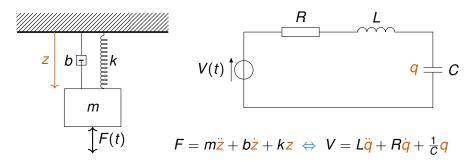
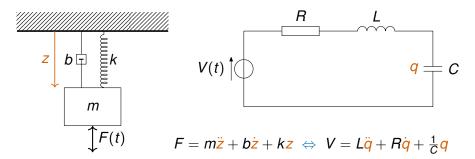
A Survey on Analog Models of Computation

Amaury Pouly Joint work with Olivier Bournez

Université de Paris, IRIF, CNRS, F-75013 Paris, France


30 june 2020

Survey: https://arxiv.org/abs/1805.05729


The meaning of "analog"

Historically: "analog" = by analogy, *i.e.* same evolution

The meaning of "analog"

Historically: "analog" = by analogy, *i.e.* same evolution

Nowadays: "analog" = continuous/opposite of digital

- ⇒ orthogonal concepts
- ⇒ even continuous/discrete unclear: hybrid exists

Some analog machines

Difference Engine

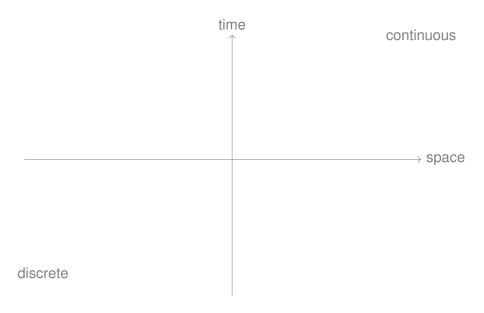
Linear Planimeter

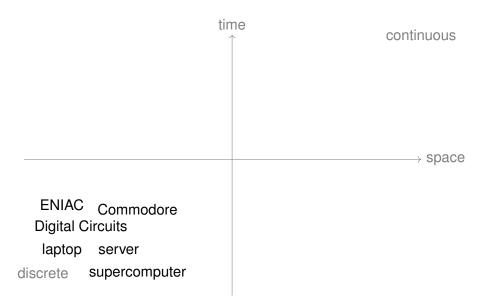
Slide Rule

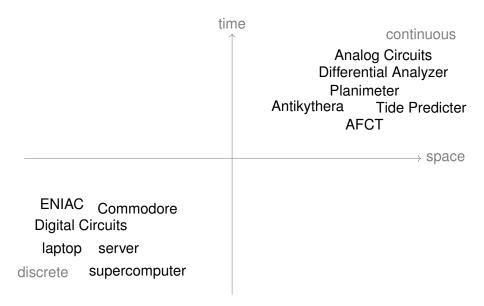
Antikythera mechanism

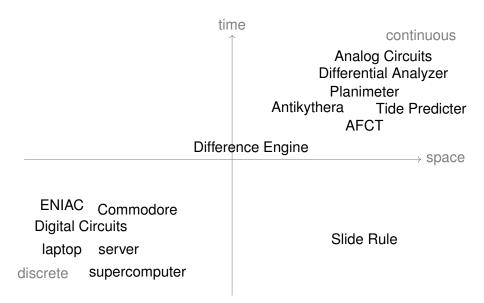
Some analog machines

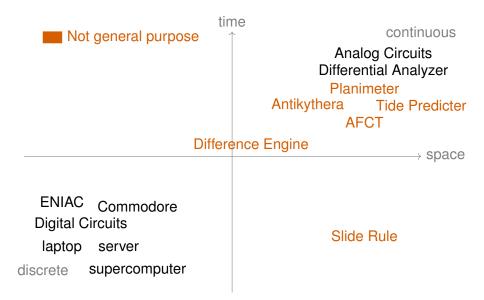
ENIAC

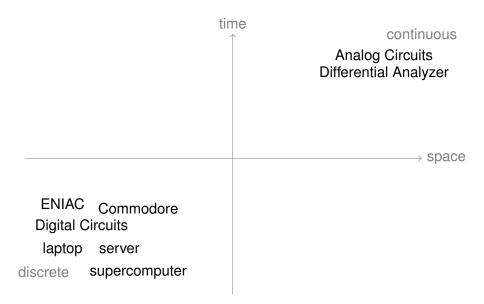

Differential Analyzer

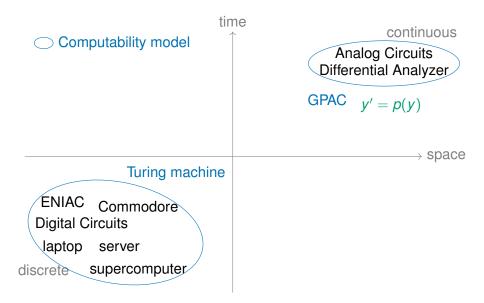



Admiralty Fire Control Table

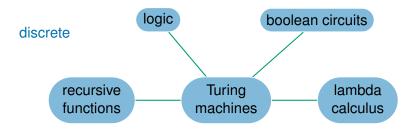



Kelvin's Tide Predicter





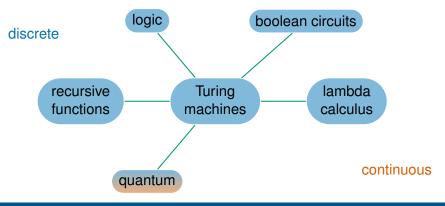
ti	ime	-
Mathematical model	$ \begin{array}{c} \text{continuous} \\ \text{Analog Circuits} \\ \text{Differential Analyzer} \\ \text{Continuous} y' = f(y) \\ \text{Dynamical System} \end{array} $	
Discrete $y_{n+1} = f(y_n)$ Dynamical SystemENIACCommodoreDigital Circuitslaptopserverdiscretesupercomputer	→ spac	e



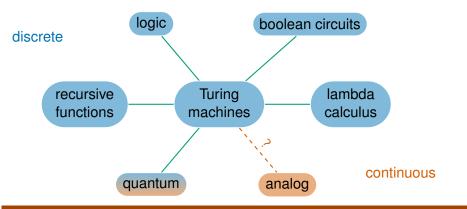
	time	continuous
		→ space
Population protoco Finite state automata Turing machines Petri nets Lambda o Recursive functions discrete Post sys Cellular au Chemical reaction net	s calculus stems utomata	

	tin	ne continuous
		→ space
Populatio	n protocols	Continuous Automata
Finite state a	utomata	Deep learning models
Turing	machines	Neural networks
Petri nets L	ambda calculus.	Blum Shub Smale machines
Recursive funct	tions	Hybrid systems
discrete	Post systems	Natural computing influence dynamics
	ellular automata	Signal machines
Chemical rea	action networks	

	time
Population protocols	Continuous Automata
Finite state automata	Deep learning models
Turing machines	Neural networks
Petri nets Lambda calcul	us Blum Shub Smale machines
Recursive functions	Hybrid systems
discrete Post systems	Natural computing influence dynamics
Cellular automa	ata Signal machines
Chemical reaction network	S

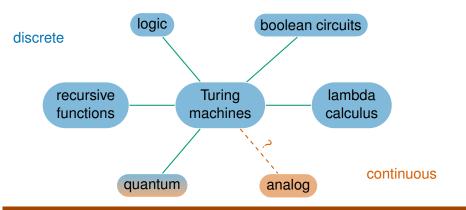

time				
		\mathbb{R} -recursive functions continuous		
		Large population protocols		
		Hybrid Systems Timed automata		
		Physarum computing		
Boolean difference equation models		Shannon's GPAC Black hole models		
		Hopfield's neural networks		
		Reaction-Diffusion Systems		
		Chemical reaction networks > space		
		7 00000		
Population protocols		Continuous Automata		
Finite sta	ate automata	Deep learning models		
Turing machines		Neural networks		
Petri nets Lambda calculus		Blum Shub Smale machines		
Recursive functions		Hybrid systems		
discrete	Post systems	Natural computing influence dynamics		
	Cellular automata	Signal machines		
Chemica	l reaction networks			

continuous


"Church" thesis

All discrete models are Turing machine-computable.

"Church" thesis

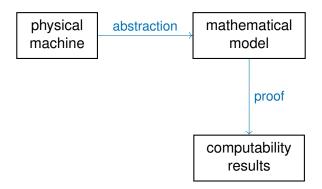

All discrete models are Turing machine-computable.

"Church" thesis ?

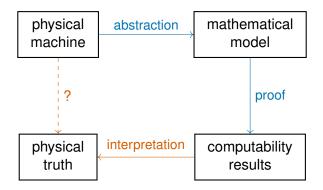
All models are Turing machine-computable.

Clearly **wrong**: a single real number (Ω of Chaitin) is super-Turing powerful.

"Church" thesis ?


All physical machine-based models are Turing machine-computable.

Several issues with that statement.


physical machine

mathematical model = abstraction of a system

- mathematical model = abstraction of a system
- ▶ properties of model ≠ properties of system

- mathematical model = abstraction of a system
- ▶ properties of model ≠ properties of system
- conclusion might be quantitatively or qualitatively wrong

Black hole model and hypercomputations

- machine: the universe
- model: general relativity

Picture black hole

Black hole model and hypercomputations

- machine: the universe
- model: general relativity

Picture black hole

Informal theorem

If slowly rotating Kerr black holes exists, one can check consistency of ZFC or solve the Turing halting problem in finite time.

conclusion: hypercomputations are possible ?

Black hole model and hypercomputations

- machine: the universe
- model: general relativity

Picture black hole

Informal theorem

If slowly rotating Kerr black holes exists, one can check consistency of ZFC or solve the Turing halting problem in finite time.

conclusion: hypercomputations are possible ?

Common occurrence in analog models: non-computable reals, Zeno phenomena, ...

Back to the Church thesis

Distinguish machines from models:

Actual Church thesis

Every effective computation can be carried out by a Turing machine, and vice versa.

 \Rightarrow effective = systematic method in logic/mathematics/CS

Back to the Church thesis

Distinguish machines from models:

Actual Church thesis

Every effective computation can be carried out by a Turing machine, and vice versa.

⇒ effective = systematic method in logic/mathematics/CS

Physical Church Turing thesis/Thesis M

Whatever can be calculated by a machine (with finite data/instructions) is Turing machine-computable.

 \Rightarrow machine that conforms to the physical laws

Back to the Church thesis

Distinguish machines from models:

Actual Church thesis

Every effective computation can be carried out by a Turing machine, and vice versa.

⇒ effective = systematic method in logic/mathematics/CS

Physical Church Turing thesis/Thesis M

Whatever can be calculated by a machine (with finite data/instructions) is Turing machine-computable.

 \Rightarrow machine that conforms to the physical laws

Alternative thesis

All **reasonable** models of computations are equivalent to Turing machines.

A reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example (any resemblance to chemistry is purely coincidental):

A reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example (any resemblance to chemistry is purely coincidental):

2H	+	0	\rightarrow	H_2O
С	+	O ₂	\rightarrow	CO_2

Semantics (assuming law of mass action):

- discrete
- differential
- stochastic

A reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example (any resemblance to chemistry is purely coincidental):

2H	+	0	\rightarrow	H_2O
С	+	O ₂	\rightarrow	CO_2

Semantics (assuming law of mass action):

• discrete \rightarrow

 y_i = molecule count

differential

close to population protocols

stochastic

A reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example (any resemblance to chemistry is purely coincidental):

2H	+	0	\rightarrow	H_2O
С	+	O ₂	\rightarrow	CO_2

Semantics (assuming law of mass action):

discrete

 $y_i = \text{concentration}$

• differential \rightarrow

polynomial ODEs

stochastic

A reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example (any resemblance to chemistry is purely coincidental):

2H	+	0	\rightarrow	H_2O
С	+	O ₂	\rightarrow	CO_2

Semantics (assuming law of mass action):

discrete

 y_i = probability distribution

differential

stochastic ODEs

• stochastic \rightarrow

Chemical Reaction Networks (CRNs)

A reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example (any resemblance to chemistry is purely coincidental):

2H	+	0	\rightarrow	H_2O
С	+	O ₂	\rightarrow	CO_2

Semantics (assuming law of mass action):

- discrete
- differential
- stochastic

Observation

A system/machine can have several models, all useful, depending on the level of abstraction.

Examples: Black holes, signal machines, hybrid systems

Examples: Black holes, signal machines, hybrid systems

Let's do something useful with it!

I always knew ZFC was inconsistent

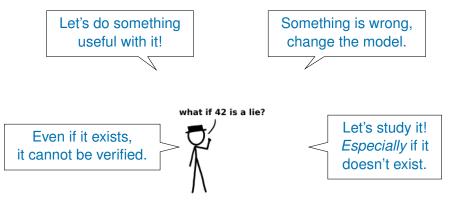
Examples: Black holes, signal machines, hybrid systems

Let's do something useful with it!

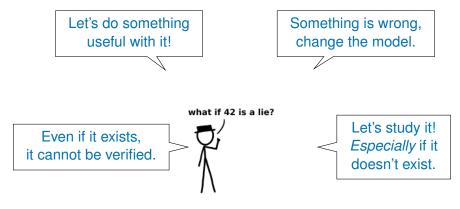
Something is wrong, change the model.

Only human stupidity is infinite, otherwise change your universe

Examples: Black holes, signal machines, hybrid systems


Let's do something useful with it!

Something is wrong, change the model.


These days, even the most pure and abstract mathematics is in danger to be applied

Let's study it! Especially if it doesn't exist.

Examples: Black holes, signal machines, hybrid systems

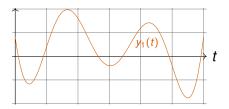
Examples: Black holes, signal machines, hybrid systems

Possible conclusion

All **reasonable** models of computations are equivalent to Turing machines. Hypercomputability results can help us correct models.

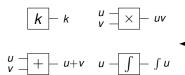
Differential analyzer

General Purpose Analog Computer, Shannon 1936


Differential analyzer

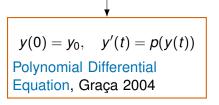
$$\begin{array}{ccc} k - k & u \\ v \end{array} = \times - uv \\ u + - u + v & u - \int - \int u \\ \end{array}$$

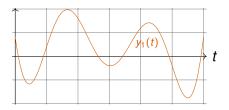
General Purpose Analog Computer, Shannon 1936

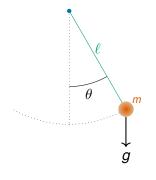


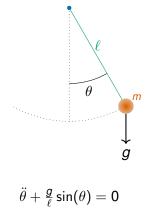
Differential analyzer

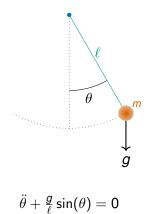
$$y(0) = y_0, \quad y'(t) = p(y(t))$$

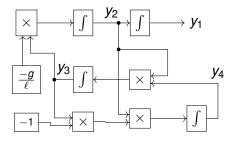

Polynomial Differential Equation, Graça 2004



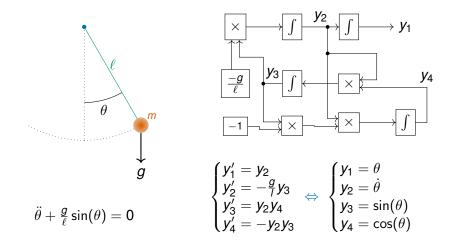

General Purpose Analog Computer, Shannon 1936


Differential analyzer

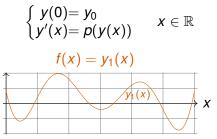




$$\ddot{ heta} + rac{g}{\ell}\sin(heta) = 0$$

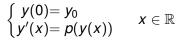


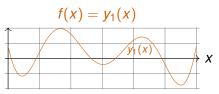
$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{7}y_3 \\ y_3' = y_2y_4 \\ y_4' = -y_2y_3 \end{cases} \Leftrightarrow \begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases}$$


$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{7}y_3 \\ y_3' = y_2y_4 \\ y_4' = -y_2y_3 \end{cases} \Leftrightarrow \begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases}$$

Remark on "analog"

Continuous and analogy between circuits/mechanics/ODEs.

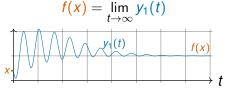

Generable functions



Shannon's notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \dots$

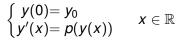
Generable functions

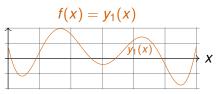


Shannon's notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \dots$

Computable

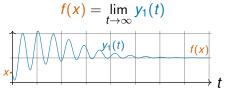

$$\left\{ egin{array}{ll} y(0) = q(x) & x \in \mathbb{R} \ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{array}
ight.$$



Modern notion

 $\sin,\cos,\exp,\log,\Gamma,\zeta,\dots$

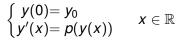
Generable functions

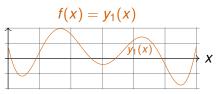

Shannon's notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \dots$

Considered "weak": not Γ and ζ Only analytic functions

Computable

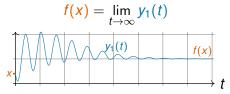

$$egin{cases} y(0) = q(x) & x \in \mathbb{R} \ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{cases}$$



Modern notion

 $\sin,\cos,\exp,\log,\Gamma,\zeta,\dots$

Generable functions

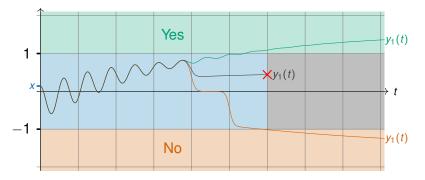

Shannon's notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \dots$

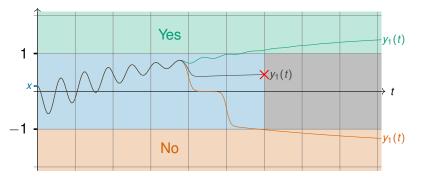
Considered "weak": not Γ and ζ Only analytic functions

Computable

$$\left\{ egin{array}{ll} y(0) = q(x) & x \in \mathbb{R} \ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{array}
ight.$$

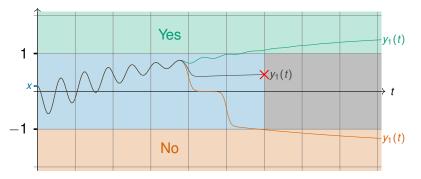


Modern notion


 $\sin,\cos,\exp,\log,\Gamma,\zeta,\ldots$

Turing powerful [Bournez et al., 2007]

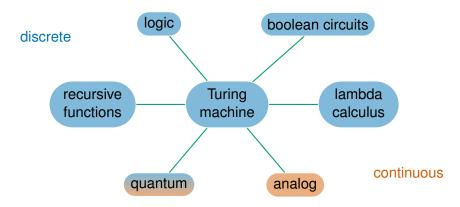
More formally


More formally

Theorem (Bournez et al, 2010)

This is equivalent to a Turing machine.

More formally

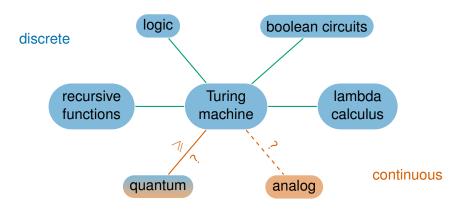

Theorem (Bournez et al, 2010)

This is equivalent to a Turing machine.

- analog computability theory
- purely continuous characterization of classical computability

Can Analog Machines Compute Faster?

Computability



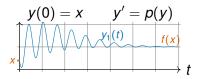
Church Thesis

All reasonable models of computation are equivalent.

Can Analog Machines Compute Faster?

Complexity

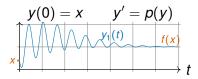
Effective Church Thesis


All reasonable models of computation are equivalent for complexity.

Turing machines: T(x) = number of steps to compute on x

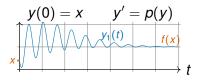
Turing machines: T(x) = number of steps to compute on x
 GPAC:

Tentative definition


T(x) = ??

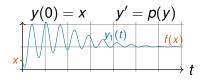
Turing machines: T(x) = number of steps to compute on x
 GPAC:

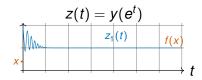
Tentative definition


 $T(x, \mu) =$

Turing machines: T(x) = number of steps to compute on x
 GPAC:

Tentative definition

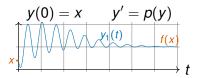

 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq e^{-\mu}$

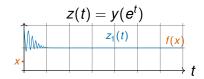


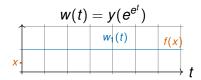
Turing machines: T(x) = number of steps to compute on x
 GPAC:

Tentative definition

 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq e^{-\mu}$

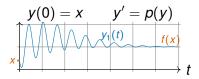


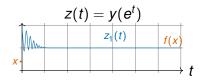



Turing machines: T(x) = number of steps to compute on x
 GPAC:

Tentative definition

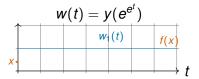
 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq e^{-\mu}$

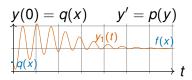


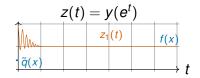


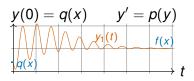
- Turing machines: T(x) = number of steps to compute on x
- ► GPAC: time contraction problem → open problem

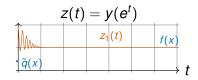
Tentative definition

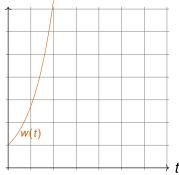

 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq e^{-\mu}$


Something is wrong...

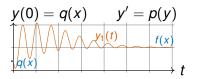

All functions have constant time complexity.


Time-space correlation of the GPAC


 \sim

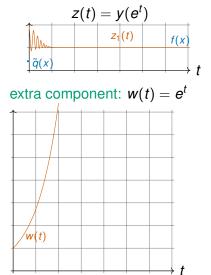


Time-space correlation of the GPAC



extra component: $w(t) = e^t$

Time-space correlation of the GPAC



Observation

Time scaling costs "space".

 \sim

Time complexity for the GPAC must involve time and space !

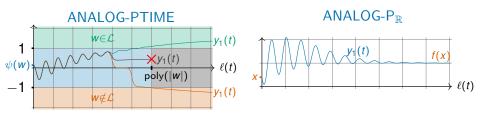
Complexity in the analog world

Complexity measure: length of the curve

Time acceleration: same curve = same complexity !

Complexity in the analog world

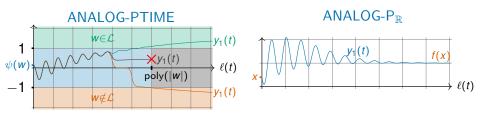
Complexity measure: length of the curve



Time acceleration: same curve = same complexity !

Same time, different curves: different complexity !

Analog complexity

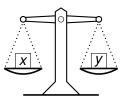

Theorem

• $\mathcal{L} \in \mathsf{PTIME}$ of and only if $\mathcal{L} \in \mathsf{ANALOG}\operatorname{-PTIME}$

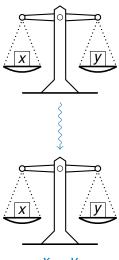
▶ $f : [a, b] \rightarrow \mathbb{R}$ computable in polynomial time $\Leftrightarrow f \in \mathsf{ANALOG-P}_{\mathbb{R}}$

- Analog complexity theory based on length
- ► Time of Turing machine ⇔ length of the GPAC
- Purely continuous characterization of PTIME

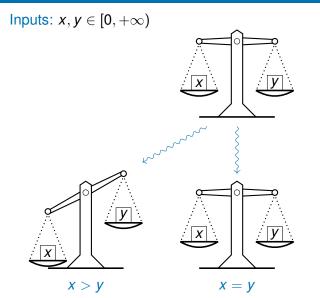
Analog complexity

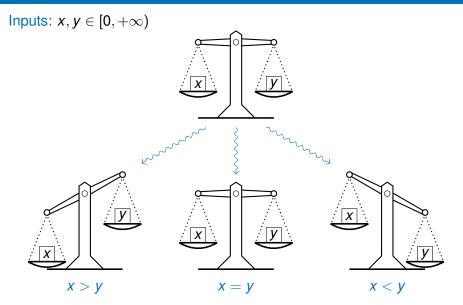

Theorem

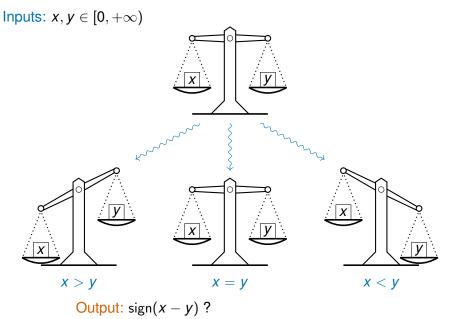
• $\mathcal{L} \in \mathsf{PTIME}$ of and only if $\mathcal{L} \in \mathsf{ANALOG}\operatorname{-PTIME}$

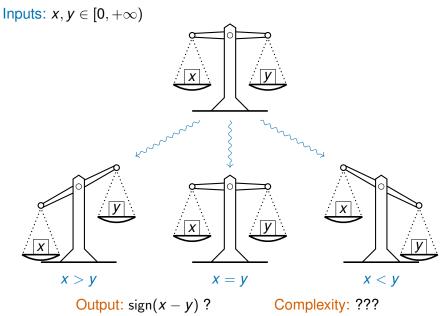

• $f : [a, b] \to \mathbb{R}$ computable in polynomial time $\Leftrightarrow f \in \mathsf{ANALOG-P}_{\mathbb{R}}$

- Analog complexity theory based on length
- ► Time of Turing machine ⇔ length of the GPAC
- Purely continuous characterization of PTIME
- Only rational coefficients needed

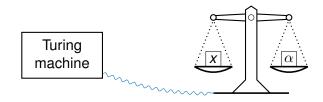

Inputs: $x, y \in [0, +\infty)$

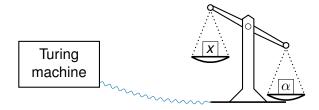



Inputs: $x, y \in [0, +\infty)$



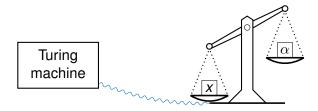
x = y




Model: Turing Machine with "physical oracle" Oracle: performs physical experiments with time limit Outcomes: Yes, No, Timeout

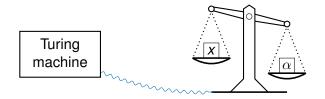
Example: $\alpha \in [0, 1]$ unknown, *x* programmable

Model: Turing Machine with "physical oracle" Oracle: performs physical experiments with time limit Outcomes: Yes, No, Timeout


Example: $\alpha \in [0, 1]$ unknown, *x* programmable

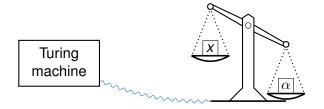
▶
$$x = \frac{1}{2}$$
, $T = 1$ second \sim Yes

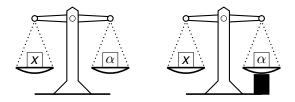
Model: Turing Machine with "physical oracle" Oracle: performs physical experiments with time limit Outcomes: Yes, No, Timeout


Example: $\alpha \in [0, 1]$ unknown, *x* programmable

•
$$x = \frac{1}{2}$$
, $T = 1$ second \sim Yes
• $x = \frac{3}{4}$, $T = 1$ second \sim No

Model: Turing Machine with "physical oracle" Oracle: performs physical experiments with time limit Outcomes: Yes, No, Timeout

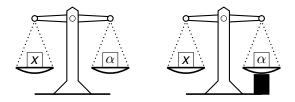

Example: $\alpha \in [0, 1]$ unknown, *x* programmable


•
$$x = \frac{1}{2}, T = 1$$
 second \sim Yes • $x = \frac{5}{8}, T = 1$ second \sim Timeout
• $x = \frac{3}{4}, T = 1$ second \sim No

Model: Turing Machine with "physical oracle" Oracle: performs physical experiments with time limit Outcomes: Yes, No, Timeout

Example: $\alpha \in [0, 1]$ unknown, *x* programmable

Model: Turing Machine with "physical oracle" Oracle: performs physical experiments with time limit Outcomes: Yes, No, Timeout

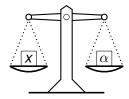


Wheatstone bridge or Brewster's angle experiment

Experiments types:

- Two-sided: time $\frac{C}{|x-\alpha|^d}$, Yes/No/Timeout
- One-sided: time $\frac{C}{|x-\alpha|^d}$, Yes/Timeout
- ▶ Vanishing: Yes (if $x \neq \alpha$)/Timeout, can test if $|x \alpha| \leq |x' \alpha|$

Model: Turing Machine with "physical oracle" Oracle: performs physical experiments with time limit Outcomes: Yes, No, Timeout



Wheatstone bridge or Brewster's angle experiment

Experiments types:

- ► Two-sided: time $\frac{C}{|X-\alpha|^d}$, Yes/No/Timeout
- One-sided: time $\frac{C}{|x-\alpha|^d}$, Yes/Timeout

► Vanishing: Yes (if $x \neq \alpha$)/Timeout, can test if $|x - \alpha| \leq |x' - \alpha|$ Precision: infinite, unbounded, fixed

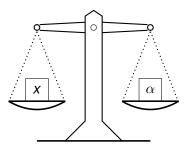
Wheatstone bridge or Brewster's angle experiment

Experiments types:

- Two-sided: time $\frac{C}{|x-\alpha|^d}$, Yes/No/Timeout
- One-sided: time $\frac{C}{|x-\alpha|^d}$, Yes/Timeout

► Vanishing: Yes (if $x \neq \alpha$)/Timeout, can test if $|x - \alpha| \leq |x' - \alpha|$ Precision: infinite, unbounded, fixed

Theorem (Beggs, Costa, Poças and Tucker)


For a broad class of oracles + PTIME machine, complexity bounded by¹ BPP//log*, or P/poly if non-computable analog-digital interface.

¹BPP + non-uniform log advise.

Summary

- analog: analogy/continuous, orthogonal meanings
- machines vs models: need to distinguish concepts
- "Church" thesis: subtle, several variants
- hypercomputability: various interpretations
- some reasonable models exists: GPAC, equivalent to TM
- complexity: difficult to define in general, several approaches

