
Rigorous numerical computation of polynomial
differential equations over unbounded domains

Amaury Pouly
Joint work with Daniel Graça

27 November 2017

−∞ / 12

Ordinary Differential Equations (ODEs)

t
y(t)y0

System of ODEs:
y1(0)= y0,1

...
yn(0)= y0,n


y ′1(t)= f1(y1(t), . . . , yn(t))

...
y ′n(t)= fn(y1(t), . . . , yn(t))

More compactly:

y(0) = y0 y ′(t) = f (y(t))

1 / 12

Computability

Let I = [0,a[and f ∈ C0(Rn). Assume y ∈ C1(I,Rd) satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)). (1)

Can we compute y(t)± 2−n for all t ∈ I and n ∈ N ?

existence: Peano theorem
uniqueness: assumption on y or f
computability: assume f is computable

Theorem (Collins and Graça)

If f is computable and (1) has a unique solution, then it is computable
over its maximum interval of life I.

Theorem (Buescu, Campagnolo and Graça)

Computing I (or deciding if I is bounded) is undecidable, even if f is a
polynomial.

2 / 12

Computability

Let I = [0,a[and f ∈ C0(Rn). Assume y ∈ C1(I,Rd) satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)). (1)

Can we compute y(t)± 2−n for all t ∈ I and n ∈ N ?
existence: Peano theorem
uniqueness: assumption on y or f
computability: assume f is computable

Theorem (Collins and Graça)

If f is computable and (1) has a unique solution, then it is computable
over its maximum interval of life I.

Theorem (Buescu, Campagnolo and Graça)

Computing I (or deciding if I is bounded) is undecidable, even if f is a
polynomial.

2 / 12

Computability

Let I = [0,a[and f ∈ C0(Rn). Assume y ∈ C1(I,Rd) satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)). (1)

Can we compute y(t)± 2−n for all t ∈ I and n ∈ N ?
existence: Peano theorem
uniqueness: assumption on y or f
computability: assume f is computable

Theorem (Collins and Graça)

If f is computable and (1) has a unique solution, then it is computable
over its maximum interval of life I.

Theorem (Buescu, Campagnolo and Graça)

Computing I (or deciding if I is bounded) is undecidable, even if f is a
polynomial.

2 / 12

Computability

Let I = [0,a[and f ∈ C0(Rn). Assume y ∈ C1(I,Rd) satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)). (1)

Can we compute y(t)± 2−n for all t ∈ I and n ∈ N ?
existence: Peano theorem
uniqueness: assumption on y or f
computability: assume f is computable

Theorem (Collins and Graça)

If f is computable and (1) has a unique solution, then it is computable
over its maximum interval of life I.

Theorem (Buescu, Campagnolo and Graça)

Computing I (or deciding if I is bounded) is undecidable, even if f is a
polynomial.

2 / 12

Empirical approach to complexity

Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Lipschitz continuous and computable.

Non-rigorous: guaranteed (linear) complexity, result can be wrong
→ Unsatisfactory
Rigorous: guaranteed result, benchmark complexity

Useful in practice, not that much in theory.

3 / 12

Empirical approach to complexity

Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Lipschitz continuous and computable.
Non-rigorous: guaranteed (linear) complexity, result can be wrong
→ Unsatisfactory

Rigorous: guaranteed result, benchmark complexity
Useful in practice, not that much in theory.

3 / 12

Empirical approach to complexity

Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Lipschitz continuous and computable.
Non-rigorous: guaranteed (linear) complexity, result can be wrong
→ Unsatisfactory
Rigorous: guaranteed result, benchmark complexity

Useful in practice, not that much in theory.

3 / 12

Empirical approach to complexity

Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Lipschitz continuous and computable.
Non-rigorous: guaranteed (linear) complexity, result can be wrong
→ Unsatisfactory
Rigorous: guaranteed result, benchmark complexity

Useful in practice, not that much in theory.

3 / 12

Nonuniform complexity-theoretic approach

Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y

PTIME arbitrary computable
PTIME + Lipschitz PSPACE-hard PSPACE

PTIME + C1 PSPACE-hard PSPACE
PTIME + Ck , k > 2 CH-hard PSPACE
PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yn(0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yn−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

4 / 12

Nonuniform complexity-theoretic approach

Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y
PTIME arbitrary computable

PTIME + Lipschitz PSPACE-hard PSPACE
PTIME + C1 PSPACE-hard PSPACE

PTIME + Ck , k > 2 CH-hard PSPACE
PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yn(0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yn−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

4 / 12

Nonuniform complexity-theoretic approach

Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y
PTIME arbitrary computable

PTIME + Lipschitz PSPACE-hard PSPACE

PTIME + C1 PSPACE-hard PSPACE
PTIME + Ck , k > 2 CH-hard PSPACE
PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yn(0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yn−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

4 / 12

Nonuniform complexity-theoretic approach

Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y
PTIME arbitrary computable

PTIME + Lipschitz PSPACE-hard PSPACE
PTIME + C1 PSPACE-hard PSPACE

PTIME + Ck , k > 2 CH-hard PSPACE
PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yn(0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yn−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

4 / 12

Nonuniform complexity-theoretic approach

Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y
PTIME arbitrary computable

PTIME + Lipschitz PSPACE-hard PSPACE
PTIME + C1 PSPACE-hard PSPACE

PTIME + Ck , k > 2 CH-hard PSPACE

PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yn(0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yn−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

4 / 12

Nonuniform complexity-theoretic approach

Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y
PTIME arbitrary computable

PTIME + Lipschitz PSPACE-hard PSPACE
PTIME + C1 PSPACE-hard PSPACE

PTIME + Ck , k > 2 CH-hard PSPACE
PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yn(0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yn−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

4 / 12

Nonuniform complexity-theoretic approach

Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y
PTIME arbitrary computable

PTIME + Lipschitz PSPACE-hard PSPACE
PTIME + C1 PSPACE-hard PSPACE

PTIME + Ck , k > 2 CH-hard PSPACE
PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yn(0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yn−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

4 / 12

Nonuniform complexity: limitation

Example:

f PTIME analytic ⇒ y PTIME ⇒ y(t)± 2−n in time Ank

But:

“Hides” some of the complexity: A,k could be arbitrarily horrible
depending on the dimension and f .
Nonconstructive: might be a different algrithm for each f , or
depend on uncomputable constants.

5 / 12

Nonuniform complexity: limitation

Example:

f PTIME analytic ⇒ y PTIME ⇒ y(t)± 2−n in time Ank

But:
“Hides” some of the complexity: A,k could be arbitrarily horrible
depending on the dimension and f .

Nonconstructive: might be a different algrithm for each f , or
depend on uncomputable constants.

5 / 12

Nonuniform complexity: limitation

Example:

f PTIME analytic ⇒ y PTIME ⇒ y(t)± 2−n in time Ank

But:
“Hides” some of the complexity: A,k could be arbitrarily horrible
depending on the dimension and f .
Nonconstructive: might be a different algrithm for each f , or
depend on uncomputable constants.

5 / 12

Uniform (operator) complexity approach

Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Prove that y(t)± 2−n can be computed in
time:

T (t ,n,Kd ,Kf)

where
Kd : depends on the dimension d
Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T
computable arbitrary computable

PTIME + analytic arbitrary computable
PTIME + polynomial arbitrary computable

PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f .

6 / 12

Uniform (operator) complexity approach

Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Prove that y(t)± 2−n can be computed in
time:

T (t ,n,Kd ,Kf)

where
Kd : depends on the dimension d
Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T

computable arbitrary computable
PTIME + analytic arbitrary computable

PTIME + polynomial arbitrary computable
PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f .

6 / 12

Uniform (operator) complexity approach

Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Prove that y(t)± 2−n can be computed in
time:

T (t ,n,Kd ,Kf)

where
Kd : depends on the dimension d
Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T
computable arbitrary computable

PTIME + analytic arbitrary computable
PTIME + polynomial arbitrary computable

PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f .

6 / 12

Uniform (operator) complexity approach

Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Prove that y(t)± 2−n can be computed in
time:

T (t ,n,Kd ,Kf)

where
Kd : depends on the dimension d
Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T
computable arbitrary computable

PTIME + analytic arbitrary computable

PTIME + polynomial arbitrary computable
PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f .

6 / 12

Uniform (operator) complexity approach

Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Prove that y(t)± 2−n can be computed in
time:

T (t ,n,Kd ,Kf)

where
Kd : depends on the dimension d
Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T
computable arbitrary computable

PTIME + analytic arbitrary computable
PTIME + polynomial arbitrary computable

PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f .

6 / 12

Uniform (operator) complexity approach

Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Prove that y(t)± 2−n can be computed in
time:

T (t ,n,Kd ,Kf)

where
Kd : depends on the dimension d
Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T
computable arbitrary computable

PTIME + analytic arbitrary computable
PTIME + polynomial arbitrary computable

PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f .

6 / 12

Uniform (operator) complexity approach

Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Prove that y(t)± 2−n can be computed in
time:

T (t ,n,Kd ,Kf)

where
Kd : depends on the dimension d
Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T
computable arbitrary computable

PTIME + analytic arbitrary computable
PTIME + polynomial arbitrary computable

PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f .
6 / 12

Parametrized complexity approach

Goal: Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is nice. Prove that y(t)± 2−n can be computed in
time:

poly(t ,n,Kd ,Kf ,Ky (t))

where

Kd : depends on the dimension d
Kf : depends on f and its representation
Ky : is a reasonable parameter of y , ideally unknown to the
algorithm (i.e. not part of the input)

7 / 12

Parametrized complexity approach

Goal: Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is nice. Prove that y(t)± 2−n can be computed in
time:

poly(t ,n,Kd ,Kf ,Ky (t))

where
Kd : depends on the dimension d
Kf : depends on f and its representation
Ky : is a reasonable parameter of y , ideally unknown to the
algorithm (i.e. not part of the input)

7 / 12

Interesting parameters

t

y(t)

y0

Bounding-box: M(t)

8 / 12

Interesting parameters

t

y(t)

y0

M(t)

Bounding-box: M(t)

8 / 12

Interesting parameters

t

y(t)

y0

M(t)

Bounding-box: M(t)

8 / 12

Interesting parameters

t

y(t)

y0

M(t)

Bounding-box: M(t)

Length of the curve:
∫ t

0 ‖y
′(u)‖du

8 / 12

Parametrized complexity result

Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = p(y(t)),

where p : Rn → Rn is vector of multivariate polynomials.
Theorem
Assuming t ∈ I, computing y(t)± 2−n takes time:

poly(deg p, log Σp,n, `(t0, t))d

where:

Σp: sum of absolute value of coefficients of p
`(t0, t): “length” of y over [t0, t]

`(t0, t) =

∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

Note: the algorithm can find `(0, t) automatically

9 / 12

Parametrized complexity result

Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = p(y(t)),

where p : Rn → Rn is vector of multivariate polynomials.
Theorem
Assuming t ∈ I, computing y(t)± 2−n takes time:

poly(deg p, log Σp,n, `(t0, t))d

where:
Σp: sum of absolute value of coefficients of p

`(t0, t): “length” of y over [t0, t]

`(t0, t) =

∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

Note: the algorithm can find `(0, t) automatically

9 / 12

Parametrized complexity result

Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = p(y(t)),

where p : Rn → Rn is vector of multivariate polynomials.
Theorem
Assuming t ∈ I, computing y(t)± 2−n takes time:

poly(deg p, log Σp,n, `(t0, t))d

where:
Σp: sum of absolute value of coefficients of p
`(t0, t): “length” of y over [t0, t]

`(t0, t) =

∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

Note: the algorithm can find `(0, t) automatically
9 / 12

Did you try to implement this algorithm?

Unfortunately, yes!
“it works on simple examples”,
don’t use it, it is too slow.

Problems of this approach:
managing complexity and correctness makes the proof
complicated
correctness comes from paper proof
thus it is probably not entirely correct
still too slow in practice

10 / 12

Did you try to implement this algorithm?

Unfortunately, yes!
“it works on simple examples”,
don’t use it, it is too slow.

Problems of this approach:
managing complexity and correctness makes the proof
complicated
correctness comes from paper proof
thus it is probably not entirely correct
still too slow in practice

10 / 12

Did you try to implement this algorithm?

Unfortunately, yes!
“it works on simple examples”,
don’t use it, it is too slow.

Problems of this approach:
managing complexity and correctness makes the proof
complicated
correctness comes from paper proof
thus it is probably not entirely correct
still too slow in practice

10 / 12

Euler method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈ y(t) + hy ′(t) ; ỹ i+1 = ỹ i + hp(ỹ i)

11 / 12

Interesting (practical ?) consequences

Compute y(t)± ε

Method Max. Order Number of steps
Fixed ω ω − 1 O

(
L

ω+1
ω−1 ε−

1
ω−1

)

Euler (ω = 2) 1 O
(

L3

ε

)
Taylor2 (ω = 3) 2 O

(
L2
√
ε

)
Taylor4 (ω = 5) 4 O

(
L3/2

4√ε

)
Smart

(
ω = 1 + log L

ε

)
log L

ε O
(
L∼1)

Taylor∞ (ω =∞) ∞ O (L)

Variable O
(

log
L
ε

)
O (L)

where L ≈
∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

12 / 12

Interesting (practical ?) consequences

Compute y(t)± ε

Method Max. Order Number of steps
Fixed ω ω − 1 O

(
L

ω+1
ω−1 ε−

1
ω−1

)
Euler (ω = 2) 1 O

(
L3

ε

)

Taylor2 (ω = 3) 2 O
(

L2
√
ε

)
Taylor4 (ω = 5) 4 O

(
L3/2

4√ε

)
Smart

(
ω = 1 + log L

ε

)
log L

ε O
(
L∼1)

Taylor∞ (ω =∞) ∞ O (L)

Variable O
(

log
L
ε

)
O (L)

where L ≈
∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

12 / 12

Interesting (practical ?) consequences

Compute y(t)± ε

Method Max. Order Number of steps
Fixed ω ω − 1 O

(
L

ω+1
ω−1 ε−

1
ω−1

)
Euler (ω = 2) 1 O

(
L3

ε

)
Taylor2 (ω = 3) 2 O

(
L2
√
ε

)

Taylor4 (ω = 5) 4 O
(

L3/2

4√ε

)
Smart

(
ω = 1 + log L

ε

)
log L

ε O
(
L∼1)

Taylor∞ (ω =∞) ∞ O (L)

Variable O
(

log
L
ε

)
O (L)

where L ≈
∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

12 / 12

Interesting (practical ?) consequences

Compute y(t)± ε

Method Max. Order Number of steps
Fixed ω ω − 1 O

(
L

ω+1
ω−1 ε−

1
ω−1

)
Euler (ω = 2) 1 O

(
L3

ε

)
Taylor2 (ω = 3) 2 O

(
L2
√
ε

)
Taylor4 (ω = 5) 4 O

(
L3/2

4√ε

)

Smart
(
ω = 1 + log L

ε

)
log L

ε O
(
L∼1)

Taylor∞ (ω =∞) ∞ O (L)

Variable O
(

log
L
ε

)
O (L)

where L ≈
∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

12 / 12

Interesting (practical ?) consequences

Compute y(t)± ε

Method Max. Order Number of steps
Fixed ω ω − 1 O

(
L

ω+1
ω−1 ε−

1
ω−1

)
Euler (ω = 2) 1 O

(
L3

ε

)
Taylor2 (ω = 3) 2 O

(
L2
√
ε

)
Taylor4 (ω = 5) 4 O

(
L3/2

4√ε

)
Smart

(
ω = 1 + log L

ε

)
log L

ε O
(
L∼1)

Taylor∞ (ω =∞) ∞ O (L)

Variable O
(

log
L
ε

)
O (L)

where L ≈
∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

12 / 12

Interesting (practical ?) consequences

Compute y(t)± ε

Method Max. Order Number of steps
Fixed ω ω − 1 O

(
L

ω+1
ω−1 ε−

1
ω−1

)
Euler (ω = 2) 1 O

(
L3

ε

)
Taylor2 (ω = 3) 2 O

(
L2
√
ε

)
Taylor4 (ω = 5) 4 O

(
L3/2

4√ε

)
Smart

(
ω = 1 + log L

ε

)
log L

ε O
(
L∼1)

Taylor∞ (ω =∞) ∞ O (L)

Variable O
(

log
L
ε

)
O (L)

where L ≈
∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

12 / 12

Interesting (practical ?) consequences

Compute y(t)± ε

Method Max. Order Number of steps
Fixed ω ω − 1 O

(
L

ω+1
ω−1 ε−

1
ω−1

)
Euler (ω = 2) 1 O

(
L3

ε

)
Taylor2 (ω = 3) 2 O

(
L2
√
ε

)
Taylor4 (ω = 5) 4 O

(
L3/2

4√ε

)
Smart

(
ω = 1 + log L

ε

)
log L

ε O
(
L∼1)

Taylor∞ (ω =∞) ∞ O (L)

Variable O
(

log
L
ε

)
O (L)

where L ≈
∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

12 / 12

Conclusion

Solving Ordinary Differential Equations numerically:
vastly different algorithms/results for vastly different expectations
nonuniform complexity: imprecise/misleading
uniform worst-case complexity: everything is hard
uniform parametrized complexity: encouraging

Questions:
how far can we push parametrized complexity?
can theory bring insight to practice?

∞ / 12

Taylor method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Lemma: y (k)(t) = Pk (y(t)) = poly(y(t))

Order K , time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈
K∑

j=0

hj

j!
y (j)(t) ; ỹ i+1 =

K∑
j=0

hj

j!
Pk (ỹ i)

Fixed order K : theoretically not enough
Variable order K : choose K depending on i ,p,n and ỹ i

What about h ?
Fixed h: wasteful
Adaptive h: choose h depending on i ,p,n and ỹ i

∞ / 12

Taylor method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Lemma: y (k)(t) = Pk (y(t)) = poly(y(t))

Order K , time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈
K∑

j=0

hj

j!
y (j)(t) ; ỹ i+1 =

K∑
j=0

hj

j!
Pk (ỹ i)

Fixed order K : theoretically not enough
Variable order K : choose K depending on i ,p,n and ỹ i

What about h ?
Fixed h: wasteful
Adaptive h: choose h depending on i ,p,n and ỹ i

∞ / 12

Taylor method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Lemma: y (k)(t) = Pk (y(t)) = poly(y(t))

Order K , time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈
K∑

j=0

hj

j!
y (j)(t) ; ỹ i+1 =

K∑
j=0

hj

j!
Pk (ỹ i)

Fixed order K : theoretically not enough

Variable order K : choose K depending on i ,p,n and ỹ i

What about h ?
Fixed h: wasteful
Adaptive h: choose h depending on i ,p,n and ỹ i

∞ / 12

Taylor method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Lemma: y (k)(t) = Pk (y(t)) = poly(y(t))

Order K , time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈
K∑

j=0

hj

j!
y (j)(t) ; ỹ i+1 =

K∑
j=0

hj

j!
Pk (ỹ i)

Fixed order K : theoretically not enough
Variable order K : choose K depending on i ,p,n and ỹ i

What about h ?
Fixed h: wasteful
Adaptive h: choose h depending on i ,p,n and ỹ i

∞ / 12

Taylor method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Lemma: y (k)(t) = Pk (y(t)) = poly(y(t))

Order K , time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈
K∑

j=0

hj

j!
y (j)(t) ; ỹ i+1 =

K∑
j=0

hj

j!
Pk (ỹ i)

Fixed order K : theoretically not enough
Variable order K : choose K depending on i ,p,n and ỹ i

What about h ?
Fixed h: wasteful

Adaptive h: choose h depending on i ,p,n and ỹ i

∞ / 12

Taylor method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Lemma: y (k)(t) = Pk (y(t)) = poly(y(t))

Order K , time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈
K∑

j=0

hj

j!
y (j)(t) ; ỹ i+1 =

K∑
j=0

hj

j!
Pk (ỹ i)

Fixed order K : theoretically not enough
Variable order K : choose K depending on i ,p,n and ỹ i

What about h ?
Fixed h: wasteful
Adaptive h: choose h depending on i ,p,n and ỹ i

∞ / 12

Choice of the parameters

Choice of h based on an effective lower bound on radius of
convergence of the Taylor series:

Lemma: If y ′ = p(y), α = max(1, ‖y0‖), k = deg(p),
M = (k − 1)Σpαk−1 then:∥∥∥y (k)(t)− Pk (y(t))

∥∥∥ 6
α(Mt)k

1−Mt

Choose Mt ≈ 1
2 :

t ≈ 1
M : adaptive step size

local error ≈ (Mt)k ≈ 2−k : order gives the number of correct bits
I spare you the analysis of the global error !

∞ / 12

Choice of the parameters

Choice of h based on an effective lower bound on radius of
convergence of the Taylor series:

Lemma: If y ′ = p(y), α = max(1, ‖y0‖), k = deg(p),
M = (k − 1)Σpαk−1 then:∥∥∥y (k)(t)− Pk (y(t))

∥∥∥ 6
α(Mt)k

1−Mt

Choose Mt ≈ 1
2 :

t ≈ 1
M : adaptive step size

local error ≈ (Mt)k ≈ 2−k : order gives the number of correct bits

I spare you the analysis of the global error !

∞ / 12

Choice of the parameters

Choice of h based on an effective lower bound on radius of
convergence of the Taylor series:

Lemma: If y ′ = p(y), α = max(1, ‖y0‖), k = deg(p),
M = (k − 1)Σpαk−1 then:∥∥∥y (k)(t)− Pk (y(t))

∥∥∥ 6
α(Mt)k

1−Mt

Choose Mt ≈ 1
2 :

t ≈ 1
M : adaptive step size

local error ≈ (Mt)k ≈ 2−k : order gives the number of correct bits
I spare you the analysis of the global error !

∞ / 12

	Context and Motivation

