Rigorous numerical computation of polynomial

differential equations over unbounded domains

Amaury Pouly
Joint work with Daniel Graga

27 November 2017

/12

Ordinary Differential Equations (ODES)

Yo y(t)

System of ODEs:
{Y1(0) Yo,1 {}ﬁ'(t) f(yi(t), ..., ¥n())

Ya(0)= Yo Vo= Fa(y1 (). .- yn(t))

More compactly:

¥(0) = yo y'(t) = f(y(1))

1/12

Computability

Let / = [0,a[and f € C°(R"). Assume y € C'(I,RY) satisfies Vt € I:

y(0) =0, y'(t) = f(y(1)). (1)

Can we compute y(t) =2 "forallte land ne N ?

2/12

Computability

Let / = [0,a[and f € C°(R"). Assume y € C'(I,RY) satisfies Vt € I:

y(0) =0, y'(t) = f(y(1)). (1)

Can we compute y(t) =2 "forallte land ne N ?
@ existence: Peano theorem
@ unigueness: assumption on y or f
@ computability: assume f is computable

2/12

Computability

Let / = [0,a[and f € C°(R"). Assume y € C'(I,RY) satisfies Vt € I:

y(0) =0, y'(t) = f(y(1)). (1)

Can we compute y(t) =2 "forallte land ne N ?
@ existence: Peano theorem
@ unigueness: assumption on y or f
@ computability: assume f is computable

Theorem (Collins and Graca)

If fis computable and (1) has a unique solution, then it is computable
over its maximum interval of life /.

Computability

Let / = [0,a[and f € C°(R"). Assume y € C'(I,RY) satisfies Vt € I:
y(0) =0, y'(t) = f(y(1)). (1)

Can we compute y(t) =2 "forallte land ne N ?
@ existence: Peano theorem
@ unigueness: assumption on y or f
@ computability: assume f is computable

Theorem (Collins and Graca)

If fis computable and (1) has a unique solution, then it is computable
over its maximum interval of life /.

Theorem (Buescu, Campagnolo and Gracga)

Computing / (or deciding if / is bounded) is undecidable, even if f is a
polynomial.

v

v

2/12

Empirical approach to complexity

Assume y : [0, 1] — R” satisfies Vt € [0, 1]:

y(0) =0, y'(t) = f(y(1)),

where f: R" — R" is Lipschitz continuous and computable.

3/12

Empirical approach to complexity

Assume y : [0, 1] — R” satisfies Vt € [0, 1]:

y(0) =0, y'(t) = f(y(1)),

where f: R" — R" is Lipschitz continuous and computable.

@ Non-rigorous: guaranteed (linear) complexity, result can be wrong
— Unsatisfactory

3/12

Empirical approach to complexity

Assume y : [0, 1] — R” satisfies Vt € [0, 1]:

y(0) =0, y'(t) = f(y(1)),

where f: R" — R" is Lipschitz continuous and computable.

@ Non-rigorous: guaranteed (linear) complexity, result can be wrong
— Unsatisfactory

@ Rigorous: guaranteed result, benchmark complexity

3/12

Empirical approach to complexity

Assume y : [0, 1] — R” satisfies Vt € [0, 1]:

y(0) =0, y'(t) = f(y(1)),

where f: R" — R" is Lipschitz continuous and computable.

@ Non-rigorous: guaranteed (linear) complexity, result can be wrong
— Unsatisfactory

@ Rigorous: guaranteed result, benchmark complexity
Useful in practice, not that much in theory.

3/12

Nonuniform complexity-theoretic approach

Assume y : [0, 1] — R” satisfies Vt € [0, 1]:
y(0) =0, y'(t) = f(y(1)).

Assumption on f Lower bound on y Upper bound on y

4/12

Nonuniform complexity-theoretic approach

Assume y : [0, 1] — R” satisfies Vt € [0, 1]:
y(0) =0, y'(t) = f(y(1)).

Assumption on f Lower bound on y Upper bound on y
PTIME arbitrary computable

4/12

Nonuniform complexity-theoretic approach

Assume y : [0, 1] — R” satisfies Vt € [0, 1]:

y(0) =0, y'(t) = f(y(1)).
Assumption on f Lower bound on y Upper bound on y
PTIME arbitrary computable

PTIME + Lipschitz PSPACE-hard PSPACE

Nonuniform complexity-theoretic approach

Assume y : [0, 1] — R” satisfies Vt € [0, 1]:

y(0) =0, y'(t) = f(y(1)).
Assumption on f Lower bound on y Upper bound on y
PTIME arbitrary computable
PTIME + Lipschitz PSPACE-hard PSPACE

PTIME + C' PSPACE-hard PSPACE

Nonuniform complexity-theoretic approach

Assume y : [0, 1] — R” satisfies Vt € [0, 1]:

y(0) =0, y'(t) = f(y(1)).
Assumption on f Lower bound on y Upper bound on y
PTIME arbitrary computable
PTIME + Lipschitz PSPACE-hard PSPACE
PTIME + C' PSPACE-hard PSPACE

PTIME + CK, k > 2 CH-hard PSPACE

Nonuniform complexity-theoretic approach

Assume y : [0, 1] — R” satisfies Vt € [0, 1]:

y(0) =0, y'(t) = f(y(1)).
Assumption on f Lower bound on y Upper bound on y
PTIME arbitrary computable
PTIME + Lipschitz PSPACE-hard PSPACE
PTIME + C' PSPACE-hard PSPACE
PTIME + CK, k > 2 CH-hard PSPACE

PTIME + analytic — PTIME

Nonuniform complexity-theoretic approach

Assume y : [0, 1] — R” satisfies Vt € [0, 1]:

y(0) =0, y'(t) = f(y(1)).
Assumptionon f Lower bound on y Upper bound on y
PTIME arbitrary computable
PTIME + Lipschitz PSPACE-hard PSPACE
PTIME + C' PSPACE-hard PSPACE
PTIME + CK, k > 2 CH-hard PSPACE
PTIME + analytic — PTIME

But those results can be deceiving...

¥1(0)=1 Yi= Y1 o
¥2(0)=1 Vo= Y1Y2 y(t)=0 | e
. . —

\ ; is PTIME over [0, 1
yn(0)= Yn=Yn-1Yn Y 0. 1]

Nonuniform complexity: limitation

Example:
f PTIME analytic = y PTIME = y(t) £ 27" in time An¥

But:

5/12

Nonuniform complexity: limitation

Example:
f PTIME analytic = y PTIME = y(t) £ 27" in time An¥

But:

@ “Hides” some of the complexity: A,k could be arbitrarily horrible
depending on the dimension and f.

5/12

Nonuniform complexity: limitation

Example:
f PTIME analytic = y PTIME = y(t) £ 27" in time An¥

But:

@ “Hides” some of the complexity: A,k could be arbitrarily horrible
depending on the dimension and f.

@ Nonconstructive: might be a different algrithm for each f, or
depend on uncomputable constants.

5/12

Uniform (operator) complexity approach
Assume y : | — RY satisfies Vt € I:

y(0) =0, y'(t) = f(y(1)),

where f : R" — R" is Prove that y(t) & 2~" can be computed in
time:

T(t, n, Ky, Kr)
where
@ Ky: depends on the dimension d
@ K;: depends on f and its representation

6/12

Uniform (operator) complexity approach
Assume y : | — RY satisfies Vt € I:

y(0) =0, y'(t) = f(y(1)),

where f : R" — R" is Prove that y(t) & 2~" can be computed in
time:

T(t, n, Ky, Kr)
where
@ Ky: depends on the dimension d
@ K;: depends on f and its representation

Assumptionon f Lower bound on 7 Upper bound on T

Uniform (operator) complexity approach
Assume y : | — RY satisfies Vt € I:

y(0) =0, y'(t) = f(y(1)),

where f : R" — R" is Prove that y(t) & 2~" can be computed in
time:

T(t, n, Ky, Kr)
where
@ Ky: depends on the dimension d
@ K;: depends on f and its representation

Assumptionon f Lower bound on 7 Upper bound on T
computable arbitrary computable

Uniform (operator) complexity approach
Assume y : | — RY satisfies Vt € I:

y(0) =0, y'(t) = f(y(1)),

where f : R" — R" is Prove that y(t) & 2~" can be computed in
time:

T(t, n, Ky, Kr)
where
@ Ky: depends on the dimension d
@ K;: depends on f and its representation

Assumptionon f Lower bound on 7 Upper bound on T
computable arbitrary computable
PTIME + analytic arbitrary computable

Uniform (operator) complexity approach
Assume y : | — RY satisfies Vt € I:

y(0) =0, y'(t) = f(y(1)),

where f : R" — R" is Prove that y(t) & 2~" can be computed in
time:

T(t, n, Ky, Kr)
where
@ Ky: depends on the dimension d
@ K;: depends on f and its representation

Assumptionon f Lower bound on 7 Upper bound on T
computable arbitrary computable
PTIME + analytic arbitrary computable
PTIME + polynomial arbitrary computable

Uniform (operator) complexity approach
Assume y : | — RY satisfies Vt € I:

y(0) =0, y'(t) = f(y(1)),

where f : R" — R" is Prove that y(t) & 2~" can be computed in
time:

T(t, n, Ky, Kr)
where
@ Ky: depends on the dimension d
@ K;: depends on f and its representation

Assumptionon f Lower bound on 7 Upper bound on T

computable arbitrary computable
PTIME + analytic arbitrary computable
PTIME + polynomial arbitrary computable

PTIME + linear — exponential?

Uniform (operator) complexity approach

Assume y : | — RY satisfies Vt € I:

y(0) =0, y'(1) = f(y(1)),
where f : R" — R is Prove that y(t) + 2~" can be computed in
time:
T(t, n, Ky, Kr)
where
@ Ky: depends on the dimension d
@ K;: depends on f and its representation

Assumptionon f Lower bound on 7 Upper bound on T

computable arbitrary computable
PTIME + analytic arbitrary computable
PTIME + polynomial arbitrary computable
PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f.

Parametrized complexity approach

Goal: Assume y : | — R9 satisfies Vt € I

y(0) =0, y'(t) = f(y(1)),

where f : R" — R is nice. Prove that y(t) +£ 2~" can be computed in
time:
poly(t, n, Ky, K¢, Ky (1))

where

7/12

Parametrized complexity approach

Goal: Assume y : | — R9 satisfies Vt € I

y(0) =0, y'(t) = f(y(1)),
where f : R" — R is nice. Prove that y(t) +£ 2~" can be computed in
time:
poly(t, n, Kq, K, Ky (1))
where
@ Ky: depends on the dimension d
@ Kj;: depends on f and its representation

@ Ky is a reasonable parameter of y, ideally unknown to the
algorithm (i.e. not part of the input)

7/12

Interesting parameters

Yo

8/12

Interesting parameters

Yo

@ Bounding-box: M(t)

8/12

Interesting parameters

M(t)

YOAVA/\V/\V/ VIV VY VYVVY

@ Bounding-box: M(t)

Interesting parameters

M(1)

/mewﬁvmwwM

Vv

Yo

@ Bounding-box: M(t)
@ Length of the curve: fot |ly'(u)| du

Parametrized complexity result

Assume y : | — RY satisfies Vt € I:

y(0) =0, y'(t) = p(y(1)),

where p : R" — R" is vector of multivariate polynomials.
Theorem

Assuming t € I, computing y(t) + 2" takes time:

poly(deg p, log Zp, n, £(ty, t))°

where:

Parametrized complexity result

Assume y : | — RY satisfies Vt € I:

y(0) =0, y'(t) = p(y(1)),

where p : R" — R" is vector of multivariate polynomials.
Theorem

Assuming t € I, computing y(t) + 2" takes time:

poly(deg p, log £p, n, (1o, 1))*
where:
@ X p: sum of absolute value of coefficients of p

Parametrized complexity result

Assume y : | — RY satisfies Vt € I:

y(0) =0, y'(t) = p(y(1)),

where p : R" — R" is vector of multivariate polynomials.
Theorem

Assuming t € I, computing y(t) + 2" takes time:

poly(deg p, log Zp, n, £(ty, t))°

where:
@ X p: sum of absolute value of coefficients of p
@ /(fp, t): “length” of y over [fy, {]

t
E(l‘o,t):/o max(1,

Note: the algorithm can find ¢(0, t) automatically

y'(u)|))du

Did you try to implement this algorithm?

10/12

Did you try to implement this algorithm?

Unfortunately, yes!
@ “it works on simple examples”,
@ don’t use it, it is too slow.

10/12

Did you try to implement this algorithm?

Unfortunately, yes!
@ “it works on simple examples”,
@ don’t use it, it is too slow.

Problems of this approach:
@ managing complexity and correctness makes the proof
complicated

@ correctness comes from paper proof
@ thus it is probably not entirely correct
@ still too slow in practice

10/12

Euler method

y(0)=0 y'()=py(t) tel

Time step h, discretize compute y' ~ y(ih):
y(t+h) =yt)+hy'(t) ~ 77 =7+ hp(y)

0,34

0,6

0,4

0,2

0,0

-0,2

-0,4

11/12

Interesting (practical ?) consequences

Compute y(t) ¢
Method Max. Order Number of steps

w1 1

Fixed w w1 o (Lehea)

f
where L%/ max(1, ||y’ (u)|)du
0

12/12

Interesting (practical ?) consequences

Compute y(t) ¢

Method Max. Order Number of steps
Fixed w w1 1% (L%e*ﬁ)
Euler (w = 2) 1 O (Li)

f
where L%/ max(1, ||y’ (uv)|)du
0

12/12

Interesting (practical ?) consequences

Compute y(t) ¢

Method Max. Order Number of steps
Fixed w w1 1% (L%e*ﬁ)
Euler (w = 2) 1 O (Li)
L2
Taylor2 (w = 3) 2 10) (7)

f
where L%/ max(1, ||y’ (uv)|)du
0

12/12

Interesting (practical ?) consequences

Compute y(t) ¢

Method Max. Order Number of steps
Fixed w w1 1% (L%e*ﬁ)
Euler (w = 2) 1 O (Li)
Taylor2 (w = 3) 2 o) (LTQ)
- 132
Taylor4 (w = 5) 4 0) (4 ﬁ)

f
where L%/ max(1, ||y’ (uv)|)du
0

12/12

Interesting (practical ?) consequences

Compute y(t) ¢

Method Max. Order Number of steps
Fixed w w1 1% (L%e*ﬁ)
Euler (w = 2) 1 O (Li)
Taylor2 (w = 3) 2 o) (LTQ)
Taylor4 (w = 5) 4 O (F’i)
Smart (w =1 +log £) log L o (L)

f
where L%/ max(1, ||y’ (u)|)du
0

12/12

Interesting (practical ?) consequences

Compute y(t) ¢

Method Max. Order Number of steps
Fixed w1 1% (L%e*ﬁ)
Euler (w = 2) 1 O (Li)
Taylor2 (w = 3) 2 o) (LTQ)
Taylor4 (w = 5) 4 O (%)
Smart (w =1 +log £) log L o (L)
Tayloroo (w = o0) 00 O (L)

f
where L%/ max(1, ||y’ (u)|)du
0

12/12

Interesting (practical ?) consequences

Compute y(t) ¢

Method Max. Order Number of steps
Fixed w w1 1% (L%e*ﬁ)
Euler (w = 2) 1 O (Li)
Taylor2 (w = 3) 2 o) (LTQ)
Taylor4 (w = 5) 4 O (%)
Smart (w =1 +log £) log L o (L)
Tayloroo (w = o0) 00 O (L)
Variable @] (Iog i) O (L)

f
where L%/ max(1, ||y’ (uv)|)du
0

12/12

Conclusion

Solving Ordinary Differential Equations numerically:
@ vastly different algorithms/results for vastly different expectations
@ nonuniform complexity: imprecise/misleading
@ uniform worst-case complexity: everything is hard
@ uniform parametrized complexity: encouraging

Questions:
@ how far can we push parametrized complexity?
@ can theory bring insight to practice?

Taylor method

y(0)=0 y'(t)=py(t) tel
Lemma: y((t) = Pe(y(t)) = poly(y(t))

Taylor method

y(0)=0 y()=py(t) tel
Lemma: y("(t) = Pi(y(t)) = poly(y(t))
Order K, time step h, discretize compute ¥’ ~ y(ih):
K

L it S H ci
y(t+h)%zj7y)y ~ 7 =Zj—,Pk(y)
=0 7° =0 °

co/12

Taylor method

y(0)=0 y'(t)=py(t) tel
Lemma: y((t) = Pe(y(t)) = poly(y(t))

Order K, time step h, discretize compute ¥’ ~ y(ih):

K H o) K H _
yt+h =y jTyU)(t) ~ Fr =)y 7P
j=0 7" j=0 7"

@ Fixed order K: theoretically not enough

co/12

Taylor method

y(0)=0 y'(t)=py(t) tel
Lemma: y((t) = Pe(y(t)) = poly(y(t))

Order K, time step h, discretize compute ¥’ ~ y(ih):

K H o) K H _
yt+h =y jTyU)(t) ~ Fr =)y 7P
j=0 7" j=0 7"

@ Fixed order K: theoretically not enough
@ Variable order K: choose K depending on i,p, nand y’

co/12

Taylor method

y(0)=0 y'(t)=py(t) tel
Lemma: y((t) = Pe(y(t)) = poly(y(t))

Order K, time step h, discretize compute ¥’ ~ y(ih):

K H o) K H _
yt+h =y jTyU)(t) ~ Fr =)y 7P
j=0 7" j=0 7"

@ Fixed order K: theoretically not enough

@ Variable order K: choose K depending on i,p, nand y’
What about h ?

@ Fixed h: wasteful

co/12

Taylor method

y(0)=0 y'(t)=py(t) tel
Lemma: y((t) = Pe(y(t)) = poly(y(t))

Order K, time step h, discretize compute ¥’ ~ y(ih):

K H o) K H _
yt+h =y jTyU)(t) ~ Fr =)y 7P
j=0 7" j=0 7"

@ Fixed order K: theoretically not enough

@ Variable order K: choose K depending on i,p, nand y’
What about h ?

@ Fixed h: wasteful

@ Adaptive h: choose h depending on i, p, nand y'

Choice of the parameters

Choice of h based on an effective lower bound on radius of
convergence of the Taylor series:

Lemma: If y' = p(y), o = max(1,[|yol]), k = deg(p),
M = (k — 1)Zpa*~1 then:

oMtk
11— Mt

y® @) - Py <

co/12

Choice of the parameters

Choice of h based on an effective lower bound on radius of
convergence of the Taylor series:

Lemma: If y' = p(y), o = max(1,[|yol]), k = deg(p),
M = (k — 1)Zpa*~1 then:

oMtk
11— Mt

y® @) - Py <

Choose Mt ~ }:
e {~ f;: adaptive step size
@ local error ~ (Mt)* ~ 2K: order gives the number of correct bits

co/12

Choice of the parameters

Choice of h based on an effective lower bound on radius of
convergence of the Taylor series:

Lemma: If y' = p(y), o = max(1,[|yol]), k = deg(p),
M = (k — 1)Zpa*~1 then:

oMtk
11— Mt

y® @) - Py <

Choose Mt ~ }:

e {~ f;: adaptive step size

@ local error ~ (Mt)* ~ 2K: order gives the number of correct bits
| spare you the analysis of the global error !

co/12

	Context and Motivation

