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Characterization of P using differential equations

Universal differential equation
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Digital vs analog computers
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Digital vs analog computers
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Church Thesis

Computability

. logic boolean circuits
discrete
recursive Turing lambda
functions machine calculus

continuous
MU u analog

All reasonable models of computation are equivalent. l
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Church Thesis

Complexity
. logic boolean circuits
discrete
recursive Turing lambda
functions machine calculus

: continuous
MU u analog

Effective Church Thesis
All reasonable models of computation are equivalent for complexity.
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Polynomial Differential Equations

General Purpose

Analog Computer Differential Analyzer

Newton mechanics polynomial differential
equations :
{y(O)z Yo
Reaction networks : "W (= py(t)
@ chemical
. @ Rich class
@ enzymatic

e Stable (+,x,0,/,ED)

@ No closed-form solution o



Example of dynamical system

Yo

=
=]

A

Yi=1Ye yi=90
Vh=-9y, o Jye=0
: .
V3 =YoYa y3 = sin(0)

Yo = —Yo)3 Y4 = cos(6)
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Computing with differential equations

Generable functions

y(0)=yo
{y'(x)z ply(x)) XK
f(x) = y1(x)
yi(x) 4 X

Shannon’s notion
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Shannon’s notion
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Strictly weaker than Turing
machines [Shannon, 1941]

Computable

{y(0)= q(x) x€eR
y'(t)=py(t) teRy

() = lim y1(1)

t—o0

N A A0 )

U V

Modern notion
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Computing with differential equations

Generable functions

y(0)=yo
{y'(x)z ply(x)) XK
f(x) = y1(x)
yi(x)
X ]

Shannon’s notion
sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computable

{y(0)= q(x) x€eR
y'(t)=py(t) teRy

() = lim ya (1)

t—o0

N A A0 )

U V

Modern notion
sin, cos, exp, log, I, C, ...

Turing powerful
[Bournez et al., 2007]
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Equivalence with computable analysis

Definition (Bournez et al, 2007)
f computable by GPAC if 3p polynomial such that Vx

y(0) = (x,0,...,0)  y'(t) = p(y(1)
satisfies |f(x) — y1(t)| < yo(t) et yo(t) —— O.

t—o0

/\ \/\A yi(t) ) yi(t) —— f(x)

t—o0
U V

y»(t) = error bound




Equivalence with computable analysis

Definition (Bournez et al, 2007)
f computable by GPAC if 3p polynomial such that Vx

y(0) = (x,0,...,0)  y'(t) = p(y(1)

satisfies |f(x) — y1(t)| < yo(t) et yo(1) - 0.
—00

N A 210 - yi(t) —— f(x)
AV , y»(t) = error bound

Theorem (Bournez et al, 2007)
f: [a, b] — R computable < f computable by GPAC




Complexity of analog systems

@ Turing machines : T(x) = number of steps to compute on x
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Complexity of analog systems

@ Turing machines : T(x) = number of steps to compute on x
@ GPAC : time contraction problem

Tentative definition

T(x, p) = first time t so that |y;(t) — f(x)| < e7#

y(O):(X,O,...,O) y/:p(}/)

NAAALO | e

\j Y
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Tentative definition
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Complexity of analog systems

@ Turing machines : T(x) = number of steps to compute on x
@ GPAC : time contraction problem— open problem

Tentative definition

T(x, p) = first time t so that |y;(t) — f(x)| < e7#

y(0) = (x,0,...,0) ¥y =p(y) z(t) = y(e")
Mo« ~ SR
t t
w(t) = y(e%)

Problem

All functions have constant time
complexity. X ¢

wy (1) f(x




Time-space correlation of the GPAC
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Time-space correlation of the GPAC

——
<§
—

ROy f(x ~ /\A/\A zy(1) f(x
t 1alx t

extra component : w(t) = ef
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Time-space correlation of the GPAC

y(0)=q(x) ¥ =py) z(t) = y(e')
NNAARO | he ~ . 2l | i
a0 Jats
(x ¢ g t
extra component : w(t) = ef
/
Time scaling costs “space”. /
Time complexity for the GPAC /
must involve time and space!
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Complexity of solving polynomial ODEs

y(0)=x  y'(t) = p(y(t))
Theorem (Graga, Pouly) [TCS 2016]

If y(t) exists, one can compute p, g such that )‘—; — y(t)’ <2 "intime

poly (size of Xx and p,n,((t))

t
where /(1) = / max(1, ||y (u)|)9&®) du ~ length of the curve
0

o/_\o

length of the curve = complexity = ressource
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Characterization of polynomial time

Definition : £ € ANALOG-PTIME < dp polynomial, ¥ word w

|wl

Y(O):(¢(W)7\W|707>0) y/:p(}/) @b(w):ZWiZii
=1

()

T
w(w)-\/\b/\f v ((t) = length of y
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Characterization of polynomial time

Definition : £ € ANALOG-PTIME < dp polynomial, ¥ word w

|wl

Y(O):(¢(W)7\W|aovao) y/:p(}/) @b(w):ZWiZii
=1

1 accept: we L S B YY)
SN
b(w) /\/\f i ((t) = length of y
\/ computing

satisfies
Q ifyi(t)y>1thenwe L
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Characterization of polynomial time
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computing L
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Characterization of polynomial time

Definition : £ € ANALOG-PTIME < dp polynomial, ¥ word w

|wl

Y(O):(¢(W)7\W|aovao) y/:p(}/) @b(w):ZWiZii
=1

accept: we L
1
O AAVA M) y1(t) forbidden
VY computing poly(|wl)
—1
reject : w ¢ L
satisfies

Q if £(t) = poly(|w]) then |y()] > 1

{(t) = length of y
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Characterization of polynomial time

Definition : £ € ANALOG-PTIME < dp polynomial, ¥ word w

|wl

Y(O):(¢(W)7\W|aovao) y/:p(}/) @b(w):ZWizii
=1

accept:w e L [ B et
1 —
Y yi(t) forbidden
w(W)-\//\\//\f\/\/ 5 |1(|W|) {(t) = length of y
computing L"”
—1 —————)
reject: w ¢ £ i

Theorem (JoC 2016 ; ICALP 2016)
PTIME = ANALOG-PTIME
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Characterization of real polynomial time

Definition : f : [a, b] — R in ANALOG-Pgr < Jp polynomial, ¥x € [a, b]
y(0)=(x,0,...,0)  y'=p(y)

N0 )
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Characterization of real polynomial time

Definition : f : [a, b] — R in ANALOG-Pgr < Jp polynomial, ¥x € [a, b]
y(0)=(x,0,...,0) ¥y =p(y)
satisfies :
Q (1) — f(x)| <27
«greater length = greater precision»
Q /)=t

«length increases with time»

ATITAVAYIORE 1)

\/ V

13/20



Characterization of real polynomial time

Definition : f : [a, b] — R in ANALOG-Pgr < Jp polynomial, ¥x € [a, b]
y(0)=(x,0,...,0) ¥y =p(y)
satisfies :
Q (1) — f(x)| <27
«greater length = greater precision»
Q /)=t

«length increases with time»

ATITAVAYIORE 1)

V V

Theorem (JoC 2016 ; ICALP 2016)

f: [a, b] — R computable in polynomial time < f € ANALOG-Pg.
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Summary
ANALOG-PTIME

ANALOG-Pg
es ——— (1)
1 - 1(t) f
»(w)s /\b/\f\/\/m ya () o) /\/ \\/\Af Jad (x
v | poly(jw]) 1 o
- . — (1)

Theorem [JoC 2016 ; ICALP 2016]

@ L € PTIME of and only if £ € ANALOG-PTIME
@ f:[a, b] — R computable in polynomial time < f € ANALOG-Pg

@ Analog complexity theory based on length
@ Time of Turing machine < length of the GPAC
@ Purely continuous characterization of PTIME
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ANALOG-PTIME ANALOG-Pr
wel (1)
¢(JV) /\[\/\/\/\/\ yi(t) \ /\ \\/\/\f /{10) fx
' L) \/
\ _poly(Iw)) X
1 L £(t)
/V%L }/1(”

Theorem [JoC 2016 ; ICALP 2016]

@ L € PTIME of and only if £ € ANALOG-PTIME
@ f:[a, b] — R computable in polynomial time < f € ANALOG-Pg

@ Analog complexity theory based on length

@ Time of Turing machine < length of the GPAC
@ Purely continuous characterization of PTIME
@ Only rational coefficients needed (JACM 2017)
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Universal differential equations

Generable functions Computable functions
5109 N0 ()
rx v
t

subclass of analytic functions any computable function
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Universal differential equations

Generable functions Computable functions
7100 ITITAVAVIEEC ()
X VAR
/ x
t
subclass of analytic functions any computable function

| N\,
v, /
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Universal differential algebraic equation (DAE)

J(X)\ /x

\\ //
Theorem (Rubel, 1981)
For any continuous functions f and ¢, there exists y : R — R solution to

14 2

me i
3y"y"y Yy

—4y"y
_1 2y,3y//ym3

+ 6y,3y//2y///y//// i 24y/2y//4y////

_ 29y,2y//3y///2 -|— 12y//7 _ 0

such that Vt € R,
ly(t) — f(t)] < (1)
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Universal differential algebraic equation (DAE)

J(X)\ /x

\\ //
Theorem (Rubel, 1981)

There exists a fixed polynomial p and k € N such that for any conti-
nuous functions f and ¢, there exists a solution y : R — R to

py,y,...,y*)=0

such that Vt € R,
ly(t) — f(B)] < (1)
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Universal differential algebraic equation (DAE)

J(X)\ /x

\
\J/

Theorem (Rubel, 1981)

There exists a fixed polynomial p and k € N such that for any conti-
nuous functions f and ¢, there exists a solution y : R — R to

py,y,...,y*)=0

such that Vt € R,
ly(t) — f(B)] < (1)

Problem : this is «weak» result.
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Rubel’s proof in one slide

—1
o Take f(t) = e’ for —1 < t < 1 and f(t) = 0 otherwise.

It satisfies (1 — t2)?f"(t) + 2tf'(t) = 0.
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Rubel’s proof in one slide

—1

o Take f(t) = e’ for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" () + 2tf'(t) = 0.

@ Forany a,b,c € R, y(t) = cf(at + b) satisfies

3 y/4 y// y////2 4 y/4 y//2 y//// +6 y/3 y//2 y/// y//// + 24 y/2 y y////
1 2y/3y//y///3 B 29y/2y//3y///2 +1 2y//7 -0

n4

Translation and rescaling :

T
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Rubel’s proof in one slide

=1
@ Take f(t) = e1-# for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" () + 2tf'(t) = 0.
@ Forany a,b,c € R, y(t) = cf(at + b) satisfies
14 1111012 14 112 11 13,112 111 1001 2 //4y////_12y/3 11,0113 12 113 1112 "7

3y vty —4y Ty Ty ey Ty Ty Ty 24y "y yryrT =29y Ty Ty 12yt =0

@ Can glue together arbitrary many such pieces
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o Take f(t) = e for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" () + 2tf'(t) = 0.

@ Forany a,b,c € R, y(t) = cf(at + b) satisfies

4 2 4 112 3 12 2 n4 3 3 2 13 2 7
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@ Can glue together arbitrary many such pieces
@ Can arrange so that [ f is solution : piecewise pseudo-linear

—_
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Rubel’s proof in one slide

—1

o Take f(t) = e for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" () + 2tf'(t) = 0.

@ Forany a,b,c € R, y(t) = cf(at + b) satisfies

4 2 4 112 3 12 2 n4 3 3 2 13 2 7
3y/ y//y//// _4y/ ,V” y””+6y’ y” y///y////+24y/ y// y////_12y/ y//y/// _29y1 y” y/// +12y// -0

@ Can glue together arbitrary many such pieces
@ Can arrange so that [ f is solution : piecewise pseudo-linear

—_

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C°
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The problem with Rubel’s DAE

The solution y is not unique, even with added initial conditions :

p(y,ys....y*K) =0, y(0) =ag,y'(0) = as,...,y*(0) = ax

In fact, this is fundamental for Rubel’s proof to work !
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The problem with Rubel’s DAE

The solution y is not unique, even with added initial conditions :

p(y,y....y*) =0, y(0)=ag,y'(0) = as,...,yR(0) = ax

In fact, this is fundamental for Rubel’s proof to work !

@ Rubel’s statement : this DAE is universal
@ More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y’ = p(y)?
Note : explicit polynomial ODE = unique solution
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Universal initial value problem (IVP)

Notes :
k / yi (X)\ . @ system of ODEs,
\ / / @ y is analytic,
v @ we need d =~ 300.

Theorem (ICALP 2017)

There exists a fixed (vector of) polynomial p such that for any conti-
nuous functions f and ¢, there exists a € R? such that

y(0)=a,  y'(t)=p(y(t))
has a unique solution y : R — R? and Vt € R,

ya () — F(1)] < e(b).
Note : « is usually transcendental, but computable from f and
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Reaction networks :
@ chemical
@ enzymatic

[CMSB17]

» Finer time complexity (linear)
» Nondeterminism

» Robustness

» « space» complexity

» Other models

» Stochastic

y'=ply)

y'=ply)+et)
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Universal DAE revisited

| o\,
V, /

Y

There exists a fixed polynomial p and k € N such that for any conti-
nuous functions f and ¢, there exists ag, . .., ax € R such that

P,y y* ) =0, y(0) = ao,y'(0) = a,..., y")(0) =
has a unique analytic solution and this solution satisfies such that

y () — ()] < e(2).
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