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Polynomial Differential Equations
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General Purpose
Analog Computer Differential Analyzer

Reaction networks :
chemical
enzymatic

Newton mechanics polynomial differential
equations :{

y(0)= y0
y ′(t)= p(y(t))

Rich class
Stable (+,×,◦,/,ED)
No closed-form solution
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Example of differential equation
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General Purpose Analog Computer (GPAC)
Shannon’s model of the Differential Analyser

θ̈ + g
` sin(θ) = 0 

y ′1 = y2
y ′2 = −g

` y3
y ′3 = y2y4
y ′4 = −y2y3

⇔


y1 = θ

y2 = θ̇
y3 = sin(θ)
y4 = cos(θ)
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Some motivation

Polynomial ODEs correspond to analog computers :

Differential Analyser British Navy mecanical computer

They are equivalent to Turing machines !
One can characterize P with pODEs
There exists a universal pODE for continuous functions

Take away : polynomial ODEs are a natural programming language.
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Outline

1 The theory of generable functions

2 A universal differential equation
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

x
y1(x)

Note : existence and unicity of y by Cauchy-Lipschitz theorem.
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f (x) = x I identity

y(0) = 0, y ′ = 1 ; y(x) = x
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f (x) = x2 I squaring

y1(0)= 0, y ′1= 2y2 ; y1(x)= x2

y2(0)= 0, y ′2= 1 ; y2(x)= x
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f (x) = xn I nth power

y1(0)= 0, y ′1= ny2 ; y1(x)= xn

y2(0)= 0, y ′2= (n − 1)y3 ; y2(x)= xn−1

. . . . . . . . .
yn(0)= 0, yn= 1 ; yn(x)= x
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f (x) = exp(x) I exponential

y(0)= 1, y ′= y ; y(x)= exp(x)
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f (x) = sin(x) or f (x) = cos(x) I sine/cosine

y1(0)= 0, y ′1= y2 ; y1(x)= sin(x)
y2(0)= 1, y ′2= −y1 ; y2(x)= cos(x)
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f (x) = tanh(x) I hyperbolic tangent

y(0)= 0, y ′= 1− y2 ; y(x)= tanh(x)

x
tanh(x)
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f (x) = 1
1+x2 I rational function

f ′(x) = −2x
(1+x2)2 = −2xf (x)2

y1(0)= 1, y ′1= −2y2y2
1 ; y1(x)= 1

1+x2

y2(0)= 0, y ′2= 1 ; y2(x)= x
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f = g ± h I sum/difference

(f ± g)′ = f ′ ± g′

assume :
z(0)= z0, z ′= p(z) ; z1= g
w(0)= w0, w ′= q(w) ; w1= h

then :
y(0)= z0,1 + w0,1, y ′= p1(z)± q1(w) ; y= z1 ± w1
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f = gh I product

(gh)′ = g′h + gh′

assume :
z(0)= z0, z ′= p(z) ; z1= g
w(0)= w0, w ′= q(w) ; w1= h

then :
y(0)= z0,1w0,1, y ′= p1(z)w1 + z1q1(w) ; y= z1w1
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f = 1
g I inverse

f ′ = −g′

g2 = −g′f 2

assume :
z(0)= z0, z ′= p(z) ; z1= g

then :

y(0)= 1
z0,1

, y ′= −p1(z)y2 ; y= 1
z1
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f =
∫

g I integral

assume :
z(0)= z0, z ′= p(z) ; z1= g

then :
y(0)= 0, y ′= z1 ; y=

∫
z1
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f = g′ I derivative

f ′ = g′′ = (p1(z))′ = ∇p1(z) · z ′

assume :
z(0)= z0, z ′= p(z) ; z1= g

then :
y(0)= p1(z0), y ′= ∇p1(z) · p(z) ; y= z ′′1

6 / 22



Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f = g ◦ h I composition

(z ◦ h)′ = (z ′ ◦ h)h′ = p(z ◦ h)h′

assume :
z(0)= z0, z ′= p(z) ; z1= g
w(0)= w0, w ′= q(w) ; w1= h

then :
y(0)= z(w0), y ′= p(y)z1 ; y= z ◦ h
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f = g ◦ h I composition

(z ◦ h)′ = (z ′ ◦ h)h′ = p(z ◦ h)h′

assume :
z(0)= z0, z ′= p(z) ; z1= g
w(0)= w0, w ′= q(w) ; w1= h

then :
y(0)= z(w0), y ′= p(y)z1 ; y= z ◦ h

Is this coefficient in K?
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f = g ◦ h I composition

(z ◦ h)′ = (z ′ ◦ h)h′ = p(z ◦ h)h′

assume :
z(0)= z0, z ′= p(z) ; z1= g
w(0)= w0, w ′= q(w) ; w1= h

then :
y(0)= z(w0), y ′= p(y)z1 ; y= z ◦ h

Is this coefficient in K? Fields with this property are called generable.
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f ′ = tanh ◦f I Non-polynomial differential equation

f ′′ = (tanh′ ◦f )f ′ = (1− (tanh ◦f )2)f ′

y1(0)= f (0), y ′1= y2 ; y1(x)= f (x)
y2(0)= tanh(f (0)), y ′2= (1− y2

2 )y2 ; y2(x)= tanh(f (x))
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f (0) = f0, f ′ = g ◦ f I Initial Value Problem (IVP)

f ′ = g′′ = (p1(z))′ = ∇p1(z) · z ′

assume :
z(0)= z0, z ′= p(z) ; z1= g

then :
y(0)= p1(z0), y ′= ∇p1(z) · p(z) ; y= z ′′1
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Generable functions : a first summary

Nice theory for the class of total and univariate generable functions :
analytic
contains polynomials, sin, cos, tanh, exp

stable under ±,×, /, ◦ and Initial Value Problems (IVP)
technicality on the field K of coefficients for stability under ◦

Limitations :
total functions
univariate

7 / 22



Generable functions : a first summary

Nice theory for the class of total and univariate generable functions :
analytic
contains polynomials, sin, cos, tanh, exp

stable under ±,×, /, ◦ and Initial Value Problems (IVP)
technicality on the field K of coefficients for stability under ◦

Limitations :
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Generable functions (generalization)

Definition
f : X ⊆ Rn → R is generable if X is open
connected and ∃d ,p, x0, y0, y such that

y(x0) = y0, Jy (x) = p(y(x))

and f (x) = y1(x) for all x ∈ X .

Jy (x) = Jacobian matrix of y at x

Types
n ∈ N : input dimension
d ∈ N : dimension
p ∈ Kd×d [Rd ] :
polynomial matrix
x0 ∈ Kn

y0 ∈ Kd , y : X → Rd

Notes :
Partial differential equation !
Unicity of solution y ...
... but not existence (ie you have to show it exists)
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Generable functions (generalization)

Definition
f : X ⊆ Rn → R is generable if X is open
connected and ∃d ,p, x0, y0, y such that

y(x0) = y0, Jy (x) = p(y(x))

and f (x) = y1(x) for all x ∈ X .

Jy (x) = Jacobian matrix of y at x

Types
n ∈ N : input dimension
d ∈ N : dimension
p ∈ Kd×d [Rd ] :
polynomial matrix
x0 ∈ Kn

y0 ∈ Kd , y : X → Rd

Example : f (x1, x2) = x1x2
2 (n = 2,d = 3) I monomial

y(0,0) =

0
0
0

 , Jy =

y2
3 3y2y3
1 0
0 1

 ; y(x) =

x1x2
2

x1
x2
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Generable functions (generalization)

Definition
f : X ⊆ Rn → R is generable if X is open
connected and ∃d ,p, x0, y0, y such that

y(x0) = y0, Jy (x) = p(y(x))

and f (x) = y1(x) for all x ∈ X .

Jy (x) = Jacobian matrix of y at x

Types
n ∈ N : input dimension
d ∈ N : dimension
p ∈ Kd×d [Rd ] :
polynomial matrix
x0 ∈ Kn

y0 ∈ Kd , y : X → Rd

Example : f (x1, x2) = x1x2
2 I monomial

y1(0,0)= 0, ∂x1y1= y2
3 , ∂x2y1= 3y2y3 ; y1(x) = x1x2

2
y2(0,0)= 0, ∂x1y2= 1, ∂x2y2= 0 ; y2(x) = x1
y3(0,0)= 0, ∂x1y3= 0, ∂x2y3= 1 ; y3(x) = x2

This is tedious !
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Generable functions (generalization)

Definition
f : X ⊆ Rn → R is generable if X is open
connected and ∃d ,p, x0, y0, y such that

y(x0) = y0, Jy (x) = p(y(x))

and f (x) = y1(x) for all x ∈ X .

Jy (x) = Jacobian matrix of y at x

Types
n ∈ N : input dimension
d ∈ N : dimension
p ∈ Kd×d [Rd ] :
polynomial matrix
x0 ∈ Kn

y0 ∈ Kd , y : X → Rd

Last example : f (x) = 1
x for x ∈ (0,∞) I inverse function

y(1)= 1, ∂xy= −y2 ; y(x) = 1
x
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Generable functions : summary

Nice theory for the class of multivariate generable functions (over
connected domains) :

analytic
contains polynomials, sin, cos, tanh, exp

stable under ±,×, /, ◦ and Initial Value Problems (IVP)
technicality on the field K of coefficients for stability under ◦

Natural questions :
analytic→ isn’t that very limited?
can we generable all analytic functions?

Riemann Γ and ζ are not generable.
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Generable functions : summary

Nice theory for the class of multivariate generable functions (over
connected domains) :

analytic
contains polynomials, sin, cos, tanh, exp

stable under ±,×, /, ◦ and Initial Value Problems (IVP)
technicality on the field K of coefficients for stability under ◦

Natural questions :
analytic→ isn’t that very limited?
can we generable all analytic functions? No

Riemann Γ and ζ are not generable.
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Computing with generable functions

Generable functions

y(0) = y0 y ′ = p(y)

f (x) = y1(x) x ∈ R

x
y1(x)

sin, cos, exp, log, ... ( Analytic

Analog computable function

y(0) = (x ,0, . . . ,0) y ′ = p(y)

|f (x)− y1(t)| 6 2−t

t

f (x)

x

y1(t)

Turing powerful
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Computing with generable functions

Generable functions

y(0) = y0 y ′ = p(y)

f (x) = y1(x) x ∈ R

x
y1(x)

sin, cos, exp, log, ... ( Analytic

Analog computable function

y(0) = (x ,0, . . . ,0) y ′ = p(y)

|f (x)− y1(t)| 6 2−t

t

f (x)

x

y1(t)

Turing powerful

Theorem (Bournez et al., 2007)

f : [a,b]→ R is computable a iff f is analog computable.

a. In the sense of Computable Analysis.
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Computing with generable functions

Generable functions

y(0) = y0 y ′ = p(y)

f (x) = y1(x) x ∈ R

x
y1(x)

sin, cos, exp, log, ... ( Analytic

Analog computable function

y(0) = (x ,0, . . . ,0) y ′ = p(y)

|f (x)− y1(t)| 6 2−t

t

f (x)

x

y1(t)

Turing powerful

Question : reformulate analog computability with generable functions?
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Computing with generable functions

Generable functions

y(0) = y0 y ′ = p(y)

f (x) = y1(x) x ∈ R

x
y1(x)

sin, cos, exp, log, ... ( Analytic

Analog computable function

y(0) = (x ,0, . . . ,0) y ′ = p(y)

|f (x)− y1(t)| 6 2−t

t

f (x)

x

y1(t)

Turing powerful

Theorem
f : [a,b]→ R is computable a iff ∃ a generable function g such that

|f (x)− g(x , t)| 6 2−t for all x ∈ [a,b] and t > 0.

a. In the sense of Computable Analysis.
10 / 22



It is all about the coefficients

Theorem
f : [a,b]→ R is computable iff ∃ a generable function g such that

|f (x)− g(x , t)| 6 2−t for all x ∈ [a,b] and t > 0.

Which coefficients are used?

We need to talk about K...
original proof : unclear, something like Q(π,e,others?)

more recent proof : RG = smallest generable field
Theorem
Q ( RG ⊆ RP = polytime reals.

this year : Q is enough ! (and we can even characterize polytime)

What happens if we take K = R?
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Which coefficients are used? We need to talk about K...
original proof : unclear, something like Q(π,e,others?)

more recent proof : RG = smallest generable field
Theorem
Q ( RG ⊆ RP = polytime reals.

this year : Q is enough ! (and we can even characterize polytime)
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Outline

1 The theory of generable functions

2 A universal differential equation
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Universal differential algebraic equation (Rubel)

x
y1(x)

Theorem (Rubel, 1981)

For any f ∈ C0(R) and ε ∈ C0(R,R>0), there exists a solution y : R→ R
to

3y ′4y
′′
y
′′′′2 −4y ′4y

′′′2
y
′′′′

+ 6y ′3y
′′2

y
′′′

y
′′′′

+ 24y ′2y
′′4

y
′′′′

−12y ′3y
′′
y
′′′3 − 29y ′2y

′′3
y
′′′2

+ 12y
′′7

= 0

such that ∀t ∈ R,
|y(t)− f (t)| 6 ε(t).
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x
y1(x)

Open Problem (Rubel)
Can we have unicity of
the solution with initial
conditions?
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Rubel’s ("disappointing") proof in one slide

Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1− t2)2f
′′

(t) + 2tf ′(t) = 0.

For any a,b, c ∈ R, y(t) = cf (at + b) satisfies
Can glue together arbitrary many such pieces
Can arrange so that

∫
f is solution : piecewise pseudo-linear

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0
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The problem with Rubel’s DAE

The solution y is not unique, even with added initial conditions :

p(y , y ′, . . . , y (k)) = 0, y(0) = α0, y ′(0) = α1, . . . , y (k)(0) = αk

In fact, this is fundamental for Rubel’s proof to work !

Rubel’s statement : this DAE is universal
More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y ′ = p(y) ?
Note : explicit polynomial ODE⇒ unique solution
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Universal explicit ordinary differential equation

x
y1(x)

Theorem (universal pIVP)

There exists a fixed (vector of) polynomial p such that for any f ∈ C0(R)
and ε ∈ C0(R,R>0), there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).
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Universal explicit ordinary differential equation

x
y1(x)

Notes :
system of ODEs,
y must be analytic,
we need d ≈ 300.

Theorem (universal pIVP)

There exists a fixed (vector of) polynomial p such that for any f ∈ C0(R)
and ε ∈ C0(R,R>0), there exists α ∈ Rd such that
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Universal explicit ordinary differential equation

x
y1(x)

Theorem (universal generable function)

There exists a fixed generable function g :⊆ Rd+1 → R such that for
any f ∈ C0(R) and ε ∈ C0(R,R>0), there exists α ∈ Rd such that

|f (t)− g(α, t)| 6 ε(t) ∀t ∈ R.

Note : α is usually transcendental, and typically not in RG...
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Universal DAE, again but better

x
y1(x)

Corollary of main result
There exists a fixed k and nontrivial polynomial p such that for any
f ∈ C0(R) and ε ∈ C0(R,R>0), there exists α0, . . . , αk ∈ R such that

p(y , y ′, . . . , y (k)) = 0, y(0) = α0, y ′(0) = α1, . . . , y (k)(0) = αk

has a unique analytic solution y : R→ R and ∀t ∈ R,

|y(t)− f (t)| 6 ε(t).
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Proof by picture (simplified)
binary stream generator : digits of α ∈ R

t

1
0

1
0

1
0

1
0

f (α, µ, λ, t) = 1
2 + 1

2 tanh(µ sin(2απ4round(t−1/4,λ) + 4π/3))

It’s horribly generable

round is a mysterious rounding function... 18 / 22
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dyadic stream generator : di = mi2−di , ai = 9i +
∑

j<i dj

f (α, γ, t) = sin(2απ2round(t−1/4,γ)))
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Proof by picture (simplified)

t

1
0

1
0

1
0

1
0

t

d0

a0

d1

a1

d2

a2

d3

a3

copy signal copy signal copy signal copy signal

This copy operation is the “non-trivial” part.

18 / 22



Proof by picture (simplified)
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We can do almost piecewise constant functions...
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Proof by picture (simplified)

t

We can do almost piecewise constant functions...
...that are bounded by 1...
...and have super slow changing frequency.
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Proof by picture (simplified)

t

We can do almost piecewise constant functions...
...that are bounded by 1...
...and have super slow changing frequency.

How do we go to arbitrarily large and growing functions? Can a
polynomial ODE even have arbitrary growth?

18 / 22



An old question on growth

Building a fast-growing ODE, that exists over R :

y ′1 = y1 ; y1(t) = exp(t)

y ′2 = y1y2 ; y2(t) = exp(exp(t))
. . . . . .
y ′n = y1 · · · yn ; yn(t) = exp(· · · exp(t) · · · ):= en(t)

Conjecture (Emile Borel, 1899)

With n variables, cannot do better than Ot (en(Atk )).

Counter-example (Vijayaraghavan, 1932)

1
2− cos(t)− cos(αt)

19 / 22
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An old question on growth

en(t) = exp(· · · exp(t) · · · ) (n compositions)
Conjecture (Emile Borel, 1899)

With n variables, cannot do better than Ot (en(Atk )).

Counter-example (Vijayaraghavan, 1932)

1
2− cos(t)− cos(αt)

t

Sequence of arbitrarily
growing spikes.
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With n variables, cannot do better than Ot (en(Atk )).

Counter-example (Vijayaraghavan, 1932)

1
2− cos(t)− cos(αt)

t

Sequence of arbitrarily
growing spikes. But not
good enough for us.
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There exists a polynomial p : Rd → Rd such that for any continuous
function f : R>0 → R, we can find α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))
satisfies

y1(t) > f (t), ∀t > 0.

Note : both results require α to be transcendental. Conjecture still
open for rational coefficients.

19 / 22



An old question on growth

en(t) = exp(· · · exp(t) · · · ) (n compositions)
Conjecture (Emile Borel, 1899)

With n variables, cannot do better than Ot (en(Atk )).

Counter-example (Vijayaraghavan, 1932)

1
2− cos(t)− cos(αt)

Theorem (In the paper)

There exists a polynomial p : Rd → Rd such that for any continuous
function f : R>0 → R, we can find α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))
satisfies

y1(t) > f (t), ∀t > 0.

Note : both results require α to be transcendental. Conjecture still
open for rational coefficients.

19 / 22



Proof gem : iteration with differential equations

Goal

Iterate f with a GPAC : y(n) ≈ f [n]([x ])

t
x

f (x)

f [2](x)

0 1
2

1 3
2

2y ′≈0

z′≈f (y)−z

y ′≈z−y

z′≈0
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A computability question

Theorem (universal pIVP)

There exists a fixed (vector of) polynomial p such that for any f ∈ C0(R)
and ε ∈ C0(R,R>0), there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).

Theorem (universal generable function)

There exists a fixed generable function g :⊆ Rd+1 → R such that for
any f ∈ C0(R) and ε ∈ C0(R,R>0), there exists α ∈ Rd such that

|f (t)− g(α, t)| 6 ε(t) ∀t ∈ R.

Question : is α computable from f and ε?
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There exists a fixed generable function g :⊆ Rd+1 → R such that for
any f ∈ C0(R) and ε ∈ C0(R,R>0), there exists α ∈ Rd such that

|f (t)− g(α, t)| 6 ε(t) ∀t ∈ R.

Claim (WIP) : (f , ε) 7→ α is computable (for some reasonable
representation)

21 / 22



Conclusion

This talk
theory of generable functions

positive answer to Rubel’s open problem

Take home
programming with polynomial ODE is nice and fun

Possible development

Each universal ODE defines a map :

(f , ε) ∈ C0 × C0 7→ α ∈ R

Kolmogorov-like complexity for continuous functions?
22 / 22



Digital vs analog computers

VS
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Church Thesis

Computability

discrete

Turing
machine

boolean circuitslogic

recursive
functions

lambda
calculus

quantum analog
continuous

Church Thesis
All reasonable models of computation are equivalent.
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Church Thesis

Complexity

discrete

Turing
machine

boolean circuitslogic

recursive
functions

lambda
calculus

quantum analog
continuous

>
?

?

Effective Church Thesis
All reasonable models of computation are equivalent for complexity.
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Universal differential equations

Generable functions

x
y1(x)

subclass of analytic functions

Computable functions

t

f (x)

x

y1(t)

any computable function

x
y1(x)
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A new notion of computability

Almost-Theorem

f : [0,1] → R is computable if and only if there exists τ > 1, y0 ∈ Rd

and p polynomial such that

y ′(0) = y0, y ′(t) = p(y(t))

satisfies

|f (x)− y(x + nτ)| 6 2−n, ∀x ∈ [0,1],∀n ∈ N

t
0 1 τ τ + 1 2τ 2τ + 1 3τ

y(t)
f (t mod τ)
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