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The meaning of “analog”

Historically: “analog” = by analogy, i.e. same evolution

m
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F (t)

z

R L

CqV (t)

F = mz̈ + bż + kz ⇔ V = Lq̈ + Rq̇ + 1
C q

Nowadays: “analog” = continuous/opposite of digital

⇒ orthogonal concepts
⇒ even continuous/discrete unclear: hybrid exists
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Some analog machines

Difference Engine

Linear Planimeter

Slide Rule

Antikythera mechanism
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Some analog machines

ENIAC Admiralty Fire Control Table

Differential Analyzer Kelvin’s Tide Predicter
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Classifying machines/models

Not general purposeMathematical modelComputability model

space

time

discrete

continuous

laptop server
supercomputer

Digital Circuits
ENIAC Commodore

Discrete
Dynamical System

yn+1 = f (yn)Turing machine

Differential Analyzer
Analog Circuits

Planimeter
Antikythera Tide Predicter

AFCT
Difference Engine

Slide Rule

Continuous
Dynamical System

y ′ = f (y)GPAC y ′ = p(y)
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The many many models

space

time

discrete

continuous

Turing machines
Lambda calculus

Recursive functions
Post systems

Cellular automata

Finite state automata
Population protocols

Chemical reaction networks

Petri nets

Neural networks
Deep learning models

Blum Shub Smale machines
Hybrid systems

Natural computing influence dynamics
Signal machines

Continuous Automata

Shannon’s GPAC
Hopfield’s neural networks

Physarum computing

Reaction-Diffusion Systems

Hybrid Systems Timed automata
Large population protocols

Black hole models

R−recursive functions

Chemical reaction networks

Boolean difference equation models
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Making sense of all these models

discrete

Turing
machines

boolean circuitslogic

recursive
functions

lambda
calculus

quantum analog

continuous

?

“Church” thesis
All discrete models are Turing machine-computable.
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Turing
machines

boolean circuitslogic

recursive
functions

lambda
calculus

quantum

analog

continuous

?

“Church” thesis
All discrete models are Turing machine-computable.
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Making sense of all these models

discrete

Turing
machines

boolean circuitslogic

recursive
functions

lambda
calculus

quantum analog
continuous

?

“Church” thesis ?
All models are Turing machine-computable.

Clearly wrong: a single real number (Ω of Chaitin) is super-Turing pow-
erful.
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Making sense of all these models

discrete

Turing
machines

boolean circuitslogic

recursive
functions

lambda
calculus

quantum analog
continuous

?

“Church” thesis ?
All physical machine-based models are Turing machine-computable.

Several issues with that statement.
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Machine vs mathematical model

physical
machine

mathematical
model

abstraction

computability
results

proof

physical
truth

interpretation

?

I mathematical model = abstraction of a system
I properties of model 6= properties of system
I conclusion might be quantitatively or qualitatively wrong
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Black hole model and hypercomputations

I machine: the universe
I model: general relativity

Picture black hole

Informal theorem
If slowly rotating Kerr black holes exists, one can check consistency of
ZFC or solve the Turing halting problem in finite time.

I conclusion: hypercomputations are possible ?

Common occurrence in analog models: non-computable reals, Zeno
phenomena, ...
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Back to the Church thesis

Distinguish machines from models:

Actual Church thesis
Every effective computation can be carried out by a Turing machine,
and vice versa.

⇒ effective = systematic method in logic/mathematics/CS

Physical Church Turing thesis/Thesis M

Whatever can be calculated by a machine (with finite data/instructions)
is Turing machine-computable.

⇒ machine that conforms to the physical laws

Alternative thesis
All reasonable models of computations are equivalent to Turing
machines.
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Chemical Reaction Networks (CRNs)

A reaction system is a finite set of
I molecular species y1, . . . , yn

I reactions of the form
∑

i aiyi
f−→
∑

i biyi (ai ,bi ∈ N, f = rate)

Example (any resemblance to chemistry is purely coincidental):

2H + O → H2O
C + O2 → CO2

Semantics (assuming law of mass action):

I discrete
I differential
I stochastic

Observation
A system/machine can have several models, all useful, depending on
the level of abstraction.
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Example (any resemblance to chemistry is purely coincidental):

2H + O → H2O
C + O2 → CO2

Semantics (assuming law of mass action):

I discrete→
I differential
I stochastic

yi = molecule count
close to population protocols

Observation
A system/machine can have several models, all useful, depending on
the level of abstraction.
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Chemical Reaction Networks (CRNs)

A reaction system is a finite set of
I molecular species y1, . . . , yn
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Example (any resemblance to chemistry is purely coincidental):

2H + O → H2O
C + O2 → CO2

Semantics (assuming law of mass action):

I discrete
I differential→
I stochastic
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polynomial ODEs

Observation
A system/machine can have several models, all useful, depending on
the level of abstraction.
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f−→
∑

i biyi (ai ,bi ∈ N, f = rate)

Example (any resemblance to chemistry is purely coincidental):

2H + O → H2O
C + O2 → CO2

Semantics (assuming law of mass action):

I discrete
I differential
I stochastic→

yi = probability distribution
stochastic ODEs

Observation
A system/machine can have several models, all useful, depending on
the level of abstraction.
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Are analog systems capable of hypercomputations?

Examples: Black holes, signal machines, hybrid systems

Let’s do something
useful with it!

Something is wrong,
change the model.

Let’s study it!
Especially if it
doesn’t exist.

Even if it exists,
it cannot be verified.

Possible conclusion
All reasonable models of computations are equivalent to Turing
machines. Hypercomputability results can help us correct models.
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General Purpose Analog Computer (GPAC)

Differential analyzer

k k

+ u+vu
v

× uvu
v

∫ ∫
uu

General Purpose Analog
Computer, Shannon 1936

y(0) = y0, y ′(t) = p(y(t))

Polynomial Differential
Equation, Graça 2004

t
y1(t)
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Example of dynamical system

θ

`

m

g

×
∫ ∫

×
∫−g

`

××−1
∫

y1
y2

y3 y4

θ̈ + g
` sin(θ) = 0


y ′1 = y2
y ′2 = −g

l y3
y ′3 = y2y4
y ′4 = −y2y3

⇔


y1 = θ

y2 = θ̇
y3 = sin(θ)
y4 = cos(θ)

Remark on “analog”

Continuous and analogy between circuits/mechanics/ODEs.
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Computing with differential equations

Generable functions{
y(0)= y0

y ′(x)= p(y(x))
x ∈ R

f (x) = y1(x)

x
y1(x)

Shannon’s notion

sin, cos, exp, log, ...

Considered "weak": not Γ and ζ
Only analytic functions

Computable{
y(0)= q(x)
y ′(t)= p(y(t))

x ∈ R
t ∈ R+

f (x) = lim
t→∞

y1(t)

t

f (x)

x

y1(t)

Modern notion

sin, cos, exp, log, Γ, ζ, ...

Turing powerful
[Bournez et al., 2007]
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More formally

t

1

−1

Yes

No

y1(t)

y1(t)

y1(t)
x

Theorem (Bournez et al, 2010)

This is equivalent to a Turing machine.

I analog computability theory
I purely continuous characterization of classical computability
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Can Analog Machines Compute Faster?

Computability

discrete

Turing
machine

boolean circuitslogic

recursive
functions

lambda
calculus

quantum analog
continuous

Church Thesis
All reasonable models of computation are equivalent.
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Can Analog Machines Compute Faster?

Complexity

discrete

Turing
machine

boolean circuitslogic

recursive
functions

lambda
calculus

quantum analog
continuous

>
?

?

Effective Church Thesis
All reasonable models of computation are equivalent for complexity.
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Complexity of analog systems

I Turing machines: T (x) = number of steps to compute on x

I GPAC:

time contraction problem→ open problem

Tentative definition

y(0) = x y ′ = p(y)

t

f (x)

x

y1(t)
;

z(t) = y(et )

t

f (x)

x

z1(t)

Something is wrong...

All functions have constant
time complexity.

w(t) = y(eet
)

t

f (x)

x

w1(t)
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w(t) = y(eet
)

t

f (x)

x

w1(t)
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Time-space correlation of the GPAC

y(0) = q(x) y ′ = p(y)

t

f (x)

q(x)

y1(t)
;

z(t) = y(et )

t

f (x)

q̃(x)

z1(t)

Observation
Time scaling costs “space”.

;

Time complexity for the GPAC
must involve time and space !

extra component: w(t) = et

t

w(t)
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Complexity in the analog world

Complexity measure: length of the curve

x y(10)

=

x y(1)

Time acceleration: same curve = same complexity !

x y(1)

�
x y(1)

Same time, different curves: different complexity !
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Analog complexity

ANALOG-PTIME ANALOG-PR

`(t)

1

−1
poly(|w |)

w∈L

w /∈L

y1(t)

y1(t)

y1(t)ψ(w)

`(t)

f (x)

x

y1(t)

Theorem

I L ∈ PTIME of and only if L ∈ ANALOG-PTIME

I f : [a,b]→ R computable in polynomial time⇔ f ∈ ANALOG-PR

I Analog complexity theory based on length
I Time of Turing machine⇔ length of the GPAC
I Purely continuous characterization of PTIME

I Only rational coefficients needed
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Does a balance scale compute a function?

Inputs: x , y ∈ [0,+∞)

x y

x y
x

y x

y

x = yx > y x < y

Output: sign(x − y) ?

Complexity: ???
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Physical Oracles (Beggs, Costa, Poças and Tucker)

Model: Turing Machine with “physical oracle”
Oracle: performs physical experiments with time limit
Outcomes: Yes, No, Timeout

Example: α ∈ [0,1] unknown, x programmable

Turing
machine x α

x

αx

α
x

α

x

α

Queries:

I x = 1
2 , T = 1 second ; Yes

I x = 3
4 , T = 1 second ; No

I x = 5
8 , T = 1 second ; Timeout

I x = 5
8 , T = 2 seconds ; Yes
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Physical Oracles (Beggs, Costa, Poças and Tucker)

Model: Turing Machine with “physical oracle”
Oracle: performs physical experiments with time limit
Outcomes: Yes, No, Timeout

x α x α

Wheatstone bridge
or

Brewster’s angle
experiment

Experiments types:
I Two-sided: time C

|x−α|d , Yes/No/Timeout

I One-sided: time C
|x−α|d , Yes/Timeout

I Vanishing: Yes (if x 6= α)/Timeout, can test if |x − α| 6 |x ′ − α|

Precision: infinite, unbounded, fixed
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x α x α

Wheatstone bridge
or

Brewster’s angle
experiment

Experiments types:
I Two-sided: time C

|x−α|d , Yes/No/Timeout

I One-sided: time C
|x−α|d , Yes/Timeout

I Vanishing: Yes (if x 6= α)/Timeout, can test if |x − α| 6 |x ′ − α|
Precision: infinite, unbounded, fixed

Theorem (Beggs, Costa, Poças and Tucker)

For a broad class of oracles + PTIME machine, complexity bounded
by1 BPP//log?, or P/poly if non-computable analog-digital interface.

1BPP + non-uniform log advise.
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Summary

I analog: analogy/continuous, orthogonal meanings
I machines vs models: need to distinguish concepts
I “Church” thesis: subtle, several variants
I hypercomputability: various interpretations
I some reasonable models exists: GPAC, equivalent to TM
I complexity: difficult to define in general, several approaches

x α

Wheatstone bridge
or

Brewster’s angle
experiment
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