Continuous models of computation: computability, complexity, universality

Amaury Pouly

22 august 2017

Teaser

Characterization of P using differential equations

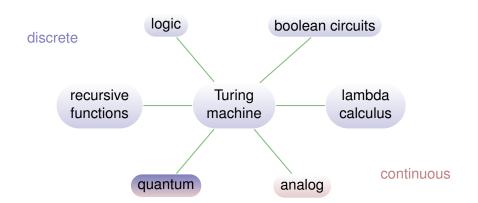
Universal differential equation

Digital vs analog computers

Digital vs analog computers

Church Thesis

Computability

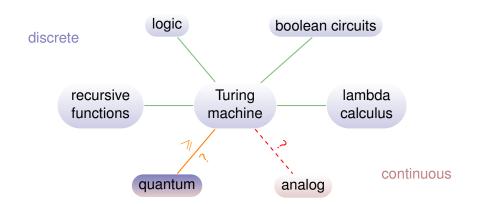


Church Thesis

All reasonable models of computation are equivalent.

Church Thesis

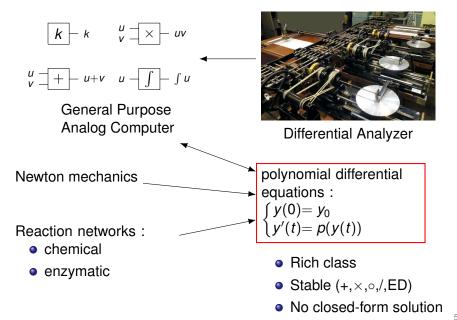
Complexity



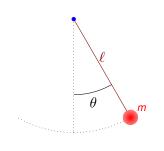
Effective Church Thesis

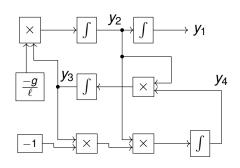
All reasonable models of computation are equivalent for complexity.

Polynomial Differential Equations



Example of dynamical system





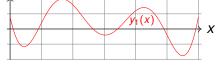
$$\ddot{\theta} + \tfrac{g}{\ell}\sin(\theta) = 0$$

$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{7}y_3 \\ y_3' = y_2y_4 \\ y_4' = -y_2y_3 \end{cases} \Leftrightarrow \begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases}$$

Generable functions

$$\begin{cases} y(0) = y_0 \\ y'(x) = p(y(x)) \end{cases} \quad x \in \mathbb{R}$$

$$f(x) = y_1(x)$$

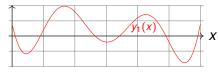


Shannon's notion

Generable functions

$$\begin{cases} y(0) = y_0 \\ y'(x) = p(y(x)) \end{cases} \quad x \in \mathbb{R}$$

$$f(x)=y_1(x)$$



Shannon's notion

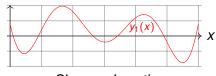
sin, cos, exp, log, ...

Strictly weaker than Turing machines [Shannon, 1941]

Generable functions

$$\begin{cases} y(0) = y_0 \\ y'(x) = p(y(x)) \end{cases} \quad x \in \mathbb{R}$$

$$f(x)=y_1(x)$$



Shannon's notion

 $\sin, \cos, \exp, \log, ...$

Strictly weaker than Turing machines [Shannon, 1941]

Computable

$$\begin{cases} y(0) = q(x) & x \in \mathbb{R} \\ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{cases}$$

$$f(x) = \lim_{t \to \infty} y_1(t)$$

Modern notion

Generable functions

$$\begin{cases} y(0) = y_0 \\ y'(x) = \rho(y(x)) \end{cases} \quad x \in \mathbb{R}$$

$$f(x)=y_1(x)$$



Shannon's notion

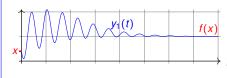
sin, cos, exp, log, ...

Strictly weaker than Turing machines [Shannon, 1941]

Computable

$$\begin{cases} y(0) = q(x) & x \in \mathbb{R} \\ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{cases}$$

$$f(x) = \lim_{t \to \infty} y_1(t)$$



Modern notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \mathsf{\Gamma}, \zeta, \dots$

Turing powerful [Bournez et al., 2007]

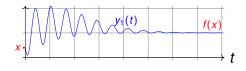
Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x$

$$y(0) = (x, 0, ..., 0)$$
 $y'(t) = p(y(t))$

satisfies $|f(x) - y_1(t)| \leq y_2(t)$ et $y_2(t) \xrightarrow[t \to \infty]{} 0$.



$$y_1(t) \xrightarrow[t \to \infty]{} f(x)$$

 $y_2(t) = \text{error bound}$

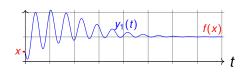
Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x$

$$y(0) = (x, 0, ..., 0)$$
 $y'(t) = p(y(t))$

satisfies
$$|f(x) - y_1(t)| \leq y_2(t)$$
 et $y_2(t) \xrightarrow[t \to \infty]{} 0$.



$$y_1(t) \xrightarrow[t \to \infty]{} f(x)$$

 $y_2(t) = \text{error bound}$

Theorem (Bournez et al, 2007)

 $f:[a,b] \to \mathbb{R}$ computable \Leftrightarrow f computable by GPAC

• Turing machines : T(x) = number of steps to compute on x

- Turing machines : T(x) = number of steps to compute on x
- GPAC : time contraction problem

Tentative definition

$$T(x,\mu) = \text{first time } t \text{ so that } |y_1(t) - f(x)| \leqslant e^{-\mu}$$

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

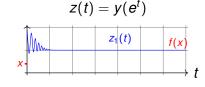
- Turing machines : T(x) = number of steps to compute on x
- GPAC : time contraction problem

Tentative definition

$$T(x,\mu) = \text{first time } t \text{ so that } |y_1(t) - f(x)| \leqslant e^{-\mu}$$

$$y(0) = (x, 0, \dots, 0) \qquad y' = p(y)$$

$$x \qquad \qquad \downarrow f(x) \qquad \downarrow f(x) \qquad \downarrow f(x) \qquad \downarrow f(x) \qquad \downarrow f(x) \qquad \downarrow$$



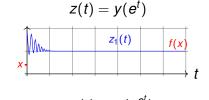
- Turing machines : T(x) = number of steps to compute on x
- GPAC : time contraction problem

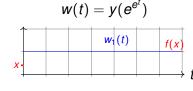
Tentative definition

$$T(x,\mu) = \text{first time } t \text{ so that } |y_1(t) - f(x)| \leqslant e^{-\mu}$$

$$y(0) = (x, 0, \dots, 0) \qquad y' = p(y)$$

$$x \mapsto t$$



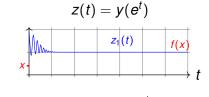


- Turing machines : T(x) = number of steps to compute on x
- GPAC : time contraction problem → open problem

Tentative definition

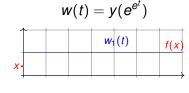
$$T(x,\mu) = \text{first time } t \text{ so that } |y_1(t) - f(x)| \leqslant e^{-\mu}$$

$$y(0) = (x, 0, \dots, 0) \qquad y' = p(y)$$

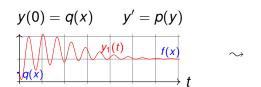


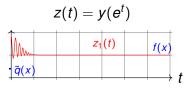
Problem

All functions have constant time complexity.

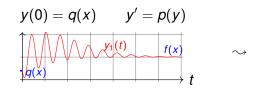


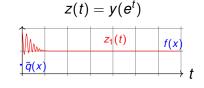
Time-space correlation of the GPAC



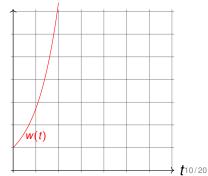


Time-space correlation of the GPAC

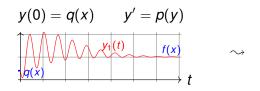


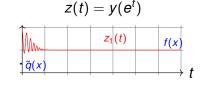


extra component : $w(t) = e^t$



Time-space correlation of the GPAC

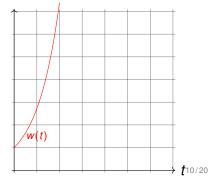




Observation

Time scaling costs "space".

Time complexity for the GPAC must involve time and space!



Complexity of solving polynomial ODEs

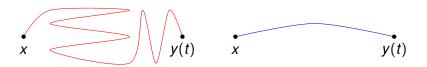
$$y(0) = x \qquad y'(t) = p(y(t))$$

Theorem (Graça, Pouly) [TCS 2016]

If y(t) exists, one can compute p,q such that $\left|\frac{p}{q}-y(t)\right|\leqslant 2^{-n}$ in time

poly(size of
$$X$$
 and $p, n, \ell(t)$)

where
$$\ell(t) = \int_0^t \max(1, ||y(u)||)^{\deg(p)} du \approx \text{length of the curve}$$



length of the curve = complexity = ressource

Definition : $\mathcal{L} \in \mathsf{ANALOG}\text{-}\mathsf{PTIME} \Leftrightarrow \exists p \mathsf{ polynomial}, \forall \mathsf{ word } w$

$$y(0) = (\psi(w), |w|, 0, \dots, 0) \qquad y' = p(y) \qquad \psi(w) = \sum_{i=1}^{|w|} w_i 2^{-i}$$

$$\downarrow \psi(w) \qquad \qquad \downarrow \ell(t) = \text{length of } y$$

Definition: $\mathcal{L} \in \mathsf{ANALOG}\text{-}\mathsf{PTIME} \Leftrightarrow \exists p \text{ polynomial}, \forall \text{ word } w$

$$y(0) = (\psi(w), |w|, 0, \dots, 0) \qquad y' = p(y) \qquad \psi(w) = \sum_{i=1}^{|w|} w_i 2^{-i}$$

$$\downarrow 0$$

satisfies

• if $y_1(t) \geqslant 1$ then $w \in \mathcal{L}$

computing

reject : $w \notin \mathcal{L}$

Definition: $\mathcal{L} \in \mathsf{ANALOG}\text{-}\mathsf{PTIME} \Leftrightarrow \exists p \mathsf{ polynomial}, \forall \mathsf{ word } w$

$$y(0) = (\psi(w), |w|, 0, \dots, 0)$$
 $y' = p(y)$ $\psi(w) = \sum_{i=1}^{|w|} w_i 2^{-i}$

$$\psi(w) = \sum_{i=1}^{|w|} w_i 2^{-i}$$

satisfies

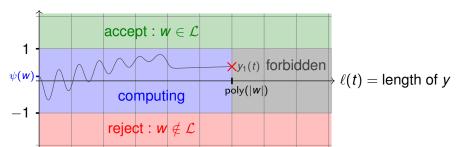
2 if $y_1(t) \leq -1$ then $w \notin \mathcal{L}$

 $\ell(t) = \text{length of } y$

 $y_1(t)$

Definition: $\mathcal{L} \in \mathsf{ANALOG}\text{-}\mathsf{PTIME} \Leftrightarrow \exists p \text{ polynomial}, \forall \text{ word } w$

$$y(0) = (\psi(w), |w|, 0, ..., 0)$$
 $y' = \rho(y)$ $\psi(w) = \sum_{i=1}^{|w|} w_i 2^{-i}$



satisfies

3 if $\ell(t) \geqslant \text{poly}(|w|)$ then $|y_1(t)| \geqslant 1$

computing

reject : $w \notin \mathcal{L}$

Definition : $\mathcal{L} \in \mathsf{ANALOG}\text{-}\mathsf{PTIME} \Leftrightarrow \exists p \mathsf{ polynomial}, \forall \mathsf{ word } w$

$$y(0) = (\psi(w), |w|, 0, \dots, 0)$$
 $y' = p(y)$ $\psi(w) = \sum_{i=1}^{|w|} w_i 2^{-i}$

$$\text{accept : } w \in \mathcal{L}$$

$$\psi(w) \qquad \qquad \psi(t) = \text{length of } y$$

poly(|w|)

 $y_1(t)$

Theorem (JoC 2016; ICALP 2016)

PTIME = ANALOG-PTIME

Definition :
$$f:[a,b] \to \mathbb{R}$$
 in ANALOG-P_R $\Leftrightarrow \exists p$ polynomial, $\forall x \in [a,b]$
 $y(0) = (x,0,\ldots,0)$ $y' = p(y)$

Definition : $f : [a,b] \to \mathbb{R}$ in ANALOG- $P_{\mathbb{R}} \Leftrightarrow \exists p$ polynomial, $\forall x \in [a,b]$

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

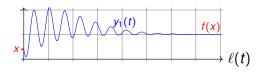
satisfies:

$$|y_1(t) - f(x)| \leq 2^{-\ell(t)}$$

 $"greater length \Rightarrow greater precision"$

2
$$\ell(t) \geqslant t$$

«length increases with time»



Definition : $f : [a,b] \to \mathbb{R}$ in ANALOG- $P_{\mathbb{R}} \Leftrightarrow \exists p$ polynomial, $\forall x \in [a,b]$

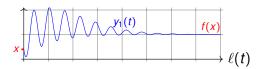
$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

satisfies:

$$|y_1(t) - f(x)| \leq 2^{-\ell(t)}$$

 $\hbox{\tt ``greater length} \Rightarrow \hbox{\tt greater precision''}$

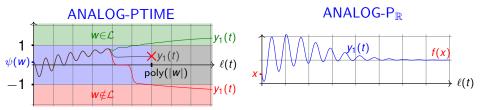
«length increases with time»



Theorem (JoC 2016; ICALP 2016)

 $f:[a,b]\to\mathbb{R}$ computable in polynomial time $\Leftrightarrow f\in\mathsf{ANALOG} ext{-}\mathsf{P}_\mathbb{R}.$

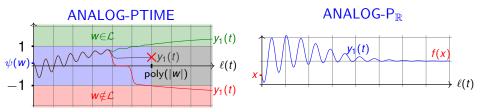
Summary



Theorem [JoC 2016; ICALP 2016]

- $\bullet \ \mathcal{L} \in \mathsf{PTIME} \ \mathsf{of} \ \mathsf{and} \ \mathsf{only} \ \mathsf{if} \ \mathcal{L} \in \mathsf{ANALOG}\text{-}\mathsf{PTIME}$
- $ullet f:[a,b] o \mathbb{R}$ computable in polynomial time $\Leftrightarrow f\in \mathsf{ANALOG} ext{-}\mathsf{P}_\mathbb{R}$
- Analog complexity theory based on length
- Time of Turing machine ⇔ length of the GPAC
- Purely continuous characterization of PTIME

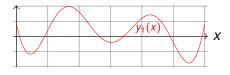
Summary



Theorem [JoC 2016; ICALP 2016]

- $\bullet \ \mathcal{L} \in \mathsf{PTIME} \ \mathsf{of} \ \mathsf{and} \ \mathsf{only} \ \mathsf{if} \ \mathcal{L} \in \mathsf{ANALOG}\text{-}\mathsf{PTIME}$
- $ullet f:[a,b] o \mathbb{R}$ computable in polynomial time $\Leftrightarrow f\in \mathsf{ANALOG} ext{-}\mathsf{P}_\mathbb{R}$
- Analog complexity theory based on length
- Time of Turing machine ⇔ length of the GPAC
- Purely continuous characterization of PTIME
- Only rational coefficients needed (JACM 2017)

Universal differential equations

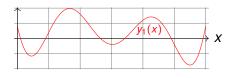


subclass of analytic functions

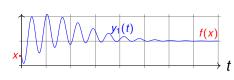
Computable functions

any computable function

Universal differential equations

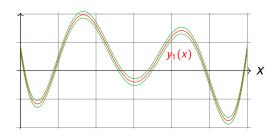


Computable functions

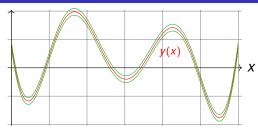


subclass of analytic functions

any computable function



Universal differential algebraic equation (DAE)



Theorem (Rubel, 1981)

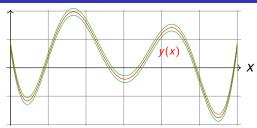
For any continuous functions f and ε , there exists $y : \mathbb{R} \to \mathbb{R}$ solution to

$$3y'^{4}y''y'''^{2} -4y'^{4}y'''^{2}y'''' + 6y'^{3}y''^{2}y'''y'''' + 24y'^{2}y''^{4}y'''' -12y'^{3}y''y'''^{3} - 29y'^{2}y''^{3}y'''^{2} + 12y''^{7} = 0$$

such that $\forall t \in \mathbb{R}$,

$$|y(t)-f(t)| \leq \varepsilon(t).$$

Universal differential algebraic equation (DAE)



Theorem (Rubel, 1981)

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y,y',\ldots,y^{(k)})=0$$

such that $\forall t \in \mathbb{R}$,

$$|y(t)-f(t)|\leqslant \varepsilon(t).$$

Universal differential algebraic equation (DAE)



Theorem (Rubel, 1981)

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y,y',\ldots,y^{(k)})=0$$

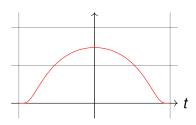
such that $\forall t \in \mathbb{R}$,

$$|y(t)-f(t)| \leq \varepsilon(t)$$
.

Problem: this is «weak» result.

• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1-t^2)^2 f''(t) + 2tf'(t) = 0$$
.

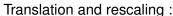


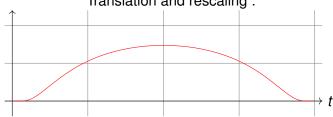
• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1-t^2)^2 f''(t) + 2tf'(t) = 0$$
.

• For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

$$3y'^4y''y'''^2 -4y'^4y''^2y''' + 6y'^3y''^2y'''y''' + 24y'^2y''^4y'''' -12y'^3y''y'''^3 - 29y'^2y''^3y'''^2 + 12y''^7 = 0$$





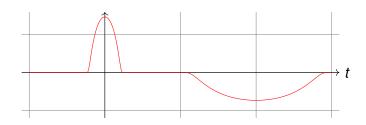
• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1-t^2)^2 f''(t) + 2tf'(t) = 0$$
.

• For any $a,b,c\in\mathbb{R}$, y(t)=cf(at+b) satisfies

$$3{y'}^4{y'''}{y'''''}^2 - 4{y'}^4{y'''}^2{y''''} + 6{y'}^3{y''}^2{y''''}{y'''''} + 24{y'}^2{y''}^4{y'''''} - 12{y'}^3{y'''}{y''''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$$

Can glue together arbitrary many such pieces



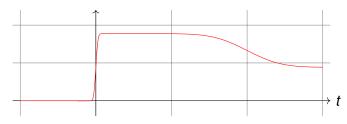
• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1-t^2)^2 f''(t) + 2tf'(t) = 0$$
.

• For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

$$3{y'}^4{y'''}{y''''}^2 - 4{y'}^4{y'''}^2{y''''} + 6{y'}^3{y''}^2{y''''}{y'''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y''''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$$

- Can glue together arbitrary many such pieces
- Can arrange so that $\int f$ is solution: piecewise pseudo-linear



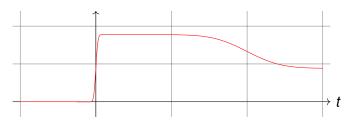
• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1-t^2)^2 f''(t) + 2tf'(t) = 0$$
.

• For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

$$3{y'}^4{y'''}{y'''''}^2 - 4{y'}^4{y'''}^2{y''''} + 6{y'}^3{y''}^2{y''''}{y'''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y''''}^3 - 29{y'}^2{y'''}^3{y'''}^2 + 12{y''}^7 = 0$$

- Can glue together arbitrary many such pieces
- Can arrange so that $\int f$ is solution: piecewise pseudo-linear



Conclusion: Rubel's equation allows any piecewise pseudo-linear functions, and those are **dense in** C^0

The problem with Rubel's DAE

The solution y is not unique, even with added initial conditions:

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel's proof to work!

The problem with Rubel's DAE

The solution y is not unique, even with added initial conditions:

$$p(y, y', ..., y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, ..., y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel's proof to work!

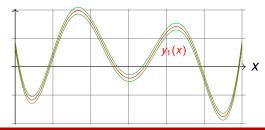
- Rubel's statement : this DAE is universal
- More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y' = p(y)?

Note: explicit polynomial ODE ⇒ unique solution

Universal initial value problem (IVP)



Notes:

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

Theorem (ICALP 2017)

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

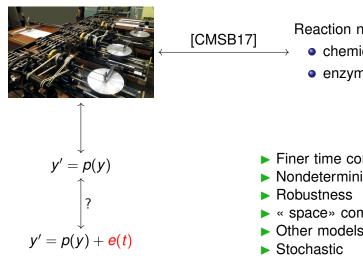
$$y(0) = \alpha,$$
 $y'(t) = p(y(t))$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t)-f(t)| \leq \varepsilon(t).$$

Note : α is usually transcendental, but computable from f and ε

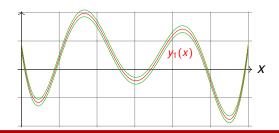
Future work



- chemical
- enzymatic

- Finer time complexity (linear)
- Nondeterminism
- « space» complexity
- Other models

Universal DAE revisited



Theorem

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists $\alpha_0, \ldots, \alpha_k \in \mathbb{R}$ such that

$$p(y, y', ..., y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, ..., y^{(k)}(0) = \alpha_k$$

has a unique analytic solution and this solution satisfies such that

$$|y(t)-f(t)|\leqslant \varepsilon(t).$$