Rigorous numerical computation of polynomial differential equations over unbounded domains

Amaury Pouly Joint work with Daniel Graça

27 November 2017

Ordinary Differential Equations (ODEs)

System of ODEs:

$$\begin{cases} y_1(0) = y_{0,1} \\ \vdots \\ y_n(0) = y_{0,n} \end{cases} \qquad \begin{cases} y'_1(t) = f_1(y_1(t), \dots, y_n(t)) \\ \vdots \\ y'_n(t) = f_n(y_1(t), \dots, y_n(t)) \end{cases}$$

More compactly:

$$y(0) = y_0$$
 $y'(t) = f(y(t))$

Computability

Let I = [0, a[and $f \in C^0(\mathbb{R}^n)$. Assume $y \in C^1(I, \mathbb{R}^d)$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)).$ (1)

Can we compute $y(t) \pm 2^{-n}$ for all $t \in I$ and $n \in \mathbb{N}$?

Computability

Let I = [0, a[and $f \in C^0(\mathbb{R}^n)$. Assume $y \in C^1(I, \mathbb{R}^d)$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)).$ (1)

Can we compute $y(t) \pm 2^{-n}$ for all $t \in I$ and $n \in \mathbb{N}$?

- existence: Peano theorem
- uniqueness: assumption on y or f
- computability: assume f is computable

Let I = [0, a[and $f \in C^0(\mathbb{R}^n)$. Assume $y \in C^1(I, \mathbb{R}^d)$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)).$ (1)

Can we compute $y(t) \pm 2^{-n}$ for all $t \in I$ and $n \in \mathbb{N}$?

- existence: Peano theorem
- uniqueness: assumption on y or f
- computability: assume *f* is computable

Theorem (Collins and Graça)

If f is computable and (1) has a unique solution, then it is computable over its maximum interval of life I.

Let I = [0, a[and $f \in C^0(\mathbb{R}^n)$. Assume $y \in C^1(I, \mathbb{R}^d)$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)).$ (1)

Can we compute $y(t) \pm 2^{-n}$ for all $t \in I$ and $n \in \mathbb{N}$?

- existence: Peano theorem
- uniqueness: assumption on y or f
- computability: assume *f* is computable

Theorem (Collins and Graça)

If f is computable and (1) has a unique solution, then it is computable over its maximum interval of life I.

Theorem (Buescu, Campagnolo and Graça)

Computing I (or deciding if I is bounded) is undecidable, even if f is a polynomial.

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz continuous and computable.

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz continuous and computable.

Non-rigorous: guaranteed (linear) complexity, result can be wrong
 → Unsatisfactory

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz continuous and computable.

- Non-rigorous: guaranteed (linear) complexity, result can be wrong
 → Unsatisfactory
- Rigorous: guaranteed result, benchmark complexity

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz continuous and computable.

- Non-rigorous: guaranteed (linear) complexity, result can be wrong
 → Unsatisfactory
- Rigorous: guaranteed result, benchmark complexity

Useful in practice, not that much in theory.

Assume $y : [0, 1] \rightarrow \mathbb{R}^n$ satisfies $\forall t \in [0, 1]$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)).$

Assumption on f Lower bound on y Upper bound on y

$$y(0) = 0,$$
 $y'(t) = f(y(t)).$

Assumption on f	Lower bound on y	Upper bound on y
PTIME	arbitrary	computable

$$y(0) = 0,$$
 $y'(t) = f(y(t)).$

Assumption on f	Lower bound on y	Upper bound on y
PTIME	arbitrary	computable
PTIME + Lipschitz	PSPACE-hard	PSPACE

$$y(0) = 0,$$
 $y'(t) = f(y(t)).$

Assumption on f	Lower bound on y	Upper bound on y
PTIME	arbitrary	computable
PTIME + Lipschitz	PSPACE-hard	PSPACE
PTIME + C^1	PSPACE-hard	PSPACE

Assume $y : [0, 1] \rightarrow \mathbb{R}^n$ satisfies $\forall t \in [0, 1]$:

y(0) = 0, y'(t) = f(y(t)).

Assumption on f	Lower bound on y	Upper bound on y
PTIME	arbitrary	computable
PTIME + Lipschitz	PSPACE-hard	PSPACE
PTIME + C^1	PSPACE-hard	PSPACE
PTIME + $C^k, k \ge 2$	CH-hard	PSPACE

$$y(0) = 0,$$
 $y'(t) = f(y(t)).$

Assumption on f	Lower bound on y	Upper bound on y
PTIME	arbitrary	computable
PTIME + Lipschitz	PSPACE-hard	PSPACE
PTIME + C^1	PSPACE-hard	PSPACE
PTIME + $C^k, k \ge 2$	CH-hard	PSPACE
PTIME + analytic	—	PTIME

Assume $y : [0, 1] \rightarrow \mathbb{R}^n$ satisfies $\forall t \in [0, 1]$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)).$

Assumption on f	Lower bound on y	Upper bound on y
PTIME	arbitrary	computable
PTIME + Lipschitz	PSPACE-hard	PSPACE
PTIME + C^1	PSPACE-hard	PSPACE
PTIME + $C^k, k \ge 2$	CH-hard	PSPACE
PTIME + analytic	—	PTIME

But those results can be deceiving...

$$\begin{cases} y_{1}(0) = 1 \\ y_{2}(0) = 1 \\ \vdots \\ y_{n}(0) = 1 \end{cases} \qquad \begin{cases} y'_{1} = y_{1} \\ y'_{2} = y_{1}y_{2} \\ \vdots \\ y'_{n} = y_{n-1}y_{n} \end{cases} \rightarrow \qquad y(t) = \mathcal{O}\left(e^{e^{t}}\right) \\ y \text{ is PTIME over } [0, 1] \end{cases}$$

Example:

f PTIME analytic \Rightarrow *y* PTIME \Rightarrow *y*(*t*) $\pm 2^{-n}$ in time *An^k*

But:

Example:

f PTIME analytic \Rightarrow *y* PTIME \Rightarrow *y*(*t*) $\pm 2^{-n}$ in time *An^k*

But:

• "Hides" some of the complexity: A,k could be arbitrarily horrible depending on the dimension and *f*.

Example:

f PTIME analytic \Rightarrow *y* PTIME \Rightarrow *y*(*t*) $\pm 2^{-n}$ in time *An^k*

But:

- "Hides" some of the complexity: A,k *could* be arbitrarily horrible depending on the dimension and *f*.
- Nonconstructive: might be a different algrithm for each *f*, or depend on uncomputable constants.

Assume $y : I \to \mathbb{R}^d$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Prove that $y(t) \pm 2^{-n}$ can be computed in time:

$$T(t, n, K_d, K_f)$$

- K_d: depends on the dimension d
- K_f : depends on f and its representation

Assume $y : I \to \mathbb{R}^d$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Prove that $y(t) \pm 2^{-n}$ can be computed in time:

$$T(t, n, K_d, K_f)$$

where

- K_d : depends on the dimension d
- K_f : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T

Assume $y : I \to \mathbb{R}^d$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Prove that $y(t) \pm 2^{-n}$ can be computed in time:

$$T(t, n, K_d, K_f)$$

- K_d : depends on the dimension d
- *K_f*: depends on *f* and its representation

Assumption on f	Lower bound on T	Upper bound on T
computable	arbitrary	computable

Assume $y : I \to \mathbb{R}^d$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Prove that $y(t) \pm 2^{-n}$ can be computed in time:

$$T(t, n, K_d, K_f)$$

- K_d : depends on the dimension d
- *K_f*: depends on *f* and its representation

Assumption on f	Lower bound on T	Upper bound on T
computable	arbitrary	computable
PTIME + analytic	arbitrary	computable

Assume $y : I \to \mathbb{R}^d$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Prove that $y(t) \pm 2^{-n}$ can be computed in time:

$$T(t, n, K_d, K_f)$$

- K_d : depends on the dimension d
- *K_f*: depends on *f* and its representation

Assumption on f	Lower bound on T	Upper bound on T
computable	arbitrary	computable
PTIME + analytic	arbitrary	computable
PTIME + polynomial	arbitrary	computable

Assume $y : I \to \mathbb{R}^d$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Prove that $y(t) \pm 2^{-n}$ can be computed in time:

$$T(t, n, K_d, K_f)$$

- K_d : depends on the dimension d
- *K_f*: depends on *f* and its representation

Assumption on f	Lower bound on T	Upper bound on T
computable	arbitrary	computable
PTIME + analytic	arbitrary	computable
PTIME + polynomial	arbitrary	computable
PTIME + linear	—	exponential?

Assume $y : I \to \mathbb{R}^d$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Prove that $y(t) \pm 2^{-n}$ can be computed in time:

$$T(t, n, K_d, K_f)$$

where

- *K_d*: depends on the dimension *d*
- *K_f*: depends on *f* and its representation

Assumption on f	Lower bound on T	Upper bound on T
computable	arbitrary	computable
PTIME + analytic	arbitrary	computable
PTIME + polynomial	arbitrary	computable
PTIME + linear	—	exponential?

Problem: we cannot predict the behaviour of *y* based on *f*.

Parametrized complexity approach

Goal: Assume $y : I \to \mathbb{R}^d$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is nice. Prove that $y(t) \pm 2^{-n}$ can be computed in time:

 $poly(t, n, K_d, K_f, K_y(t))$

Parametrized complexity approach

Goal: Assume $y : I \to \mathbb{R}^d$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is nice. Prove that $y(t) \pm 2^{-n}$ can be computed in time:

 $poly(t, n, K_d, K_f, K_y(t))$

- K_d : depends on the dimension d
- K_f : depends on f and its representation
- *K_y*: is a reasonable parameter of *y*, ideally unknown to the algorithm (i.e. not part of the input)

• Bounding-box: M(t)

• Bounding-box: M(t)

- Bounding-box: M(t)
- Length of the curve: $\int_0^t \|y'(u)\| du$

Parametrized complexity result

Assume $y : I \to \mathbb{R}^d$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = p(y(t)),$

where $p : \mathbb{R}^n \to \mathbb{R}^n$ is vector of multivariate polynomials.

Theorem

Assuming $t \in I$, computing $y(t) \pm 2^{-n}$ takes time:

 $poly(\deg p, \log \Sigma p, n, \ell(t_0, t))^d$

Parametrized complexity result

Assume $y : I \to \mathbb{R}^d$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = p(y(t)),$

where $p : \mathbb{R}^n \to \mathbb{R}^n$ is vector of multivariate polynomials.

Theorem

Assuming $t \in I$, computing $y(t) \pm 2^{-n}$ takes time:

$$poly(\deg p, \log \Sigma p, n, \ell(t_0, t))^d$$

where:

Σp: sum of absolute value of coefficients of p

Parametrized complexity result

Assume $y : I \to \mathbb{R}^d$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = p(y(t)),$

where $p : \mathbb{R}^n \to \mathbb{R}^n$ is vector of multivariate polynomials.

Theorem

Assuming $t \in I$, computing $y(t) \pm 2^{-n}$ takes time:

$$poly(\deg p, \log \Sigma p, n, \ell(t_0, t))^d$$

where:

- Σp: sum of absolute value of coefficients of p
- $\ell(t_0, t)$: "length" of y over $[t_0, t]$

$$\ell(t_0,t) = \int_0^t \max(1, \left\| y'(u) \right\|) du$$

Note: the algorithm can find $\ell(0, t)$ automatically

Did you try to implement this algorithm?

Did you try to implement this algorithm?

Unfortunately, yes!

- "it works on simple examples",
- don't use it, it is too slow.

Did you try to implement this algorithm?

Unfortunately, yes!

- "it works on simple examples",
- don't use it, it is too slow.

Problems of this approach:

- managing complexity and correctness makes the proof complicated
- correctness comes from paper proof
- thus it is probably not entirely correct
- still too slow in practice

Euler method

$$y(0) = 0$$
 $y'(t) = p(y(t))$ $t \in I$

Time step *h*, discretize compute $\tilde{y}^i \approx y(ih)$:

Method	Max. Order	Number of steps
Fixed ω	$\omega-1$	$\mathcal{O}\left(L^{\frac{\omega+1}{\omega-1}}\varepsilon^{-\frac{1}{\omega-1}} ight)$

where
$$L \approx \int_0^t \max(1, \|y'(u)\|) du$$

Method	Max. Order	Number of steps
Fixed ω	$\omega-1$	$\mathcal{O}\left(L^{rac{\omega+1}{\omega-1}}arepsilon^{-rac{1}{\omega-1}} ight)$
Euler ($\omega=$ 2)	1	$\mathcal{O}\left(\frac{L^3}{\varepsilon}\right)$

where
$$L \approx \int_0^t \max(1, \|y'(u)\|) du$$

Method	Max. Order	Number of steps
Fixed ω	$\omega-1$	$\mathcal{O}\left(L^{rac{\omega+1}{\omega-1}}arepsilon^{-rac{1}{\omega-1}} ight)$
Euler ($\omega=$ 2)	1	$\mathcal{O}\left(\frac{L^3}{\varepsilon}\right)$
Taylor2 ($\omega=$ 3)	2	$\mathcal{O}\left(\frac{L^2}{\sqrt{\varepsilon}}\right)$

where
$$L \approx \int_0^t \max(1, \|y'(u)\|) du$$

Method	Max. Order	Number of steps
Fixed ω	$\omega-1$	$\mathcal{O}\left(L^{\frac{\omega+1}{\omega-1}}\varepsilon^{-\frac{1}{\omega-1}} ight)$
Euler ($\omega=$ 2)	1	$\mathcal{O}\left(\frac{L^3}{\varepsilon}\right)$
Taylor2 ($\omega=$ 3)	2	$\mathcal{O}\left(\frac{L^2}{\sqrt{\varepsilon}}\right)$
Taylor4 ($\omega=$ 5)	4	$\mathcal{O}\left(\frac{L^{3/2}}{4\sqrt{\varepsilon}}\right)$

where
$$L \approx \int_0^t \max(1, \|y'(u)\|) du$$

Method	Max. Order	Number of steps
Fixed ω	$\omega-1$	$\mathcal{O}\left(L^{\frac{\omega+1}{\omega-1}}\varepsilon^{-\frac{1}{\omega-1}} ight)$
Euler ($\omega=$ 2)	1	$\mathcal{O}\left(\frac{L^3}{\varepsilon}\right)$
Taylor2 ($\omega=$ 3)	2	$\mathcal{O}\left(\frac{L^2}{\sqrt{\varepsilon}}\right)$
Taylor4 ($\omega=$ 5)	4	$\mathcal{O}\left(\frac{L^{3/2}}{4\sqrt{\varepsilon}}\right)$
Smart $\left(\omega = 1 + \log rac{L}{arepsilon} ight)$	$\log \frac{L}{\varepsilon}$	$\mathcal{O}\left(L^{\sim 1}\right)$

where
$$L \approx \int_0^t \max(1, \|y'(u)\|) du$$

Method	Max. Order	Number of steps
Fixed ω	$\omega-1$	$\mathcal{O}\left(L^{\frac{\omega+1}{\omega-1}}\varepsilon^{-\frac{1}{\omega-1}} ight)$
Euler ($\omega=$ 2)	1	$\mathcal{O}\left(\frac{L^3}{\varepsilon}\right)$
Taylor2 ($\omega=$ 3)	2	$\mathcal{O}\left(\frac{L^2}{\sqrt{\varepsilon}}\right)$
Taylor4 ($\omega=$ 5)	4	$\mathcal{O}\left(\frac{L^{3/2}}{4\sqrt{\varepsilon}}\right)$
Smart $\left(\omega = 1 + \log rac{L}{arepsilon} ight)$	$\log \frac{L}{\varepsilon}$	$\mathcal{O}(L^{\sim 1})$
Taylor ∞ ($\omega=\infty$)	∞	$\mathcal{O}\left(L ight)$

where
$$L \approx \int_0^t \max(1, \|y'(u)\|) du$$

	Method	Max. Order	Number of steps
-	Fixed ω	$\omega-1$	$\mathcal{O}\left(L^{\frac{\omega+1}{\omega-1}}\varepsilon^{-\frac{1}{\omega-1}}\right)$
	Euler ($\omega=$ 2)	1	$\mathcal{O}\left(\frac{L^3}{\varepsilon}\right)$
	Taylor2 ($\omega=$ 3)	2	$\mathcal{O}\left(\frac{L^2}{\sqrt{\varepsilon}}\right)$
	Taylor4 ($\omega=$ 5)	4	$\mathcal{O}\left(\frac{L^{3/2}}{4\sqrt{\varepsilon}}\right)$
	Smart $(\omega = 1 + \log \frac{L}{\epsilon})$	$\log \frac{L}{\epsilon}$	$\mathcal{O}(L^{\sim 1})$
	Taylor ∞ ($\omega = \infty$)	∞	$\mathcal{O}(L)$
	Variable	$\mathcal{O}\left(\log \frac{L}{\varepsilon}\right)$	$\mathcal{O}\left(L ight)$
-	where L a	$\approx \int_0^t \max(1, \ y\)$	′(u)∥)du

Solving Ordinary Differential Equations numerically:

- vastly different algorithms/results for vastly different expectations
- nonuniform complexity: imprecise/misleading
- uniform worst-case complexity: everything is hard
- uniform parametrized complexity: encouraging

Questions:

- how far can we push parametrized complexity?
- can theory bring insight to practice?

$$y(0) = 0$$
 $y'(t) = p(y(t))$ $t \in I$
Lemma: $y^{(k)}(t) = P_k(y(t)) = poly(y(t))$

L

$$y(0) = 0$$
 $y'(t) = p(y(t))$ $t \in I$
Lemma: $y^{(k)}(t) = P_k(y(t)) = poly(y(t))$

Order *K*, time step *h*, discretize compute $\tilde{y}^i \approx y(ih)$:

$$y(t+h) \approx \sum_{j=0}^{K} \frac{h^j}{j!} y^{(j)}(t) \quad \rightsquigarrow \quad \tilde{y}^{i+1} = \sum_{j=0}^{K} \frac{h^j}{j!} P_k(\tilde{y}^i)$$

L

$$y(0) = 0$$
 $y'(t) = p(y(t))$ $t \in I$
emma: $y^{(k)}(t) = P_k(y(t)) = poly(y(t))$

Order *K*, time step *h*, discretize compute $\tilde{y}^i \approx y(ih)$:

$$y(t+h) \approx \sum_{j=0}^{K} \frac{h^j}{j!} y^{(j)}(t) \quad \rightsquigarrow \quad \tilde{y}^{i+1} = \sum_{j=0}^{K} \frac{h^j}{j!} P_k(\tilde{y}^i)$$

• Fixed order K: theoretically not enough

$$y(0) = 0$$
 $y'(t) = p(y(t))$ $t \in I$
Lemma: $y^{(k)}(t) = P_k(y(t)) = poly(y(t))$

Order *K*, time step *h*, discretize compute $\tilde{y}^i \approx y(ih)$:

$$y(t+h) \approx \sum_{j=0}^{K} \frac{h^j}{j!} y^{(j)}(t) \quad \rightsquigarrow \quad \tilde{y}^{i+1} = \sum_{j=0}^{K} \frac{h^j}{j!} P_k(\tilde{y}^i)$$

- Fixed order K: theoretically not enough
- Variable order K: choose K depending on i, p, n and \tilde{y}^i

$$y(0) = 0$$
 $y'(t) = p(y(t))$ $t \in I$
emma: $y^{(k)}(t) = P_k(y(t)) = poly(y(t))$

Order *K*, time step *h*, discretize compute $\tilde{y}^i \approx y(ih)$:

$$y(t+h) \approx \sum_{j=0}^{K} \frac{h^j}{j!} y^{(j)}(t) \quad \rightsquigarrow \quad \tilde{y}^{i+1} = \sum_{j=0}^{K} \frac{h^j}{j!} P_k(\tilde{y}^i)$$

• Fixed order K: theoretically not enough

• Variable order *K*: choose *K* depending on *i*, *p*, *n* and \tilde{y}^i What about *h* ?

• Fixed h: wasteful

$$y(0) = 0$$
 $y'(t) = p(y(t))$ $t \in I$
emma: $y^{(k)}(t) = P_k(y(t)) = poly(y(t))$

Order *K*, time step *h*, discretize compute $\tilde{y}^i \approx y(ih)$:

$$y(t+h) \approx \sum_{j=0}^{K} \frac{h^j}{j!} y^{(j)}(t) \quad \rightsquigarrow \quad \tilde{y}^{i+1} = \sum_{j=0}^{K} \frac{h^j}{j!} P_k(\tilde{y}^i)$$

• Fixed order K: theoretically not enough

• Variable order *K*: choose *K* depending on *i*, *p*, *n* and \tilde{y}^i What about *h* ?

- Fixed h: wasteful
- Adaptive *h*: choose *h* depending on *i*, *p*, *n* and \tilde{y}^i

Choice of *h* based on an effective lower bound on radius of convergence of the Taylor series:

Lemma: If y' = p(y), $\alpha = \max(1, ||y_0||)$, $k = \deg(p)$, $M = (k - 1)\Sigma p \alpha^{k-1}$ then:

$$\left\| y^{(k)}(t) - \mathcal{P}_k(y(t)) \right\| \leq \frac{\alpha(Mt)^k}{1 - Mt}$$

Choice of *h* based on an effective lower bound on radius of convergence of the Taylor series:

Lemma: If y' = p(y), $\alpha = \max(1, ||y_0||)$, $k = \deg(p)$, $M = (k - 1)\Sigma p \alpha^{k-1}$ then:

$$\left\| y^{(k)}(t) - P_k(y(t)) \right\| \leq \frac{\alpha(Mt)^k}{1 - Mt}$$

Choose $Mt \approx \frac{1}{2}$:

- $t \approx \frac{1}{M}$: adaptive step size
- local error $\approx (Mt)^k \approx 2^{-k}$: order gives the number of correct bits

Choice of *h* based on an effective lower bound on radius of convergence of the Taylor series:

Lemma: If y' = p(y), $\alpha = \max(1, ||y_0||)$, $k = \deg(p)$, $M = (k - 1)\Sigma p \alpha^{k-1}$ then:

$$\left\| y^{(k)}(t) - P_k(y(t)) \right\| \leq \frac{\alpha(Mt)^k}{1 - Mt}$$

Choose $Mt \approx \frac{1}{2}$:

• $t \approx \frac{1}{M}$: adaptive step size

• local error $\approx (Mt)^k \approx 2^{-k}$: order gives the number of correct bits I spare you the analysis of the global error !