On generable functions and a universal ordinary differential equation

Amaury Pouly²

¹Max Planck Institute for Software Systems, Germany

26 july 2017

Polynomial Differential Equations

No closed-form solution

Example of differential equation

General Purpose Analog Computer (GPAC) Shannon's model of the Differential Analyser

$$\ddot{ heta} + rac{g}{\ell} \sin(heta) = 0$$

$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{\ell} y_3 \\ y_3' = y_2 y_4 \\ y_4' = -y_2 y_3 \end{cases} \Leftrightarrow \begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases}$$

Some motivation

Polynomial ODEs correspond to analog computers :

Differential Analyser

British Navy mecanical computer

Some motivation

Polynomial ODEs correspond to analog computers :

Differential Analyser

British Navy mecanical computer

- They are equivalent to Turing machines!
- One can characterize P with pODEs
- There exists a universal pODE for continuous functions

Take away : polynomial ODEs are a natural programming language.

The theory of generable functions

2 A universal differential equation

Definition

 $f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

- Types
 - $d \in \mathbb{N}$: dimension
 - $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
 - *p* ∈ K^d[ℝⁿ] : polynomial vector (coef. in K)

•
$$y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$$

Note : existence and unicity of y by Cauchy-Lipschitz theorem.

DefinitionTypes $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p
and y_0 such that the solution y to
 $y(0) = y_0, \quad y'(x) = p(y(x))$ • $d \in \mathbb{N}$: dimension
• $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
• $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial
vector (coef. in \mathbb{K})satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.• $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$ Example : f(x) = x
 $y(0) = 0, \quad y' = 1 \quad \sim \quad y(x) = x$

Definition Types $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p• $d \in \mathbb{N}$: dimension and y_0 such that the solution y to • $\mathbb{Q} \subseteq \mathbb{K} \subset \mathbb{R}$: field • $p \in \mathbb{K}^{d}[\mathbb{R}^{n}]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. • $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$ Example : $f(x) = x^2$ squaring $y_1(0)=0,$ $y'_1=2y_2 \rightsquigarrow y_1(x)=x^2$ $y_2(0)=0,$ $y'_2=1 \rightsquigarrow y_2(x)=x$

Definition Types $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p• $d \in \mathbb{N}$: dimension and y_0 such that the solution y to • $\mathbb{O} \subset \mathbb{K} \subset \mathbb{R}$: field • $p \in \mathbb{K}^{d}[\mathbb{R}^{n}]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. • $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$ Example : $f(x) = x^n \rightarrow n^{th}$ power $y_1(0)=0,$ $y'_1=ny_2$ \rightsquigarrow $y_1(x)=x^n$ $y_2(0)=0,$ $y'_2=(n-1)y_3$ \rightsquigarrow $y_2(x)=x^{n-1}$ $\rightsquigarrow y_n(x) = x$ $y_n(0) = 0, \quad y_n = 1$

Definition Types $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p• $d \in \mathbb{N}$: dimension and y_0 such that the solution y to • $\mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field • $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. • $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$ Example : $f(x) = \exp(x)$ • exponential $y(0)=1, \quad y'=y \quad \rightsquigarrow \quad y(x)=\exp(x)$

Definition

 $f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. Example : $f(x) = \sin(x)$ or $f(x) = \cos(x)$ Types

- $d \in \mathbb{N}$: dimension
- $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- *p* ∈ K^d[ℝⁿ] : polynomial vector (coef. in K)
- $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$

▶ sine/cosine

$$y_1(0) = 0,$$
 $y'_1 = y_2 \rightsquigarrow y_1(x) = \sin(x)$
 $y_2(0) = 1,$ $y'_2 = -y_1 \rightsquigarrow y_2(x) = \cos(x)$

Definition Types $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p• $d \in \mathbb{N}$: dimension and y_0 such that the solution y to • $\mathbb{O} \subset \mathbb{K} \subset \mathbb{R}$: field • $p \in \mathbb{K}^{d}[\mathbb{R}^{n}]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. • $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$ Example : f(x) = tanh(x) hyperbolic tangent $y(0) = 0, \quad y' = 1 - y^2 \quad \rightsquigarrow \quad y(x) = \tanh(x)$ Х tanh(x)

Definition Types $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p• $d \in \mathbb{N}$: dimension and y_0 such that the solution y to • $\mathbb{O} \subset \mathbb{K} \subset \mathbb{R}$: field • $p \in \mathbb{K}^{d}[\mathbb{R}^{n}]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. • $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$ Example : $f(x) = \frac{1}{1+x^2}$ rational function $f'(x) = \frac{-2x}{(1+x^2)^2} = -2xf(x)^2$ $y_1(0) = 1,$ $y'_1 = -2y_2y_1^2 \rightsquigarrow y_1(x) = \frac{1}{1+x^2}$ $y_2(0) = 0,$ $y'_2 = 1 \rightsquigarrow y_2(x) = x$

Definition Types $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p• $d \in \mathbb{N}$: dimension and y_0 such that the solution y to • $\mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field • $p \in \mathbb{K}^{d}[\mathbb{R}^{n}]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. • $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$ Example : $f = g \pm h$ **b** sum/difference $(f \pm g)' = f' \pm g'$ assume : $z(0) = z_0$, z' = p(z) $\rightarrow Z_1 = g$ $w(0) = w_0$, w' = q(w) $\rightsquigarrow W_1 = h$ then: $y(0) = z_{0,1} + w_{0,1}, \quad y' = p_1(z) \pm q_1(w) \quad \rightsquigarrow \quad y = z_1 \pm w_1$

Definition	Турез
$f:\mathbb{R} \to \mathbb{R}$ is generable if there exists d,p	• $\pmb{d} \in \mathbb{N}$: dimension
and y_0 such that the solution y to	• $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
$y(0) = y_0, \qquad y'(x) = p(y(x))$	 <i>p</i> ∈ K^d[ℝⁿ] : polynomial vector (coef. in K)
satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	• $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$
Example : $f = gh$ > product	
(gh)'=g'h+gh'	
assume :	
$z(0) = z_0, \qquad z' = p(z)$	$\sim z_1 = g$
$w(0) = w_0, \qquad w' = q(w)$	$\rightsquigarrow W_1 = h$
$\frac{then}{y(0)} = z_{0,1} w_{0,1}, \qquad y' = p_1(z) w_1 + $	$z_1q_1(w) \rightsquigarrow y = z_1w_1$
, -, -, -,	

Definition Types $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p• $d \in \mathbb{N}$: dimension and y_0 such that the solution y to • $\mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field • $p \in \mathbb{K}^{d}[\mathbb{R}^{n}]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. • $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$ Example : $f = \frac{1}{a}$ binverse $f' = \frac{-g'}{a^2} = -g'f^2$ assume : $z(0)=z_0, \qquad z'=p(z) \qquad \rightsquigarrow \quad z_1=g$ then: $y(0) = \frac{1}{z_{0,1}}, \quad y' = -p_1(z)y^2 \quad \rightsquigarrow \quad y = \frac{1}{z_1}$

DefinitionTypes $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p
and y_0 such that the solution y to
 $y(0) = y_0, \quad y'(x) = p(y(x))$ • $d \in \mathbb{N}$: dimension
• $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
• $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial
vector (coef. in \mathbb{K})satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.• $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$ Example : $f = \int g$ • integral

Definition Types $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p• $d \in \mathbb{N}$: dimension and y_0 such that the solution y to • $\mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field • $p \in \mathbb{K}^{d}[\mathbb{R}^{n}]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. • $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$ Example : f = g' be derivative $f' = q'' = (p_1(z))' = \nabla p_1(z) \cdot z'$ assume : z' = p(z) $z(0) = z_0$, $\rightarrow z_1 = g$ then: $y(0) = p_1(z_0), \quad y' = \nabla p_1(z) \cdot p(z) \quad \rightsquigarrow \quad y = z_1''$

Definition Types $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p• $d \in \mathbb{N}$: dimension and y_0 such that the solution y to • $\mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field • $p \in \mathbb{K}^{d}[\mathbb{R}^{n}]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. • $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$ Example : $f = g \circ h$ \blacktriangleright composition $(z \circ h)' = (z' \circ h)h' = p(z \circ h)h'$ assume : $z(0)=z_0,$ z'=p(z) \rightsquigarrow $z_1=g$ $w(0)=w_0,$ w'=q(w) \rightsquigarrow $w_1=h$ then : $y(0) = z(w_0), \quad y' = p(y)z_1 \quad \rightsquigarrow \quad y = z \circ h$

Definition Types $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p• $d \in \mathbb{N}$: dimension and y_0 such that the solution y to • $\mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field • $p \in \mathbb{K}^{d}[\mathbb{R}^{n}]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. • $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$ Example : $f = g \circ h$ \blacktriangleright composition $(z \circ h)' = (z' \circ h)h' = p(z \circ h)h'$ assume : $z(0) = z_0,$ z' = p(z) \rightsquigarrow $z_1 = g$ $w(0) = w_0,$ w' = q(w) \rightsquigarrow $w_1 = h$ $w(0) = w_0$, then : $y(0) = z(w_0), \quad y' = p(y)z_1 \quad \rightsquigarrow \quad y = z \circ h$ Is this coefficient in \mathbb{K} ?

Definition Types $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p• $d \in \mathbb{N}$: dimension and y_0 such that the solution y to • $\mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field • $p \in \mathbb{K}^{d}[\mathbb{R}^{n}]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. • $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$ Example : $f = g \circ h$ \blacktriangleright composition $(z \circ h)' = (z' \circ h)h' = p(z \circ h)h'$ assume : $z(0)=z_0,$ z'=p(z) \rightsquigarrow $z_1=g$ $w(0)=w_0,$ w'=q(w) \rightsquigarrow $w_1=h$ then : $y(0) = z(w_0), \quad y' = p(y)z_1 \quad \rightsquigarrow \quad y = z \circ h$

Is this coefficient in \mathbb{K} ? Fields with this property are called generable.

Definition	Types
$f:\mathbb{R} \to \mathbb{R}$ is generable if there exists d, p	• $\textit{d} \in \mathbb{N}$: dimension
and y_0 such that the solution y to	• $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
$y(0) = y_0, \qquad y'(x) = p(y(x))$	 <i>p</i> ∈ K^d[ℝⁿ] : polynomial vector (coef. in K)
satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	• $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$
Example : $f' = \tanh \circ f$ Non-polynomial differential equation	
$f'' = (\tanh' \circ f)f' = (1 - (\tanh \circ f)^2)f'$	
$y_1(0) = f(0),$ $y'_1 = y_2$ $y_2(0) = \tanh(f(0)),$ $y'_2 = (1 - y_2^2)y_2$	$ \ \ \ \ \ \ \ \ \ \ \ \ \$

Definition	Types
$f:\mathbb{R} \to \mathbb{R}$ is generable if there exists d, p	• $d \in \mathbb{N}$: dimension
and y_0 such that the solution y to	• $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
$y(0) = y_0, \qquad y'(x) = p(y(x))$	 <i>p</i> ∈ K^d[ℝⁿ] : polynomial vector (coef. in K)
satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	• $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$
Example : $f(0) = f_0, f' = g \circ f$ Initial Value Problem (IVP)	
$f' = g'' = (p_1(z))' = \nabla p_1(z) \cdot z'$	
assume :	
$z(0)=z_0, \qquad z'=p(z)$	\rightsquigarrow $z_1 = g$
$y(0) = p_1(z_0), y' = \nabla p_1(z)$	$) \cdot p(z) \rightsquigarrow y = z_1''$

Nice theory for the class of total and univariate generable functions :

- analytic
- contains polynomials, sin, cos, tanh, exp
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- technicality on the field $\mathbb K$ of coefficients for stability under \circ

Nice theory for the class of total and univariate generable functions :

- analytic
- contains polynomials, sin, cos, tanh, exp
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- technicality on the field $\mathbb K$ of coefficients for stability under \circ

Limitations :

- total functions
- univariate

Definition	Турез
$f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open	• $n \in \mathbb{N}$: input dimension
connected and $\exists d, p, x_0, y_0, y$ such that	• $\textit{d} \in \mathbb{N}$: dimension
$y(x_0) = y_0,$ $J_y(x) = p(y(x))$	 <i>p</i> ∈ K^{d×d}[R^d] : polynomial matrix
and $f(x) = y_1(x)$ for all $x \in X$.	• $x_0 \in \mathbb{K}^n$
$J_y(x) =$ Jacobian matrix of y at x	• $y_0 \in \mathbb{K}^d, y : X \to \mathbb{R}^d$
Notes :	

- Partial differential equation !
- Unicity of solution y...
- ... but not existence (ie you have to show it exists)

Definition	Types
$f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open	• $n \in \mathbb{N}$: input dimension
connected and $\exists d, p, x_0, y_0, y$ such that	• $\textit{d} \in \mathbb{N}$: dimension
$y(x_0) = y_0, \qquad J_y(x) = p(y(x))$	 <i>p</i> ∈ K^{d×d}[ℝ^d] : polynomial matrix
and $f(x) = y_1(x)$ for all $x \in X$.	• $x_0 \in \mathbb{K}^n$
$J_y(x) =$ Jacobian matrix of y at x	• $y_0 \in \mathbb{K}^d, y : X \to \mathbb{R}^d$
Example : $f(x_1, x_2) = x_1 x_2^2$ (<i>n</i> = 2, <i>d</i> = 3)	► monomial
$y(0,0) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, J_y = \begin{pmatrix} y_3^2 & 3y_2y_3 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\rightsquigarrow y(x) = \begin{pmatrix} x_1 x_2^2 \\ x_1 \\ x_2 \end{pmatrix}$

Definition	Types
$f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is	
connected and $\exists d, p, x_0, y_0, y$ such	that $ullet d \in \mathbb{N}$: dimension
$y(x_0) = y_0,$ $J_y(x) = p(y(x))$)) • $p \in \mathbb{K}^{d \times d}[\mathbb{R}^d]$: polynomial matrix
and $f(x) = y_1(x)$ for all $x \in X$.	• $x_0 \in \mathbb{K}^n$
$J_{y}(x) =$ Jacobian matrix of y at x	• $y_0 \in \mathbb{K}^d, y: X \to \mathbb{R}^d$
Example : $f(x_1, x_2) = x_1 x_2^2$ Monomial	
$y_1(0,0)=0, \partial_{x_1}y_1=y_3^2, \partial_{x_2}y_2=y_3^2,$	$\partial_{x_2} y_1 = 3y_2 y_3 \rightsquigarrow y_1(x) = x_1 x_2^2$
	$\partial_{x_2} y_2 = 0 \qquad \rightsquigarrow \qquad y_2(x) = x_1$
$y_3(0,0)=0, \partial_{x_1}y_3=0, \partial_{x_2}y_3=0,$	$\partial_{x_2} y_3 = 1 \qquad \rightsquigarrow \qquad y_3(x) = x_2$
This is tadious l	

This is tedious!

Definition	Турез
$f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open	• $n \in \mathbb{N}$: input dimension
connected and $\exists d, p, x_0, y_0, y$ such that	• $\textit{d} \in \mathbb{N}$: dimension
$y(x_0) = y_0, \qquad J_y(x) = p(y(x))$	• $oldsymbol{ ho} \in \mathbb{K}^{d imes d} [\mathbb{R}^d]$:
	polynomial matrix
and $f(x) = y_1(x)$ for all $x \in X$.	• $x_0 \in \mathbb{K}^n$
$J_y(x) =$ Jacobian matrix of y at x	• $y_0 \in \mathbb{K}^d, y : X \to \mathbb{R}^d$
Last example : $f(x) = \frac{1}{x}$ for $x \in (0, \infty)$ inverse function	
$y(1)=1, \partial_x y=-y^2 \rightsquigarrow y(x)=\frac{1}{x}$	

Nice theory for the class of multivariate generable functions (over connected domains) :

- analytic
- contains polynomials, sin, cos, tanh, exp
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- technicality on the field $\mathbb K$ of coefficients for stability under \circ

Nice theory for the class of multivariate generable functions (over connected domains) :

- analytic
- contains polynomials, sin, cos, tanh, exp
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- technicality on the field $\mathbb K$ of coefficients for stability under \circ

Natural questions :

- analytic \rightarrow isn't that very limited?
- can we generable all analytic functions?

Nice theory for the class of multivariate generable functions (over connected domains) :

- analytic
- contains polynomials, sin, cos, tanh, exp
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- technicality on the field $\mathbb K$ of coefficients for stability under \circ

Natural questions :

- analytic \rightarrow isn't that very limited?
- can we generable all analytic functions? No

Riemann Γ and ζ are not generable.

Computing with generable functions

Generable functions

$$y(0) = y_0 \qquad y' = p(y)$$

$$f(x) = y_1(x)$$
 $x \in \mathbb{R}$

 $\mathsf{sin},\mathsf{cos},\mathsf{exp},\mathsf{log},... \subsetneq \ \textbf{Analytic}$

Computing with generable functions

Generable functions

$$y(0) = y_0 \qquad y' = p(y)$$

$$f(x) = y_1(x)$$
 $x \in \mathbb{R}$

 $sin, cos, exp, log, ... \subsetneq$ Analytic

Analog computable function

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

Computing with generable functions

Generable functions

$$y(0) = y_0 \qquad y' = p(y)$$

$$f(x) = y_1(x)$$
 $x \in \mathbb{R}$

 $\mathsf{sin},\mathsf{cos},\mathsf{exp},\mathsf{log},...\subsetneq \text{ Analytic }$

Analog computable function

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

Turing powerful

Theorem (Bournez et al., 2007)

 $f : [a, b] \rightarrow \mathbb{R}$ is computable ^{*a*} iff *f* is analog computable.

a. In the sense of Computable Analysis.

Computing with generable functions

Question : reformulate analog computability with generable functions?

Computing with generable functions

Generable functions

$$y(0) = y_0 \qquad y' = p(y)$$

$$f(x) = y_1(x)$$
 $x \in \mathbb{R}$

 $\mathsf{sin},\mathsf{cos},\mathsf{exp},\mathsf{log},... \subsetneq \mathsf{Analytic}$

Analog computable function

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

 $|f(x) - v_1(t)| \leq 2^{-t}$

Turing powerful

Theorem

 $f : [a, b] \rightarrow \mathbb{R}$ is computable ^a iff \exists a generable function g such that

 $|f(x) - g(x,t)| \leq 2^{-t}$ for all $x \in [a,b]$ and $t \ge 0$.

a. In the sense of Computable Analysis.

 $f : [a, b] \rightarrow \mathbb{R}$ is computable iff \exists a generable function g such that

 $|f(x) - g(x,t)| \leq 2^{-t}$ for all $x \in [a,b]$ and $t \ge 0$.

Which coefficients are used?

 $f : [a, b] \rightarrow \mathbb{R}$ is computable iff \exists a generable function g such that

 $|f(x) - g(x,t)| \leq 2^{-t}$ for all $x \in [a,b]$ and $t \ge 0$.

Which coefficients are used? We need to talk about \mathbb{K} ...

original proof : unclear, something like Q(π, e, others?)

 $f : [a, b] \rightarrow \mathbb{R}$ is computable iff \exists a generable function g such that

 $|f(x) - g(x,t)| \leq 2^{-t}$ for all $x \in [a,b]$ and $t \ge 0$.

Which coefficients are used? We need to talk about K...

- original proof : unclear, something like Q(π, e, others?)
- more recent proof : \mathbb{R}_G = smallest generable field

Theorem

 $\mathbb{Q} \subsetneq \mathbb{R}_G \subseteq \mathbb{R}_P =$ polytime reals.

 $f : [a, b] \rightarrow \mathbb{R}$ is computable iff \exists a generable function g such that

 $|f(x) - g(x,t)| \leq 2^{-t}$ for all $x \in [a,b]$ and $t \ge 0$.

Which coefficients are used? We need to talk about K...

- original proof : unclear, something like Q(π, e, others?)
- more recent proof : \mathbb{R}_G = smallest generable field

Theorem $\mathbb{Q} \subseteq \mathbb{R}_G \subseteq \mathbb{R}_P = \text{polytime reals.}$

• this year : Q is enough ! (and we can even characterize polytime)

 $f : [a, b] \rightarrow \mathbb{R}$ is computable iff \exists a generable function g such that

 $|f(x) - g(x,t)| \leq 2^{-t}$ for all $x \in [a,b]$ and $t \ge 0$.

Which coefficients are used? We need to talk about K...

- original proof : unclear, something like $\mathbb{Q}(\pi, e, \text{others?})$
- more recent proof : \mathbb{R}_G = smallest generable field

Theorem $\mathbb{Q} \subseteq \mathbb{R}_G \subseteq \mathbb{R}_P = \text{polytime reals.}$

• this year : \mathbb{Q} is enough ! (and we can even characterize polytime)

What happens if we take $\mathbb{K} = \mathbb{R}$?

The theory of generable functions

2 A universal differential equation

Universal differential algebraic equation (Rubel)

Theorem (Rubel, 1981)

For any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$3{y'}^{4}{y''}{y''''}^{2} -4{y'}^{4}{y'''}^{2}{y''''} + 6{y'}^{3}{y''}^{2}{y'''}{y''''} + 24{y'}^{2}{y''}^{4}{y''''} -12{y'}^{3}{y''}{y'''}^{3} - 29{y'}^{2}{y''}^{3}{y'''}^{2} + 12{y''}^{7} = 0$$

such that $\forall t \in \mathbb{R}$,

 $|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$

Universal differential algebraic equation (Rubel)

Theorem (Rubel, 1981)

There exists a **fixed** *k* and nontrivial polynomial *p* such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y, y', \dots, y^{(k)}) = 0$$

such that $\forall t \in \mathbb{R}$,

 $|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$

Universal differential algebraic equation (Rubel)

Open Problem (Rubel)

Can we have unicity of the solution with initial conditions?

Theorem (Rubel, 1981)

There exists a **fixed** *k* and nontrivial polynomial *p* such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y, y', \ldots, y^{(k)}) = 0$$

such that $\forall t \in \mathbb{R}$,

 $|\mathbf{y}(t) - f(t)| \leq \varepsilon(t).$

• Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise.

It satisfies
$$(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$$

• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1 - t^2)^2 f''(t) + 2tf'(t) = 0$$
.

• For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

$$\begin{array}{rcl} 3{y'}^4{y''}{y'''}^2 & -4{y'}^4{y''}^2{y'''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y'''}'\\ & -12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0 \end{array}$$

• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$$

• For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y'''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y''''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

• Can glue together arbitrary many such pieces

• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$$

• For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

- Can glue together arbitrary many such pieces
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear

• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$$

• For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

- Can glue together arbitrary many such pieces
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear

Conclusion : Rubel's equation allows any piecewise pseudo-linear functions, and those are **dense in** C^0

The solution y is not unique, even with added initial conditions :

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel's proof to work !

The solution y is not unique, even with added initial conditions :

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel's proof to work !

- Rubel's statement : this DAE is universal
- More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y' = p(y)? Note : explicit polynomial ODE \Rightarrow unique solution

Universal explicit ordinary differential equation

Theorem (universal pIVP)

There exists a **fixed** (vector of) polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha, \qquad y'(t) = p(y(t))$$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t) - f(t)| \leq \varepsilon(t).$

Universal explicit ordinary differential equation

Notes :

- system of ODEs,
- y must be analytic,
- we need $d \approx 300$.

Theorem (universal pIVP)

There exists a **fixed** (vector of) polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha, \qquad y'(t) = p(y(t))$$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t) - f(t)| \leq \varepsilon(t).$

Universal explicit ordinary differential equation

Theorem (universal generable function)

There exists a **fixed** generable function $g :\subseteq \mathbb{R}^{d+1} \to \mathbb{R}$ such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

$$|f(t) - g(\alpha, t)| \leq \varepsilon(t) \quad \forall t \in \mathbb{R}.$$

Note : α is usually transcendental, and typically not in \mathbb{R}_{G} ...

Universal DAE, again but better

Corollary of main result

There exists a **fixed** *k* and nontrivial polynomial *p* such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha_0, \ldots, \alpha_k \in \mathbb{R}$ such that

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

has a **unique analytic solution** $y : \mathbb{R} \to \mathbb{R}$ and $\forall t \in \mathbb{R}$,

 $|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$

binary stream generator : digits of $lpha \in \mathbb{R}$

$$f(lpha,\mu,\lambda,t) = rac{1}{2} + rac{1}{2} anh(\mu \sin(2lpha \pi 4^{\operatorname{round}(t-1/4,\lambda)} + 4\pi/3))$$

It's horribly generable

round is a mysterious rounding function...

binary stream generator : digits of $\alpha \in \mathbb{R}$

dyadic stream generator : $d_i = m_i 2^{-d_i}$, $a_i = 9i + \sum_{j < i} d_j$ $f(\alpha, \gamma, t) = \sin(2\alpha \pi 2^{\operatorname{round}(t-1/4,\gamma)}))$

round is a mysterious rounding function...

This copy operation is the "non-trivial" part.

We can do almost piecewise constant functions...

We can do almost piecewise constant functions...

- ...that are bounded by 1...
- ...and have super slow changing frequency.

We can do almost piecewise constant functions...

- ...that are bounded by 1...
- ...and have super slow changing frequency.

How do we go to arbitrarily large and growing functions? Can a polynomial ODE even have arbitrary growth?

Building a fast-growing ODE, that exists over $\ensuremath{\mathbb{R}}$:

$$y'_1 = y_1 \qquad \qquad \rightsquigarrow \qquad y_1(t) = \exp(t)$$

Building a fast-growing ODE, that exists over $\ensuremath{\mathbb{R}}$:

$$y'_1 = y_1 \qquad \rightsquigarrow \qquad y_1(t) = \exp(t)$$

 $y'_2 = y_1 y_2 \qquad \rightsquigarrow \qquad y_2(t) = \exp(\exp(t))$

Building a fast-growing ODE, that exists over $\ensuremath{\mathbb{R}}$:

$$\begin{array}{lll} y_1' = y_1 & & \rightsquigarrow & y_1(t) = \exp(t) \\ y_2' = y_1 y_2 & & \rightsquigarrow & y_2(t) = \exp(\exp(t)) \\ \cdots & & & \cdots \\ y_n' = y_1 \cdots y_n & & \rightsquigarrow & & y_n(t) = \exp(\cdots \exp(t) \cdots) := e_n(t) \end{array}$$

Building a fast-growing ODE, that exists over ${\mathbb R}$:

$$\begin{array}{lll} y_1' = y_1 & & \rightsquigarrow & y_1(t) = \exp(t) \\ y_2' = y_1 y_2 & & \rightsquigarrow & y_2(t) = \exp(\exp(t)) \\ \cdots & & & \cdots \\ y_n' = y_1 \cdots y_n & & \rightsquigarrow & & y_n(t) = \exp(\cdots \exp(t) \cdots) := e_n(t) \end{array}$$

Conjecture (Emile Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

$$e_n(t) = \exp(\cdots \exp(t) \cdots)$$
 (*n* compositions)

Conjecture (Emile Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)

Sequence of **arbitrarily** growing spikes.

$$e_n(t) = \exp(\cdots \exp(t) \cdots)$$
 (*n* compositions)

Conjecture (Emile Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)

$$\frac{1}{2-\cos(t)-\cos(\alpha t)}$$

Sequence of **arbitrarily growing** spikes. But not good enough for us.

$$e_n(t) = \exp(\cdots \exp(t) \cdots)$$
 (*n* compositions)

Conjecture (Emile Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)

$$\frac{1}{2-\cos(t)-\cos(\alpha t)}$$

Theorem (In the paper)

There exists a polynomial $p : \mathbb{R}^d \to \mathbb{R}^d$ such that for any continuous function $f : \mathbb{R}_{\geq 0} \to \mathbb{R}$, we can find $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

satisfies

$$y_1(t) \ge f(t), \qquad \forall t \ge 0.$$

$$e_n(t) = \exp(\cdots \exp(t) \cdots)$$
 (*n* compositions)

Conjecture (Emile Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)

$$\frac{1}{2-\cos(t)-\cos(\alpha t)}$$

Theorem (In the paper)

There exists a polynomial $p : \mathbb{R}^d \to \mathbb{R}^d$ such that for any continuous function $f : \mathbb{R}_{\geq 0} \to \mathbb{R}$, we can find $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

satisfies

$$y_1(t) \ge f(t), \qquad \forall t \ge 0.$$

Note : both results require α to be **transcendental**. Conjecture still open for **rational** coefficients.

Goal

Goal

Goal

Goal

A computability question

Theorem (universal pIVP)

There exists a **fixed** (vector of) polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha, \qquad y'(t) = p(y(t))$$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t)-f(t)|\leqslant \varepsilon(t).$$

Theorem (universal generable function)

There exists a **fixed** generable function $g :\subseteq \mathbb{R}^{d+1} \to \mathbb{R}$ such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

$$|f(t) - g(\alpha, t)| \leq \varepsilon(t) \qquad \forall t \in \mathbb{R}.$$

Question : is α computable from *f* and ε ?

A computability question

Theorem (universal pIVP)

There exists a **fixed** (vector of) polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

 $\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t)-f(t)|\leqslant \varepsilon(t).$

Theorem (universal generable function)

There exists a **fixed** generable function $g :\subseteq \mathbb{R}^{d+1} \to \mathbb{R}$ such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

$$|f(t) - g(\alpha, t)| \leq \varepsilon(t) \qquad \forall t \in \mathbb{R}.$$

Claim (WIP) : $(f, \varepsilon) \mapsto \alpha$ is computable (for some reasonable representation)

This talk

theory of generable functions positive answer to Rubel's open problem

Take home programming with polynomial ODE is nice and fun

Possible development

Each universal ODE defines a map :

$$(f,\varepsilon) \in C^0 \times C^0 \mapsto \alpha \in \mathbb{R}$$

Kolmogorov-like complexity for continuous functions?

Digital vs analog computers

Digital vs analog computers

Computability

Church Thesis

All reasonable models of computation are equivalent.

Complexity

Effective Church Thesis

All reasonable models of computation are equivalent for complexity.

Universal differential equations

Generable functions

Computable functions

(t)

subclass of analytic functions

any computable function

f(x)

Universal differential equations

Generable functions

Computable functions

subclass of analytic functions

any computable function

Almost-Theorem

 $f : [0, 1] \to \mathbb{R}$ is **computable** if and only if there exists $\tau > 1$, $y_0 \in \mathbb{R}^d$ and p polynomial such that

$$y'(0) = y_0, \qquad y'(t) = p(y(t))$$

satisfies

$$|f(x) - y(x + n\tau)| \leq 2^{-n}, \quad \forall x \in [0, 1], \forall n \in \mathbb{N}$$

