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Polynomial Differential Equations

General Purpose

Analog Computer Differential Analyzer

Newton mechanics polynomial differential
equations :
{y(O)z Yo
Reaction networks : "W (= py(t)
@ chemical
. @ Rich class
@ enzymatic

e Stable (+,x,0,/,ED)

@ No closed-form solution .



Example of differential equation

Y2

)4

=]

General Purpose Analog Computer (GPAC)
Shannon’s model of the Differential Analyser

yi=>ye yi=190
Vo=—s _ )ya=10

/ .
Y3 = YoYa Y3 = sin(0)

Ya =)oy Ya = cos()
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Some motivation

Polynomial ODEs correspond to analog computers :

Differential Analyser British Navy mecanical computer

4/22



Some motivation

Polynomial ODEs correspond to analog computers :

Differential Analyser British Navy mecanical computer

@ They are equivalent to Turing machines!
@ One can characterize P with pODEs
@ There exists a universal pODE for continuous functions

Take away : polynomial ODEs are a natural programming language.



@ The theory of generable functions
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Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>RY

y(0)=yo,  y'(x)=py(Xx))

Note : existence and unicity of y by Cauchy-Lipschitz theorem.



Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>RY

f(x)=x

y(0)=yo,  y'(x)=py(Xx))

y(0)=0, y'=1 ~ yx)=x



Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial

y(0) =, v () = py()) vector (coef. in K)

satisfies f(x) = y;(x) for all x € R. @ oK y:R—>RY
f(x) = x?
y1(0)=0, yi=2y ~ yi(x)=x?
y2(00=0,  yo=1 ~ p(x)=x



Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>RY

f(x) =x"

y(0)=yo,  y'(x)=py(Xx))

y1(0)=0,  yj=nye ~  yi(x)=x"
¥2(0)=0,  yp=(n—1)yz ~ yo(x)=x""

yn(0)=0, Yn=1 ~  Yn(X)=x



Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>RY

y(0)=yo,  y'(x)=py(Xx))

f(x) = exp(x)

y(0)=1, y'=y ~ y(x)=exp(x)



Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>RY

y(0)=yo,  y'(x)=py(Xx))

f(x) = sin(x) or f(x) = cos(x)

y1(0)=0, yi=y2 ~ yi(x)=sin(x)
2(0)=1,  yo=—y1 ~ yo(X)= cos(x)



Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>RY

f(x) = tanh(x)

y(0)=yo,  y'(x)=py(Xx))

tanh(x)




Generable functions (total, univariate)

Definition Types
f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field
dimni - i
0) = yo, 5] — o @ p € K9R"] : polynomial
y(0) =¥ y (%) =ply() vector (coef. in K)
satisfies f(x) = (x) for all x € R. @ oK y:R—>RY
f(X) 1+X2

f'(x) = ﬁ = —2xf(x)?

10)=1,  yi=-2py2 ~ y(0)= %
¥2(0)=0,  y,=1 ~  Ya(X)= X



Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial

y(0) = ¥, v () = py()) vector (coef. in K)

satisfies f(x) = y;(x) for all x € R. @ oK y:R—>RY
f=g+h
(fxg)=f+d
z(0)= 2z, Z=p(2) ~ =g
w(0)= wp, w'= q(w) ~ wy=h

yO)=2z01+wo1, Y=pi(2)Eqw) ~ y=z1+w



Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial

y(0) = ¥, v () = py()) vector (coef. in K)

satisfies f(x) = y;(x) for all x € R. @ oK y:R—>RY
f=gh
(gh) =g'h+ gl
z(0)= 2, Z'=p(z) ~ Z1=g
w(0)= wo, w'=q(w) ~ wi=h

y(O)=z01wo1,  Y'=pi1(2)w +z1g1(W) ~  y=zZw



Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>RY

1
f=3

y(0)=yo,  y'(x)=py(Xx))



Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>RY

f=Jg

y(0)=yo,  y'(x)=py(Xx))



Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>RY

f=¢g

y(0)=yo,  y'(x)=py(Xx))



Generable functions (total, univariate)

Definition Types
f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field

dimni - ;
0) = yo, '(x) — X @ p € K9R"] : polynomial
y0)=x y () =plyx) vector (coef. in K)
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>RY
f=goh

(zoh) = (Z o h) = p(zo h)H



Generable functions (total, univariate)

Definition Types
f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field

dimni - ;
0) = yo, '(x) — X @ p € K9R"] : polynomial
y0)=x y () =plyx) vector (coef. in K)
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>RY
f=goh

(zoh) = (Z o h) = p(zo h)H

z(0)= 2o, Z’=p(z) ~ z1=9
w(0)= wp, w=q(w) ~ w=h

y(0)=z(wp), y'=p¥)zy ~ y=2zoh
Is this coefficient in K ?



Generable functions (total, univariate)

Definition Types
f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field

dimni - ;
0) = yo, '(x) — X @ p € K9R"] : polynomial
y0)=x y () =plyx) vector (coef. in K)
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>RY
f=goh

(zoh) = (Z o h) = p(zo h)H

z(0)= zo, Z’=p(2) ~  Z1=g
w(0)= wo, w'=q(w) ~ wy=h
y(0)=z(wo),  y'=p(y)z1 ~ y=2zoh

Is this coefficient in K ? Fields with this property are called generable.
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Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>RY

f' = tanh of

y(0)=yo,  y'(x)=py(Xx))

f"" = (tanh’ of)f' = (1 — (tanh of)?)f’

y1(0)= £(0), Yi=Ye ~  yi1(x)= f(x)
¥2(0)=tanh(f(0)),  yh=(1—y5)y2 ~ yo(x)= tanh(f(x))



Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>RY

f(0)=fy,f = gof

y(0)=yo,  y'(x)=py(Xx))

/

f'=g"=(p1(2)) =Vpi(2) -z



Generable functions : a first summary

Nice theory for the class of total and univariate generable functions :
@ analytic
@ contains polynomials, sin, cos, tanh, exp
@ stable under +, x, /, o and Initial Value Problems (IVP)
@ technicality on the field K of coefficients for stability under o
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Generable functions : a first summary

Nice theory for the class of total and univariate generable functions :
@ analytic
@ contains polynomials, sin, cos, tanh, exp
@ stable under +, x, /, o and Initial Value Problems (IVP)
@ technicality on the field K of coefficients for stability under o

Limitations :
@ total functions
@ univariate



Generable functions (generalization)

Definition Types

f: X CR" — Ris generable if X isopen @ n e N :input dimension

connected and Eld, P, Xo, Y0,Y such that @ d € N : dimension
dxdRd] -
) = Vo, Jo(x) = X @ p € KI*RY] :
yo0) = Yo, (x)=ply(x) P Synomial matix
and f(x) = yq(x) for all x € X. ® xp € K”
Jy(x) = Jacobian matrix of y at x ® oK% y: X >R

Notes :
@ Partial differential equation !
@ Unicity of solution y...
@ ... but not existence (ie you have to show it exists)



Generable functions (generalization)

Definition Types

f: X CR" — Ris generable if X isopen @ n e N :input dimension

connected and Eld, P, Xo, Y0,Y such that @ d € N : dimension
dxdRd] -
y(0) =30, K0 =py(x) P Synomial matix
and f(x) = yq(x) for all x € X. ® xp € K”
Jy(x) = Jacobian matrix of y at x ® oK% y: X >R

f(x1,%) =x1x2 (n=2,d=23)

0 ¥2 3yoys X1 X2
y(©0,0)=10|, Jy=11 0 ~ yx)=1 x
0 0 1 Xo



Generable functions (generalization)

Definition Types

f: X CR" — Ris generable if X is open
connected and 3d, p, xo, o, y such that

¥(Xo0) = Yo,

and f(x)

Jy(x) = Jacobian matrix of y at x

f(x1,X2) = X1 X4

= yi(x) forall x € X.

(070) ax1}/1:}’§7 8X2y1:
(0, 0) (9)(1 y2: 1 5 8)(2}/2: 0
(07 O) 8X1 V3= 07 6X2y3: 1

This is tedious!

3yays ~  yi(X) = x1X5

@ n € N :input dimension

@ d € N : dimension

@ p € KIXIRY] :
polynomial matrix

@ xg € K"

@ oKy y: X >R

2

~  Ya(x) =X
~ y3(X) = X2



Generable functions (generalization)

Definition Types

f: X CR" — Ris generable if X isopen @ n e N :input dimension

connected and Eld, P, Xo, Y0,Y such that @ d € N : dimension
dxdRd] -
) = Vo, Jo(x) = X @ p € KI*RY] :
yo0) = Yo, (x)=ply(x) P Synomial matix
and f(x) = yq(x) for all x € X. ® xp € K”
Jy(x) = Jacobian matrix of y at x ® oK% y: X >R

f(x) = 1 for x € (0,0)

X

y(M=1, dy=-y> ~ y(x)=1



Generable functions : summary

Nice theory for the class of multivariate generable functions (over
connected domains) :

@ analytic

@ contains polynomials, sin, cos, tanh, exp

@ stable under £, x, /, o and Initial Value Problems (IVP)

@ technicality on the field K of coefficients for stability under o



Generable functions : summary

Nice theory for the class of multivariate generable functions (over
connected domains) :

@ analytic

@ contains polynomials, sin, cos, tanh, exp

@ stable under £, x, /, o and Initial Value Problems (IVP)

@ technicality on the field K of coefficients for stability under o

Natural questions :
@ analytic — isn’t that very limited ?
@ can we generable all analytic functions ?



Generable functions : summary

Nice theory for the class of multivariate generable functions (over
connected domains) :

@ analytic

@ contains polynomials, sin, cos, tanh, exp

@ stable under £, x, /, o and Initial Value Problems (IVP)

@ technicality on the field K of coefficients for stability under o

Natural questions :

@ analytic — isn’t that very limited ?

@ can we generable all analytic functions ? No
Riemann I and ¢ are not generable.



Computing with generable functions

Generable functions

yO) =y ¥y =npy)
f(x)=y(x) xeR

¥1(x)
\ i
"\

sin, cos, exp, log, ... € Analytic
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Computing with generable functions

Generable functions Analog computable function
y0) =y ¥y =py) y(0)=(x,0,...,0)  y'=p(y)
fx)=x»1(x) xeR f(x) = () <27
v o TR W
\ / iR
\J x
t

sin, cos, exp, log, ... € Analytic

10/22



Computing with generable functions

Generable functions Analog computable function
y0) =y ¥y =py) y(0) = (x,0,...,0)  y' =p(y)
fx)=x»1(x) xeR f(x) = () <27

a1, | Il Lo
\ / TR
\J x
t
sin, cos, exp, log, ... € Analytic Turing powerful

Theorem (Bournez et al., 2007)
f:[a, b] — R is computable 2 iff f is analog computable.

a. In the sense of Computable Analysis.
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Computing with generable functions

Generable functions Analog computable function
y0) =y ¥y =py) y(0) = (x,0,...,0)  y' =p(y)
fx)=x»1(x) xeR f(x) = () <27
a1, | Il Lo
\ / TR
\J x
t

sin, cos, exp, log, ... € Analytic Turing powerful

Question : reformulate analog computability with generable functions ?
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Computing with generable functions

Generable functions Analog computable function
y0) =y ¥y =py) y(0) = (x,0,...,0)  y' =p(y)
fx)=x»1(x) xeR f(x) = () <27

a1, | Il Lo
\ / TR
\J x
t
sin, cos, exp, log, ... € Analytic Turing powerful

Theorem
f:[a, b] — R is computable 2 iff 3 a generable function g such that

If(x) —g(x,t)| <27!  forall x € [a,b] and t > 0.

a. In the sense of Computable Analysis.
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It is all about the coefficients

f:[a, b] — R is computable iff 3 a generable function g such that

1f(x) — g(x,t)| <2='  forall x € [a,b] and > 0.

Which coefficients are used ?

11/22



It is all about the coefficients

f:[a, b] — R is computable iff 3 a generable function g such that

[f(x) — g(x,1)] < 2t forall x € [a,b] and t > 0.
Which coefficients are used ? We need to talk about K...
@ original proof : unclear, something like Q(7, e,others?)
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It is all about the coefficients

f:[a, b] — R is computable iff 3 a generable function g such that

If(x) —g(x, ) <27 forall x € [a,b] and t > 0.
Which coefficients are used ? We need to talk about K...
@ original proof : unclear, something like Q(7, e,others?)
@ more recent proof : Rg = smallest generable field
Theorem
Q € Rg € Rp = polytime reals.
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It is all about the coefficients

f:[a, b] — R is computable iff 3 a generable function g such that

If(x) —g(x, ) <27 forall x € [a,b] and t > 0.
Which coefficients are used ? We need to talk about K...
@ original proof : unclear, something like Q(7, e,others?)
@ more recent proof : Rg = smallest generable field
Theorem
Q € Rg € Rp = polytime reals.

@ this year : Q is enough! (and we can even characterize polytime)
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It is all about the coefficients

f:[a, b] — R is computable iff 3 a generable function g such that

If(x) —g(x, ) <27 forall x € [a,b] and t > 0.
Which coefficients are used ? We need to talk about K...
@ original proof : unclear, something like Q(7, e,others?)
@ more recent proof : Rg = smallest generable field
Theorem
Q € Rg € Rp = polytime reals.

@ this year : Q is enough! (and we can even characterize polytime)

What happens if we take K =R ?

11/22



e A universal differential equation
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Universal differential algebraic equation (Rubel)

() \ )
|
Y,

-
\/

Theorem (Rubel, 1981)

Forany f € CO(R) and e € C°(R,R~q), there exists a solution y : R — R
to

14 o 2

14 me 13 12 o oam 12 né4
y"yy y

—4y"y y +6yTy yy  +24y"y
/3 i 3 2 13 2 nt
—12y"y y =29y y "y +12y =0

such that Vt € R,
ly(t) — (1) < e(t).
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Universal differential algebraic equation (Rubel)

Y1) \ )
/
Y

-
\/

Theorem (Rubel, 1981)

There exists a fixed k and nontrivial polynomial p such that for any
f € CO(R) and ¢ € C°(R,R+q), there exists a solution y : R — R to

p(y,y,...,y®)=0

such that Vt € R,
ly(t) — f(t)] < e(t).

13/22



Universal differential algebraic equation (Rubel)

Open Problem (Rubel)

M(X)\ Can we have unicity of
/ X the solution with initial

\/ conditions ?

-
\/

Theorem (Rubel, 1981)

There exists a fixed k and nontrivial polynomial p such that for any
f € CO(R) and ¢ € C°(R,R+q), there exists a solution y : R — R to

p(y,y,...,y®)=0

such that Vt € R,
ly(t) — f(t)] < e(t).
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Rubel’s ("disappointing") proof in one slide

—1
o Take f(t) = e’ for —1 < t < 1 and f(t) = 0 otherwise.

It satisfies (1 — t2)?f"(t) + 2tf'(t) = 0.
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Rubel’s ("disappointing") proof in one slide

—1
o Take f(t) = e’ for —1 < t < 1 and f(t) = 0 otherwise.

It satisfies (1 — t2)?f" () + 2tf'(t) = 0.
@ Forany a,b,c € R, y(t) = cf(at + b) satisfies

3 y/4 y// y////2 4 y/4 y//2 y//// +6 y/3 y//2 y/// y//// + 24 y/2 y y////
1 2y/3y//y///3 B 29y/2y//3y///2 +1 2y//7 -0

n4

Translation and rescaling :

T
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Rubel’s ("disappointing") proof in one slide

=1
@ Take f(t) = e1-# for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" () + 2tf'(t) = 0.
@ Forany a,b,c € R, y(t) = cf(at + b) satisfies
14 1111012 14 112 11 13,112 111 1001 12 114 13 11,1113 12 113 1112 "7

3y Ty Ty —ay Ty Sy ey Sy Sy sy ST a2y 0y TS 29y Sy Sy E L2y =0

@ Can glue together arbitrary many such pieces

14/22



Rubel’s ("disappointing") proof in one slide

—1

o Take f(t) = e for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" () + 2tf'(t) = 0.

@ Forany a,b,c € R, y(t) = cf(at + b) satisfies

4 2 4 112 3 12 2 n4 3 3 2 13 2 7
3y/ y//y//// _4y/ ,V” y””+6y’ y” y///y////+24y/ y// y////_12y/ y//y/// _29y1 y” y/// +12y// -0

@ Can glue together arbitrary many such pieces
@ Can arrange so that [ f is solution : piecewise pseudo-linear

—_
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Rubel’s ("disappointing") proof in one slide

—1

o Take f(t) = e for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" () + 2tf'(t) = 0.

@ Forany a,b,c € R, y(t) = cf(at + b) satisfies

4 2 4 112 3 12 2 n4 3 3 2 13 2 7
3y/ y//y//// _4y/ ,V” y””+6y’ y” y///y////+24y/ y// y////_12y/ y//y/// _29y1 y” y/// +12y// -0

@ Can glue together arbitrary many such pieces
@ Can arrange so that [ f is solution : piecewise pseudo-linear

—_

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C°

14/22



The problem with Rubel’s DAE

The solution y is not unique, even with added initial conditions :

p(yvyla-"vy(k)) =0, y(O) :a07y,(0) :a17"‘7y(k)(0) = Qg

In fact, this is fundamental for Rubel’'s proof to work !

15/22



The problem with Rubel’'s DAE

The solution y is not unique, even with added initial conditions :
P,y y¥) =0, ¥(0) = ag,y'(0) = s, ..., y"(0) = ax

In fact, this is fundamental for Rubel’'s proof to work !

@ Rubel’s statement : this DAE is universal
@ More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y’ = p(y)?
Note : explicit polynomial ODE = unique solution

15/22



Universal explicit ordinary differential equation

1(X)\ .
|
Y

-
\/

Theorem (universal pIVP)

There exists a fixed (vector of) polynomial p such that for any f € C°(R)
and ¢ € C%(R, R.g), there exists o € R? such that

y(0)=a,  y'(t)=py(t)
has a unique solution y : R — R? and Vt € R,

ya () = F(8)] < e(B).

16/22



Universal explicit ordinary differential equation

Notes :
\ / 1(X)\ . @ system of ODEs,
\ / / @ y must be analytic,
v @ we need d ~ 300.

Theorem (universal pIVP)

There exists a fixed (vector of) polynomial p such that for any f € C°(R)
and ¢ € C%(R, R.g), there exists o € R? such that

y(0)=a,  y'(t)=py(t)
has a unique solution y : R — R? and Vt € R,

ya () = F(8)] < e(B).

16/22



Universal explicit ordinary differential equation

1(X)\

-/ I
\/

Theorem (universal generable function)

There exists a fixed generable function g :C R9*" — R such that for
any f € CO(R) and € € C°(R, R+g), there exists o € RY such that

If(t) — g(a, )] < e(t) vt e R.
Note : « is usually transcendental, and typically not in Rg...
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Universal DAE, again but better

i (x)\ |
X

\
\/

Corollary of main result

|<

There exists a fixed k and nontrivial polynomial p such that for any
f e CO(R) and € € CO(R,R+q), there exists ay, .. ., ax € R such that

p(yayla"'vy(k)) = 05 y(O) = a07y/(0) = 0117---ay(k)(0) = Ok
has a unique analytic solution y : R — R and V¢ € R,

() = ()] < e(1).
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Proof by picture (simplified)

binary stream generator : digits of « € R
1 1 1 1
0 0 0 0 ;

fla, p, A\ t) = 2tanh(usm(2a7r4r°””d(t /40 1 47 /3))

It's horribly generable

round is a mysterious rounding function... 18/00



Proof by picture (simplified)

binary stream generator : digits of « € R

PR PN P

ﬂﬂﬂﬂ 1 e
RN

dyadic stream generator : dj = m2~%, a; = 9i + 3_;_; ]
f(t, 7y, t) = sin(2am2undt=1/47)))

round is a mysterious rounding function... 18/00
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Proof by picture (simplified)

PR PR S P

copy signal
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Proof by picture (simplified)

mo 0ﬂ0ﬂot

‘copy signal copy signal
a ﬂ
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| % | % |[] "

ao 1 > as
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Proof by picture (simplified)

H 0 0 ﬂ 0

‘COPY signal | copy signal copy signal .
o ﬂ
o

di L m o
1 Eig d3

A

=]
o
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do
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Proof by picture (simplified)

1 1 1
| 0 0 ‘ 0 o,
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simplified)

! ﬂ
0 ‘ 0 ‘ 0 t

copy signal copy signal copy signal

—~

Proof by picture

=7
()
]

copy signal

i

%
|

a>

S
~
-
&
~

QO

S

o
(o}
o]

This copy operation is the “non-trivial” part.
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Proof by picture (simplified)

We can do almost piecewise constant functions...
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Proof by picture (simplified)

We can do almost piecewise constant functions...
o ...that are bounded by 1...
@ ...and have super slow changing frequency.
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Proof by picture (simplified)

We can do almost piecewise constant functions...
o ...that are bounded by 1...
@ ...and have super slow changing frequency.

How do we go to arbitrarily large and growing functions ? Can a
polynomial ODE even have arbitrary growth ?

18/22



An old question on growth

Building a fast-growing ODE, that exists over R :

Yi = Y1 ~ y1(t) = exp(t)
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Yi = Y1 ~ y1(t) = exp(t)
Yo = Y12 ~ yo(t) = exp(exp(t))
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An old question on growth

Building a fast-growing ODE, that exists over R :

Yi = Y1 ~ y1(t) = exp(t)
Yo = Y12 ~ yo(t) = exp(exp(t))

Yn=Y1-Yn ~ .y‘n.(t) = exp(---exp(t)---):= en(t)
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An old question on growth

Building a fast-growing ODE, that exists over R :

y1(t) = exp(t)
y2(t) = exp(exp(t))

Yi =W
Vo = Y1ye

a2
>

Yr/7: Vi Y ~ y,,(t) = exp(---exp(t)- -+ ):= ep(t)

Conjecture (Emile Borel, 1899)
With n variables, cannot do better than Oy(en(AtX)).
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An old question on growth

exp(---exp(t)---) (ncompositions)
Conjecture (Emile Borel, 1899)

With n variables, cannot do better than Oy(en(AtX)).
Counter-example (Vijayaraghavan, 1932)

en(t) =

1

2 — cos(t) — cos

/

Sequence of arbitrarily
growing spikes.

(at)

L |

e
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An old question on growth

en(t) = exp(---exp(t)---) (ncompositions)

Conjecture (Emile Borel, 1899)

With n variables, cannot do better than Oy(en(AtX)).

Counter-example (Vijayaraghavan, 1932)

1

2 — cos(t) — cos(at)

/

Sequence of arbitrarily
growing spikes. But not
good enough for us.

L |

e

19/22



An old question on growth

en(t) = exp(---exp(t)---) (ncompositions)
Conjecture (Emile Borel, 1899)
With n variables, cannot do better than Oy(en(AtX)).

Counter-example (Vijayaraghavan, 1932)

1
2 — cos(t) — cos(at)

Theorem (In the paper)

There exists a polynomial p : R? — R such that for any continuous
function f : R-¢ — R, we can find o € RY such that

y(0)=aqa,  y'(t)=py(1)
satisfies
vty = f(t), vt=0.



An old question on growth

en(t) = exp(---exp(t)---) (ncompositions)

Conjecture (Emile Borel, 1899)

With n variables, cannot do better than Oy(en(AtX)).

Counter-example (Vijayaraghavan, 1932)
1

2 — cos(t) — cos(at)

Theorem (In the paper)

There exists a polynomial p : R? — R such that for any continuous
function f : R-¢ — R, we can find o € RY such that

y(0)=a,  y'(t)=py(t))
satisfies
Note : both results require « to be transcendental. Conjecture still
open for rational coefficients.



Proof gem : iteration with differential equations

Goal
lterate f with a GPAC : y(n) ~ f"l([x])
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Proof gem : iteration with differential equations

Goal
lterate f with a GPAC : y(n) ~ f"l([x])

N—=
—
ojw
N

y'&
Z'=f(y)—z
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Proof gem : iteration with differential equations

Goal
lterate f with a GPAC : y(n) ~ f"l([x])
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—
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A computability question

Theorem (universal pIVP)

There exists a fixed (vector of) polynomial p such that for any f € C°(R)
and e € C%(R, R.g), there exists o € R such that

y()=a,  y'(t)=py(t))

has a unique solution y : R — RY and V¢ € R,

lya () = F(1)] < e().
Theorem (universal generable function)

There exists a fixed generable function g :C R9*" — R such that for
any f € CO(R) and € € C°(R, R+), there exists a € RY such that

[f(t) — g(a, t)| < e(t) vVt e R.

Question : is a computable from f and ¢ ?
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A computability question

Theorem (universal pIVP)

There exists a fixed (vector of) polynomial p such that for any f € C°(R)
and e € CO(R,R.q), there exists o € RY such that

y(0)=a,  y'(t)=ply(1))

has a unique solution y : R — RY and V¢t € R,

ya () = F(1)] < e().
Theorem (universal generable function)

There exists a fixed generable function g :C R9*" — R such that for
any f € CO(R) and € € C°(R, R+), there exists a € RY such that

[f(t) — g(a, t)| < e(t) vVt e R.

Claim (WIP) : (f,e) — « is computable (for some reasonable

representation)
21/22



Conclusion

This talk
theory of generable functions
positive answer to Rubel’s open problem

Take home
programming with polynomial ODE is nice and fun

Possible development
Each universal ODE defines a map :
(f,e)e C®x C®'— aeR

Kolmogorov-like complexity for continuous functions ?
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Digital vs analog computers
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Digital vs analog computers
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Church Thesis

Computability

. logic boolean circuits
discrete
recursive Turing lambda
functions machine calculus
continuous
‘quantum analog

Church Thesis
All reasonable models of computation are equivalent.
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Church Thesis

Complexity
. logic boolean circuits
discrete
recursive Turing lambda
functions machine calculus
7 oA
\, ‘\
* continuous
‘quantum analog

Effective Church Thesis

All reasonable models of computation are equivalent for complexity.
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Universal differential equations

Generable functions Computable functions
5109 N0 ()
rx v
t

subclass of analytic functions any computable function
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Universal differential equations

Generable functions Computable functions
7100 ITITAVAVIEEC ()
X VAR
/ x
t
subclass of analytic functions any computable function

| N\,
v, /
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A new notion of computability

Almost-Theorem

f:[0,1] — R is computable if and only if there exists 7 > 1, y € RY
and p polynomial such that

Y'0) =y, y'(t)=py()

satisfies
If(x) —y(x+n7)| <277, Vx € [0,1],Yne N
\ \ / \ — y(1)
\ / \ \ — f(t mod 7)
/ t

0 1 T T+1 27 27 +1 37
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