (K KLD) € {0, m}™, then w(ky, ..., km) #Z1,, w(k,, ... k). Indeed, on the
one hand we have w(ky,..., kyn)w(m —k1,...,m — ky,) € L, since each letter a; appears k; + m — k; = m times
(note that we used that k; < m for m — k; to be nonnegative). On the other hand, there is ¢ such that k; # k!
and therefore the word w(ki,..., k. )w(m — ki,...,m — k,,,) ¢ L,, because it contains k; + m — k; # m times the
letter a;. Furthermore, for any (ki,...,kn) € {0,...,m}™, w(ky,... , kn) #Zr,, af"™'. Indeed, we have seen that
w(ky, ... km)w(m —ki,...,m—ky) € L,, but a’lnﬂw(m —ky,...,m—ky) & L,, because the letter a; appears at
least m + 1+ m — k1 > m times (since k1 < m).

We have therefore shown that =y, has at least (m + 1)™ + 1 equivalences classes ((m + 1)™ is the cardinal of
{0,...,m}™ and the +1 is for the word a]**'). By the Myhill-Nerode theorem, any DFA that recognizes L., has
at least that many states On the other hand, it is trivial to build a DFA with (m + 1)™ + 1 states that recognizes
L, by counting the number of each letters up to m and adding one extra state to reject as soon as a letter appears
> m times.

Let A,, be the automaton of the lemma, then C,, = L4, (A,) for some A,. Clearly A, # 0,1 because C,, is not the
empty language, nor the universal one. There are two cases:

o If A, > 9/10 then we can let A, = ﬁfln by multiplying the probability of the intial states of A, by

%)\n € [0,1]. We immediately have that £4/ (9/10) = L4, (An) = Cy. Furthermore, for all w € A%,

AL (w) — 5| = |5 An(w) — 151 = o3 Mn(w) = Al = 150 > 56

since A, < 1, and is therefore independent of n.
o If X\, < 9/10 then we can let A, = aA, + (1 — @), where @ = 11:9(7110 = 10(114\”)’ by doing a convex
combination with the automata that accepts all words. Note there that o € [0,1] because 0 < A, < 9/10. A

small computation shows that L4, (9/10) = L4, (An) = Cp. Furthermore, for all w € A*,

s
AL (1) = 31 = ladn(w) + (1 - a) = 5] = alAu(w) = Au| > a6 > &
since \,, > 0, and is therefore independent of n.
In summary, we have shown that the isolation threshold is always at least 1% which is independent of n.

We consider the automaton B;, that has the same states as A, (including the same initial and final states). We
modify the transitions so that for any pair of states q,¢ and letter a; € A,

La
Ps; , (q 2t q’) =Py, (q EAN q’) where £¢,, = i1 mod p.

Technically, this can be done by defining the transition matrix of a; in B;, to be equal to ust where yu is the
transition matrix of A,. In other words, reading a; in B; , is like reading xte in A,. Note that £,, only depends on
t (and i is fixed) and is positive (since p 1 i*~! by primality of p and the fact that i < am < p) so this is well-defined.
Now given a word w € A*, it follows that the probability of acceptance of w is B; ,(w) = A, (z) where

|w) m

M = Zewk = Em:gathﬂ‘at = Z(it_l mod p)|w|q, -
k=1 t=1

t=1

Again, technically, this can be shown by using the matrix definition above (call S and T the initial and final vectors
of both A, and B, ,):
¢ £, lwl M
Biy(w) = Sp'er 1wl T = Splaim ™ T = Ay (x7).
Finally, we conclude by the fact that A, only recognizes those words £ such that M = v. Note that this construction
has the same cut-point and isolation threshold as A,. By question (a2), we can assume that the A, have cut-point
9/10.



(ad)

(a5)

(a6)

(a7)

(a8)

(a9)

If w € Ly, then |w|,, = m for all t. Therefore, for all i,

m

(" mod p)[w|a, =m»_(i""! mod p).
1 t=1

[Vjs

t

Hence if we let v; be the right-hand side, we indeed have that w € L] , . We finally check that

m

v; = mZ(itfl mod p) < m?p.

t=1

We will show the result for |S| = m. This will imply the result for all |[S| > m since having more elements only
makes the intersection smaller. Denote the elements of S by y1,...,ym. If w € ;g Ly, ,, then, by definition,

St (7 mod p)|wle, =v; =m Y ;- (i""! mod p) for all i € S. Therefore

3 (fwla, —m) (i mod p) =0

t=1

for all i € S. Using the notation of Lemma 2, this can be written as Y ;" | (|w|s, —m)(z¢); =0 for all j € {1,...,m}
since S = {y1,...,ym}. Therefore Y ;" (Jw|s, — m)z; = 0. But the y,; are pairwise distinct by definition, so by
Lemma 2, zg,. .., 2m—1 are linearly independent, hence |w|,, —m = 0 for all ¢. This shows that w € L,,

If w e Ly then w € Lj, foralli =1,...,am, by question (a4). By question (a3), B;,, recognizes L;, so
Bi v; (w) = 9/10 + ¢ since the cut-point has isolation threshold 6. By construction of C,,, it immediately follows that
Crn(w) > 9/10 + 0.

Let w ¢ Ly, and let S = {i : w € L}, } € {1,...,am}. By question (a5), [S| < m for otherwise we would
have w € L,,. For i € S, we have B;,, < 1 since it is a probability. But since B, ,, has isolation threshold § by
question (a3), if i ¢ S, then B;,, < 9/10 — §. Therefore,

1 am
C(w) = am Z Biv, (w)
i=1

1

= (Z Bz vl + Z Bi,vi (w)>
am i€S ¢S
1

<‘7ﬁ(5W+H1 -,am}\ S|(55 — 9))
1

< — ( (a—1) (1% — 5))

B 9 11045

- R e

1/10+6

It suffices to choose a such that —§ + < 0 which is always possible because — 0 as a — oco0. Note
that this choice does not depend on m. The number of states of C is the sum of the number of states of the B; .,

1/1046
(03

for i =1,...,am. Automaton B;,, has as many states as .A,, which is O (11?11%-)' On the other hand, v; < m?p

by question (a4). By the distribution of primes, we can always choose p = am + o(am) and « was chosen to be a
constant that only depends on § and is independent of m. Therefore v; = O(m?) and C has

In? O(m?) In?m
am - O <lnln0(m3)> =0 <mlnlnm)

Putting questions (al) and (a8) together, for every m, we have found a language L,, recognized by a probabilistic

states.

m

llrfllznm> states, but whose smallest DFA that recognizes it has N = (m+ 1)™ states. First

observe that N = (m 4 1)™ = 20(mn™) and that ni™ — O(mInm). Furthermore, observe that

automaton with n = O (m

In2
n=0 <mlnnlnn:n> = n=0Q(m)and n=0(m?) = Inn=06(nm) = Inlnn = O(Inlnm).



(al0)

It follows that

By comparison, the result from the lecture says that for a cut-point language with isolation threshold §, the number
of states for DFA is bounded by (1+ %)™~ ! where r is the number of accepting states. Clearly r is smaller than the
number of states which is O(m?), and recall that § is constant, therefore the upper bound of the theorem is

2(n71)1n(1+%) — 2O(n1n’rn) _ 2O(nln n).

Therefore there is a still a gap between this upper bound and what we obtain but the two bounds are quite close.

If there are linearly dependent, there exists cq, ..., ¢n_1 such that cozg + -+ + ¢m_12m—_1 = 0. Therefore, for all ¢,
0= (cozo+ -+ Cm-12m—1)t = Coy,? + C1yt1 et Cm—1y§n_1 mod p.

Since y1,...,ym € {1,...,am} then in particular y; < p so the y; are pairwise distinct modulo p. Therefore the
polynomial P(x) = co+c12+ -+ ¢p_12™ 7L, which has degree at most m — 1, has at least m distinct roots modulo
p. This is a contradiction with the hint since p > m.

Note: the hint can be proven by induction on the degree of P. If P has degree 1 then P(z) = a + bz for some a
and b # 0 mod p (otherwise this is trivial). If z,y are such that P(x) = P(y) = 0 mod p then a + bz = a+ by mod p
so x =y mod p (b is invertible modulo p, by primality of p) so P has only one root modulo p. Now if P has degree
d > 1, assume that P has at least one root modulo p (otherwise the result is proved already): P(xz) = 0 mod p for
some xg. Then we can write P(z) = (z — 29)Q(z) mod p for some polynomial @ of degree d — 1 (simply consider the
expansion of P(zg+ x) mod p to find Q). But now, if y is such that y # z¢ mod p and P(y) = 0 mod p then it must
be the case that Q(y) = 0 mod p (again by primality of p). By induction, @ has at most d — 1 solutions modulo p,
therefore there can only be d roots of P modulo p.

This can also be shown more abstractly: any nonzero polynomial P € R[x] of degree d, where R is an (integral)
domain, has at most d roots in R. In fact this is a characterization of integral domains.



