A (truly) universal differential equation

Amaury Pouly

Joint work with Olivier Bournez and Daniel Graça

Travel supported by NSF DMS-1952694

14 february 2020

What is a computer?

What is a computer?

What is a computer?

Church Thesis

Computability

Church Thesis

All reasonable models of computation are equivalent.

Church Thesis

Effective Church Thesis

All **reasonable** models of computation are equivalent for complexity.

Differential Analyzer

- Rich class
- \triangleright Stable (+,×, \circ ,/,ED)
- No closed-form solution

$$\ddot{\theta} + \tfrac{g}{\ell}\sin(\theta) = 0$$

$$\ddot{ heta} + rac{g}{\ell}\sin(heta) = 0$$

$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{l} y_3 \\ y_3' = y_2 y_4 \\ y_4' = -y_2 y_3 \end{cases} \Leftrightarrow \begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases}$$

$$\ddot{\theta} + \frac{g}{\ell}\sin(\theta) = 0$$

$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{l} y_3 \\ y_3' = y_2 y_4 \\ y_4' = -y_2 y_3 \end{cases} \Leftrightarrow \begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases}$$

$$\ddot{\theta} + \frac{g}{\ell}\sin(\theta) = 0$$

$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{7}y_3 \\ y_3' = y_2y_4 \\ y_4' = -y_2y_3 \end{cases} \Leftrightarrow \begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases}$$

Historical remark: the word "analog"

The pendulum and the circuit have the same equation. One can study one using the other by analogy.

Computing with differential equations

Generable functions

$$\begin{cases} y(0) = y_0 \\ y'(x) = p(y(x)) \end{cases} \quad x \in \mathbb{R}$$

$$f(x) = y_1(x)$$

Shannon's notion

Computing with differential equations

Generable functions

$$\begin{cases} y(0) = y_0 \\ y'(x) = p(y(x)) \end{cases} \quad x \in \mathbb{R}$$

Shannon's notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \dots$

Considered "weak" : not Γ and ζ Only analytic functions

Inputs: $x, y \in [0, +\infty)$

Inputs: $x, y \in [0, +\infty)$

Output : sign(x - y)?

More formally

More formally

Theorem (Bournez et al, 2010)

This is equivalent to a Turing machine.

More formally

Theorem (Bournez et al, 2010)

This is equivalent to a Turing machine.

- analog computability theory
- purely continuous characterization of classical computability

Computing with differential equations (cont.)

Generable functions

$$\begin{cases} y(0) = y_0 \\ y'(x) = p(y(x)) \end{cases} \quad x \in \mathbb{R}$$

Shannon's notion

 $\sin,\cos,\exp,\log,...$

Considered "weak" : not Γ and ζ Only analytic functions

Computable

$$\begin{cases} y(0) = q(x) & x \in \mathbb{R} \\ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{cases}$$

$$f(x) = \lim_{t \to \infty} y_1(t)$$

Modern notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \mathsf{\Gamma}, \zeta, ...$

Turing powerful [Bournez et al., 2007]

Universal differential equations

subclass of analytic functions

Computable functions

any computable function

Universal differential equations

Computable functions

subclass of analytic functions

any computable function

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

For any continuous functions f and ε , there exists $y : \mathbb{R} \to \mathbb{R}$ solution to

$$3y'^{4}y''y'''^{2} -4y'^{4}y'''^{2}y'''' + 6y'^{3}y''^{2}y'''y'''' + 24y'^{2}y''^{4}y'''' -12y'^{3}y''y'''^{3} - 29y'^{2}y''^{3}y'''^{2} + 12y''^{7} = 0$$

such that $\forall t \in \mathbb{R}$,

$$|y(t)-f(t)|\leqslant \varepsilon(t).$$

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists a solution $g: \mathbb{R} \to \mathbb{R}$ to

$$p(y,y',\ldots,y^{(4)})=0$$

such that $\forall t \in \mathbb{R}$,

$$|y(t)-f(t)|\leqslant \varepsilon(t).$$

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists a solution $g: \mathbb{R} \to \mathbb{R}$ to

$$p(y,y',\ldots,y^{(4)})=0$$

such that $\forall t \in \mathbb{R}$,

$$|y(t)-f(t)| \leq \varepsilon(t).$$

Problem: this is «weak» result.

The problem with Rubel's DAE

The solution *y* is not unique, **even with added initial conditions** :

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel's proof to work!

The problem with Rubel's DAE

The solution *y* is not unique, **even with added initial conditions** :

$$p(y, y', ..., y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, ..., y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel's proof to work!

- Rubel's statement : this DAE is universal
- More realistic interpretation: this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y' = p(y)?

Note: explicit polynomial ODE ⇒ unique solution

► Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise. It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0$.

► Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1-t^2)^2 f''(t) + 2tf'(t) = 0$$
.

For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

$$3{y'}^4{y'''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} \\ - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$$

- ► Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise. It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0$.
- For any $a,b,c \in \mathbb{R}$, y(t)=cf(at+b) satisfies ${}_{3y'^4y''y''''^2-4y'^4y'''^2+6y'^3y''^2y'''y''''+24y'^2y''^4y''''-12y'^3y''y'^3-29y'^2y''^3y'''^2+12y''^7=0}$
- Can glue together arbitrary many such pieces

- ► Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise. It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0$.
- For any $a,b,c \in \mathbb{R}$, y(t)=cf(at+b) satisfies ${}_{3y'^4y''y''''^2-4y'^4y'''^2+6y'^3y''^2y'''y''''+24y'^2y''^4y''''-12y'^3y''y'^3-29y'^2y''^3y'''^2+12y''^7=0}$
- Can glue together arbitrary many such pieces
- ► Can arrange so that $\int f$ is solution : piecewise pseudo-linear

Rubel's proof in one slide

- ► Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise. It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0$.
- For any $a,b,c \in \mathbb{R}$, y(t)=cf(at+b) satisfies $_{3y'^4y''y''''^2-4y'^4y'''^2y''''+6y'^3y''^2y'''y''''+24y'^2y''^4y''''-12y'^3y''y''^3-29y'^2y''^3y'''^2+12y''^7=0}$
- Can glue together arbitrary many such pieces
- Can arrange so that ∫ f is solution : piecewise pseudo-linear

Conclusion: Rubel's equation allows any piecewise pseudo-linear functions, and those are **dense in** C^0

Universal initial value problem (IVP)

Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha,$$
 $y'(t) = \rho(y(t))$

has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t)-f(t)| \leq \varepsilon(t).$$

Universal initial value problem (IVP)

Notes:

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha,$$
 $y'(t) = \rho(y(t))$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t)-f(t)| \leq \varepsilon(t).$$

Universal initial value problem (IVP)

Notes:

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha,$$
 $y'(t) = p(y(t))$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t)-f(t)| \leq \varepsilon(t).$$

Remark : α is usually transcendental, but computable from f and ε

Universal DAE revisited

Theorem

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists $\alpha_0, \ldots, \alpha_k \in \mathbb{R}$ such that

$$p(y, y', ..., y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, ..., y^{(k)}(0) = \alpha_k$$

has a unique analytic solution and this solution satisfies such that

$$|y(t)-f(t)|\leqslant \varepsilon(t).$$

A brief stop

Before I can explain the proof, you need to know more of polynomial ODEs and what I mean by programming with ODEs.

Generable functions: a summary

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if $\exists d, p$ and y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Generable functions: a summary

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if $\exists d, p$ and y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Nice theory for the class of total and univariate generable functions:

- analytic
- contains polynomials, sin, cos, tanh, exp
- ▶ stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)

$$y' = f(y)$$

solutions to polynomial ODEs form a very large class

Why is this useful?

Writing polynomial ODEs by hand is hard.

Why is this useful?

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated **multivariate partial functions** using other operations, and we know they are solutions to polynomial ODEs **by construction**.

Why is this useful?

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated **multivariate partial functions** using other operations, and we know they are solutions to polynomial ODEs **by construction**.

Example: almost rounding function

There exists a generable function round such that for any $n \in \mathbb{Z}$, $x \in \mathbb{R}$, $\lambda > 2$ and $\mu \geqslant 0$:

- if $x \in [n-\frac{1}{2}, n+\frac{1}{2}]$ then $|\operatorname{round}(x, \mu, \lambda) n| \leqslant \frac{1}{2}$,
- ▶ if $x \in \left[n \frac{1}{2} + \frac{1}{\lambda}, n + \frac{1}{2} \frac{1}{\lambda}\right]$ then $|\operatorname{round}(x, \mu, \lambda) n| \leqslant e^{-\mu}$.

▶ See proof

binary stream generator : digits of $\alpha \in \mathbb{R}$

$$f(\alpha,\mu,\lambda,t) = \frac{1}{2} + \frac{1}{2} \tanh(\mu \sin(2\alpha\pi 4^{\operatorname{round}(t-1/4,\lambda)} + 4\pi/3))$$

It's horrible, but generable

dyadic stream generator :
$$d_i = m_i 2^{-d_i}$$
, $a_i = 9i + \sum_{j < i} d_j$

$$f(\alpha, \gamma, t) = \sin(2\alpha\pi 2^{\operatorname{round}(t-1/4, \gamma)}))$$

This copy operation is the "non-trivial" part.

We can do almost piecewise constant functions...

We can do almost piecewise constant functions...

- ...that are bounded by 1...
- ...and have super slow changing frequency.

We can do almost piecewise constant functions...

- ► ...that are bounded by 1...
- ...and have super slow changing frequency.

How do we go to arbitrarily large and growing functions? Can a polynomial ODE even have arbitrary growth?

Building a fast-growing ODE, that exists over \mathbb{R} :

$$y_1' = y_1$$
 \rightsquigarrow $y_1(t) = \exp(t)$

Building a fast-growing ODE, that exists over \mathbb{R} :

$$y'_1 = y_1$$
 \rightarrow $y_1(t) = \exp(t)$
 $y'_2 = y_1 y_2$ \rightarrow $y_1(t) = \exp(\exp(t))$

Building a fast-growing ODE, that exists over \mathbb{R} :

$$y_1' = y_1$$
 \longrightarrow $y_1(t) = \exp(t)$
 $y_2' = y_1 y_2$ \longrightarrow $y_1(t) = \exp(\exp(t))$
 \dots \dots
 $y_n' = y_1 \cdots y_n$ \longrightarrow $y_n(t) = \exp(\cdots \exp(t) \cdots) := e_n(t)$

Building a fast-growing ODE, that exists over ℝ:

$$y'_1 = y_1$$
 \longrightarrow $y_1(t) = \exp(t)$
 $y'_2 = y_1 y_2$ \longrightarrow $y_1(t) = \exp(\exp(t))$
 \dots \dots
 $y'_n = y_1 \cdots y_n$ \longrightarrow $y_n(t) = \exp(\cdots \exp(t) \cdots) := e_n(t)$

Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)

Counter-example (Vijayaraghavan, 1932)

Theorem

There exists a polynomial $p : \mathbb{R}^d \to \mathbb{R}^d$ such that for any continuous function $f : \mathbb{R}_+ \to \mathbb{R}$, we can find $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha, \qquad y'(t) = p(y(t))$$

$$y_1(t) \geqslant f(t), \quad \forall t \geqslant 0.$$

Theorem

There exists a polynomial $p : \mathbb{R}^d \to \mathbb{R}^d$ such that for any continuous function $f : \mathbb{R}_+ \to \mathbb{R}$, we can find $\alpha \in \mathbb{R}^d$ such that

satisfies
$$y(0) = \alpha, \quad y'(t) = p(y(t))$$
 $y_1(t) \geqslant f(t), \quad \forall t \geqslant 0.$

Note : both results require α to be **transcendental**. Conjecture still open for **rational** (or algebraic) coefficients.

Proof gem: iteration with differential equations

Assume f is generable, can we **iterate** f with an ODE? That is, build a generable y such that $y(x, n) \approx f^{[n]}(x)$ for all $n \in \mathbb{N}$

Proof gem: iteration with differential equations

Assume f is generable, can we **iterate** f with an ODE? That is, build a generable y such that $y(x, n) \approx f^{[n]}(x)$ for all $n \in \mathbb{N}$

Proof gem: iteration with differential equations

Assume f is generable, can we **iterate** f with an ODE? That is, build a generable y such that $y(x, n) \approx f^{[n]}(x)$ for all $n \in \mathbb{N}$

Proof gem: iteration with differential equations

Assume f is generable, can we **iterate** f with an ODE? That is, build a generable y such that $y(x, n) \approx f^{[n]}(x)$ for all $n \in \mathbb{N}$

Universal initial value problem (IVP)

Notes:

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha,$$
 $y'(t) = p(y(t))$

has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t)-f(t)|\leqslant \varepsilon(t).$$

Remark : α is usually transcendental, but computable from f and ε

Universal DAE revisited

Theorem

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists $\alpha_0, \ldots, \alpha_k \in \mathbb{R}$ such that

$$p(y, y', ..., y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, ..., y^{(k)}(0) = \alpha_k$$

has a unique analytic solution and this solution satisfies such that

$$|y(t)-f(t)|\leqslant \varepsilon(t).$$

Backup slides

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, \qquad y'(x) = p(y(x))$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- ▶ $d \in \mathbb{N}$: dimension
- $p \in \mathbb{R}^d[\mathbb{R}^n]$: polynomial vector
- \triangleright $y_0 \in \mathbb{R}^d, y : \mathbb{R} \to \mathbb{R}^d$

Note: existence and unicity of *y* by Cauchy-Lipschitz theorem.

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, \qquad y'(x) = p(y(x))$

- ▶ $d \in \mathbb{N}$: dimension
- $p \in \mathbb{R}^d[\mathbb{R}^n]$: polynomial vector
- \triangleright $y_0 \in \mathbb{R}^d, y : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f(x) = x$$
 identity

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies
$$f(x) = y_1(x)$$
 for all $x \in \mathbb{R}$.

- \triangleright $d \in \mathbb{N}$: dimension
- $\triangleright p \in \mathbb{R}^d[\mathbb{R}^n]$: polynomial vector
- \triangleright $v_0 \in \mathbb{R}^d, v : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f(x) = x^2$$
 squaring

$$y_1(0) = 0, \quad y_1' = 2y_2 \quad \rightsquigarrow \quad y_1(x) = x^2$$

$$y_1(0) = 0,$$
 $y'_1 = 2y_2 \sim y_1(x) = x^2$
 $y_2(0) = 0,$ $y'_2 = 1 \sim y_2(x) = x$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0) = y_0,$$
 $y'(x) = p(y(x))$

satisfies
$$f(x) = y_1(x)$$
 for all $x \in \mathbb{R}$.

Example :
$$f(x) = x^n \rightarrow n^{th}$$
 power

$$y_1(0)=0,$$
 $y_1'=ny_2 \sim y_1(x)=x^n$
 $y_2(0)=0,$ $y_2'=(n-1)y_3 \sim y_2(x)=x^{n-1}$

$$y_n(0)=0, y_n=1$$

- $ightharpoonup d \in \mathbb{N}$: dimension
- $\triangleright p \in \mathbb{R}^d[\mathbb{R}^n]$: polynomial vector
- \triangleright $v_0 \in \mathbb{R}^d, v : \mathbb{R} \to \mathbb{R}^d$

$$\sim v(x) - v^n$$

$$y_1(x) = x$$

 $y_2(x) = x^{n-1}$

$$\rightsquigarrow y_n(x) = x$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, \qquad y'(x) = p(y(x))$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

- ▶ $d \in \mathbb{N}$: dimension
- $p \in \mathbb{R}^d[\mathbb{R}^n]$: polynomial vector
- $\mathbf{y}_0 \in \mathbb{R}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f(x) = \exp(x)$$
 \blacktriangleright exponential $y(0) = 1$, $y' = y \rightsquigarrow y(x) = \exp(x)$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0) = y_0,$$
 $y'(x) = p(y(x))$

satisfies
$$f(x) = y_1(x)$$
 for all $x \in \mathbb{R}$.

Example:
$$f(x) = \sin(x)$$
 or $f(x) = \cos(x)$ \triangleright sine/cosine

$$y_1(0) = 0,$$
 $y'_1 = y_2 \rightarrow y_1(x) = \sin(x)$
 $y_2(0) = 1,$ $y'_2 = -y_1 \rightarrow y_2(x) = \cos(x)$

$$y_2(0) = 1, \quad y_2' = -y_1 \sim$$

- $ightharpoonup d \in \mathbb{N}$: dimension
- $\triangleright p \in \mathbb{R}^d[\mathbb{R}^n]$: polynomial vector
- \triangleright $v_0 \in \mathbb{R}^d, v : \mathbb{R} \to \mathbb{R}^d$

$$y_1(x) = \sin(x)$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0) = y_0,$$
 $y'(x) = p(y(x))$

satisfies
$$f(x) = y_1(x)$$
 for all $x \in \mathbb{R}$.

Types

- $ightharpoonup d \in \mathbb{N}$: dimension
- $ightharpoonup p \in \mathbb{R}^d[\mathbb{R}^n]$: polynomial vector
- \triangleright $v_0 \in \mathbb{R}^d, v : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f(x) = \tanh(x)$$
 hyperbolic tangent

tanh(x)

$$y(0)=0, y'=1-y^2 \rightarrow y(x)=\tanh(x)$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0) = y_0,$$
 $y'(x) = p(y(x))$

satisfies
$$f(x) = y_1(x)$$
 for all $x \in \mathbb{R}$.

- $ightharpoonup d \in \mathbb{N}$: dimension
- $\triangleright p \in \mathbb{R}^d[\mathbb{R}^n]$: polynomial vector
- \triangleright $v_0 \in \mathbb{R}^d, v : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f(x) = \frac{1}{1+x^2}$$
 rational function

$$f'(x) = \frac{-2x}{(1+x^2)^2} = -2xf(x)^2$$

$$y_1(0) = 1,$$
 $y'_1 = -2y_2y_1^2 \sim y_1(x) = \frac{1}{1+x^2}$
 $y_2(0) = 0,$ $y'_2 = 1 \sim y_2(x) = x$

$$y_2(0) = 0, \quad y_2' = 1 \quad \sim \quad y_2(x) = x$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, y'(x) = p(y(x))$

$$y(0) = y_0,$$
 $y'(x) = p(y(x))$

satisfies
$$f(x) = y_1(x)$$
 for all $x \in \mathbb{R}$.

- $ightharpoonup d \in \mathbb{N}$: dimension
- $\triangleright p \in \mathbb{R}^d[\mathbb{R}^n]$: polynomial vector
- \triangleright $y_0 \in \mathbb{R}^d, y : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f = g \pm h$$
 \blacktriangleright sum/difference

$$(f\pm g)'=f'\pm g'$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0)=y_0, \qquad y'(x)=p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- $ightharpoonup d \in \mathbb{N}$: dimension
- $ightharpoonup p \in \mathbb{R}^d[\mathbb{R}^n]$: polynomial vector
- \triangleright $y_0 \in \mathbb{R}^d, y : \mathbb{R} \to \mathbb{R}^d$

Example : f = gh \triangleright product

$$(gh)'=g'h+gh'$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies
$$f(x) = y_1(x)$$
 for all $x \in \mathbb{R}$.

- $ightharpoonup d \in \mathbb{N}$: dimension
- $\triangleright p \in \mathbb{R}^d[\mathbb{R}^n]$: polynomial vector
- \triangleright $y_0 \in \mathbb{R}^d, y : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f = \frac{1}{g}$$
 inverse

$$f' = \frac{-g'}{g^2} = -g'f^2$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, \qquad y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Example :
$$f = \int g$$
 integral

Types

f'=a

- ▶ $d \in \mathbb{N}$: dimension
- $p \in \mathbb{R}^d[\mathbb{R}^n]$: polynomial vector
- $\mathbf{y}_0 \in \mathbb{R}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, y'(x) = p(y(x))$

$$y(0) = y_0,$$
 $y'(x) = p(y(x))$

satisfies
$$f(x) = y_1(x)$$
 for all $x \in \mathbb{R}$.

- $ightharpoonup d \in \mathbb{N}$: dimension
- $ightharpoonup p \in \mathbb{R}^d[\mathbb{R}^n]$: polynomial vector
- \triangleright $y_0 \in \mathbb{R}^d, y : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f = g'$$
 be derivative

$$f'=g''=(p_1(z))'=\nabla p_1(z)\cdot z'$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

- $ightharpoonup d \in \mathbb{N}$: dimension
- $\triangleright p \in \mathbb{R}^d[\mathbb{R}^n]$: polynomial vector
- \triangleright $y_0 \in \mathbb{R}^d, y : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f = g \circ h$$
 \triangleright composition

$$(z \circ h)' = (z' \circ h)h' = p(z \circ h)h'$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- $ightharpoonup d \in \mathbb{N}$: dimension
- $\triangleright p \in \mathbb{R}^d[\mathbb{R}^n]$: polynomial vector
- \triangleright $v_0 \in \mathbb{R}^d, v : \mathbb{R} \to \mathbb{R}^d$

Example:
$$f' = \tanh \circ f$$

Example: $f' = \tanh \circ f$ Non-polynomial differential equation

$$f'' = (\tanh' \circ f)f' = (1 - (\tanh \circ f)^2)f'$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, \qquad y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

- ▶ $d \in \mathbb{N}$: dimension
- $p \in \mathbb{R}^d[\mathbb{R}^n]$: polynomial vector
- $\mathbf{y}_0 \in \mathbb{R}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f(0) = f_0, f' = g \circ f$$
 Initial Value Problem (IVP)
$$f' = g'' = (p(z))' = \nabla p(z) \cdot z'$$

Generable functions: a first summary

Nice theory for the class of total and univariate generable functions :

- analytic
- contains polynomials, sin, cos, tanh, exp
- ▶ stable under \pm , \times , /, \circ and Initial Value Problems (IVP)
- ightharpoonup technicality on the field $\mathbb K$ of coefficients for stability under \circ

Generable functions: a first summary

Nice theory for the class of total and univariate generable functions :

- analytic
- contains polynomials, sin, cos, tanh, exp
- ▶ stable under \pm , \times , /, \circ and Initial Value Problems (IVP)
- ightharpoonup technicality on the field $\mathbb K$ of coefficients for stability under \circ

Limitations:

- total functions
- univariate

Definition

 $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open **connected** and $\exists d, p, x_0, y_0, y$ such that

$$y(x_0) = y_0,$$
 $J_y(x) = p(y(x))$

and $f(x) = y_1(x)$ for all $x \in X$.

 $J_y(x) =$ Jacobian matrix of y at x

Types

- ▶ $n \in \mathbb{N}$: input dimension
- ▶ $d \in \mathbb{N}$: dimension
- $p \in \mathbb{K}^{d \times d}[\mathbb{R}^d]$: polynomial matrix
- $\rightarrow x_0 \in \mathbb{K}^n$
- $ightharpoonup y_0 \in \mathbb{K}^d, y: X \to \mathbb{R}^d$

Notes:

- Partial differential equation!
- Unicity of solution y...
- ... but not existence (ie you have to show it exists)

Definition

 $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open **connected** and $\exists d, p, x_0, y_0, y$ such that

$$y(x_0) = y_0,$$
 $J_y(x) = \rho(y(x))$

and $f(x) = y_1(x)$ for all $x \in X$.

 $J_{\nu}(x) = \text{Jacobian matrix of } \nu \text{ at } x$

Example: $f(x_1, x_2) = x_1 x_2^2$ (n = 2, d = 3)

$$y(0,0) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad J_y = \begin{pmatrix} y_3^2 & 3y_2y_3 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \rightsquigarrow \quad y(x) = \begin{pmatrix} x_1x_2^2 \\ x_1 \\ x_2 \end{pmatrix}$$

Types

- $n \in \mathbb{N}$: input dimension
- $ightharpoonup d \in \mathbb{N}$: dimension
- $\triangleright p \in \mathbb{K}^{d \times d}[\mathbb{R}^d]$: polynomial matrix
- $\rightarrow x_0 \in \mathbb{K}^n$
- $\mathbf{v}_0 \in \mathbb{K}^d, \mathbf{v}: \mathbf{X} \to \mathbb{R}^d$

monomial

Definition

 $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open **connected** and $\exists d, p, x_0, y_0, y$ such that

$$y(x_0) = y_0,$$
 $J_y(x) = p(y(x))$

and $f(x) = y_1(x)$ for all $x \in X$.

 $J_y(x) =$ Jacobian matrix of y at x

Types

- $ightharpoonup n \in \mathbb{N}$: input dimension
- ▶ $d \in \mathbb{N}$: dimension
- $p \in \mathbb{K}^{d \times d}[\mathbb{R}^d]$: polynomial matrix
- $ightharpoonup x_0 \in \mathbb{K}^n$
- $ightharpoonup y_0 \in \mathbb{K}^d, y: X \to \mathbb{R}^d$

Example:
$$f(x_1, x_2) = x_1 x_2^2$$
 \blacktriangleright monomial

$$y_1(0,0) = 0,$$
 $\partial_{x_1}y_1 = y_3^2,$ $\partial_{x_2}y_1 = 3y_2y_3 \rightsquigarrow y_1(x) = x_1x_2^2$
 $y_2(0,0) = 0,$ $\partial_{x_1}y_2 = 1,$ $\partial_{x_2}y_2 = 0 \rightsquigarrow y_2(x) = x_1$
 $y_3(0,0) = 0,$ $\partial_{x_1}y_3 = 0,$ $\partial_{x_2}y_3 = 1 \rightsquigarrow y_3(x) = x_2$

This is tedious!

Definition

 $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open **connected** and $\exists d, p, x_0, y_0, y$ such that

$$y(x_0) = y_0,$$
 $J_y(x) = p(y(x))$

and $f(x) = y_1(x)$ for all $x \in X$.

 $J_{\nu}(x) = \text{Jacobian matrix of } y \text{ at } x$

Last example :
$$f(x) = \frac{1}{x}$$
 for $x \in (0, \infty)$ inverse function

$$y(1)=1,$$
 $\partial_x y=-y^2 \rightsquigarrow y(x)=\frac{1}{x}$

- $n \in \mathbb{N}$: input dimension
- $ightharpoonup d \in \mathbb{N}$: dimension
- $\triangleright p \in \mathbb{K}^{d \times d}[\mathbb{R}^d]$: polynomial matrix
- $\rightarrow x_0 \in \mathbb{K}^n$
- \triangleright $v_0 \in \mathbb{K}^d, v : X \to \mathbb{R}^d$

$$\rightarrow y(x) = \frac{1}{2}$$

Generable functions: summary

Nice theory for the class of multivariate generable functions (over connected domains):

- analytic
- contains polynomials, sin, cos, tanh, exp
- ▶ stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- lacktriangle technicality on the field $\mathbb K$ of coefficients for stability under \circ

Generable functions: summary

Nice theory for the class of multivariate generable functions (over connected domains):

- analytic
- contains polynomials, sin, cos, tanh, exp
- ▶ stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- lacktriangle technicality on the field $\mathbb K$ of coefficients for stability under \circ

Natural questions:

- analytic → isn't that very limited?
- can we generate all analytic functions?

Generable functions: summary

Nice theory for the class of multivariate generable functions (over connected domains):

- analytic
- contains polynomials, sin, cos, tanh, exp
- ▶ stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- lacktriangle technicality on the field $\mathbb K$ of coefficients for stability under \circ

Natural questions:

- analytic → isn't that very limited?
- can we generate all analytic functions? No

Riemann Γ and ζ are not generable.

Computable Analysis: lift Turing computability to real numbers [Ko, 1991; Weihrauch, 2000]

Computable Analysis: lift Turing computability to real numbers [Ko, 1991; Weihrauch, 2000]

Definition

 $x \in \mathbb{R}$ is computable iff \exists a computable $f : \mathbb{N} \to \mathbb{Q}$ such that :

$$|x-f(n)| \leqslant 10^{-n}$$
 $n \in \mathbb{N}$

Examples: rational numbers, π , e, ...

n	f(n)	$ \pi - f(n) $
0	3	$0.14 \leqslant 10^{-0}$
1	3.1	$0.04 \leqslant 10^{-1}$
2	3.14	$0.001 \leqslant 10^{-2}$
10	3.1415926535	$0.9 \cdot 10^{-10} \leqslant 10^{-10}$

Computable Analysis: lift Turing computability to real numbers [Ko, 1991; Weihrauch, 2000]

Definition

 $x \in \mathbb{R}$ is computable iff \exists a computable $f : \mathbb{N} \to \mathbb{Q}$ such that :

$$|x-f(n)| \leqslant 10^{-n}$$
 $n \in \mathbb{N}$

Examples : rational numbers, π , e, ...

n	f(n)	$ \pi - f(n) $
0	3	$0.14 \leqslant 10^{-0}$
1	3.1	$0.04 \leqslant 10^{-1}$
2	3.14	$0.001 \leqslant 10^{-2}$
10	3.1415926535	$0.9 \cdot 10^{-10} \leqslant 10^{-10}$

Beware :there exists uncomputable real numbers!

Definition (Computable function)

 $f:[a,b]\to\mathbb{R}$ is computable iff $\exists m:\mathbb{N}\to\mathbb{N},$ computable functions such that :

$$|x-y| \leqslant 10^{-m(n)} \Rightarrow |f(x)-f(y)| \leqslant 10^{-n}$$
 $x, y \in \mathbb{R}, n \in \mathbb{N}$

m : modulus of continuity

Definition (Computable function)

 $f:[a,b]\to\mathbb{R}$ is computable iff $\exists \ m:\mathbb{N}\to\mathbb{N}, \psi:\mathbb{Q}\times\mathbb{N}\to\mathbb{Q}$ computable functions such that :

$$|x-y| \leqslant 10^{-m(n)} \Rightarrow |f(x)-f(y)| \leqslant 10^{-n}$$
 $x, y \in \mathbb{R}, n \in \mathbb{N}$

m : modulus of continuity

Definition (Computable function)

 $f:[a,b]\to\mathbb{R}$ is computable iff $\exists m:\mathbb{N}\to\mathbb{N}, \psi:\mathbb{Q}\times\mathbb{N}\to\mathbb{Q}$ computable functions such that :

$$|x-y| \leqslant 10^{-m(n)} \Rightarrow |f(x)-f(y)| \leqslant 10^{-n}$$
 $x, y \in \mathbb{R}, n \in \mathbb{N}$

m : modulus of continuity

Definition (Computable function)

 $f:[a,b]\to\mathbb{R}$ is computable iff $\exists \ m:\mathbb{N}\to\mathbb{N}, \psi:\mathbb{Q}\times\mathbb{N}\to\mathbb{Q}$ computable functions such that :

$$|x - y| \le 10^{-m(n)} \Rightarrow |f(x) - f(y)| \le 10^{-n}$$
 $x, y \in \mathbb{R}, n \in \mathbb{N}$
 $|f(r) - \psi(r, n)| \le 10^{-n}$ $r \in \mathbb{Q}, n \in \mathbb{N}$

Definition (Computable function)

 $f:[a,b]\to\mathbb{R}$ is computable iff $\exists \ m:\mathbb{N}\to\mathbb{N}, \psi:\mathbb{Q}\times\mathbb{N}\to\mathbb{Q}$ computable functions such that :

$$|x - y| \leqslant 10^{-m(n)} \Rightarrow |f(x) - f(y)| \leqslant 10^{-n} \qquad x, y \in \mathbb{R}, n \in \mathbb{N}$$
$$|f(r) - \psi(r, n)| \leqslant 10^{-n} \qquad r \in \mathbb{Q}, n \in \mathbb{N}$$

Definition (Computable function)

 $f:[a,b]\to\mathbb{R}$ is computable iff $\exists \ m:\mathbb{N}\to\mathbb{N}, \psi:\mathbb{Q}\times\mathbb{N}\to\mathbb{Q}$ computable functions such that :

$$|x - y| \le 10^{-m(n)} \Rightarrow |f(x) - f(y)| \le 10^{-n}$$
 $x, y \in \mathbb{R}, n \in \mathbb{N}$
 $|f(r) - \psi(r, n)| \le 10^{-n}$ $r \in \mathbb{Q}, n \in \mathbb{N}$

Definition (Computable function)

 $f:[a,b]\to\mathbb{R}$ is computable iff $\exists \ m:\mathbb{N}\to\mathbb{N}, \psi:\mathbb{Q}\times\mathbb{N}\to\mathbb{Q}$ computable functions such that :

$$|x - y| \le 10^{-m(n)} \Rightarrow |f(x) - f(y)| \le 10^{-n}$$
 $x, y \in \mathbb{R}, n \in \mathbb{N}$
 $|f(r) - \psi(r, n)| \le 10^{-n}$ $r \in \mathbb{Q}, n \in \mathbb{N}$

Examples : polynomials, sin, exp, $\sqrt{\cdot}$

Note :all computable functions are continuous

Beware :there exists (continuous) uncomputable real functions!

Definition (Computable function)

 $f:[a,b]\to\mathbb{R}$ is computable iff $\exists \ m:\mathbb{N}\to\mathbb{N}, \psi:\mathbb{Q}\times\mathbb{N}\to\mathbb{Q}$ computable functions such that :

$$|x - y| \le 10^{-m(n)} \Rightarrow |f(x) - f(y)| \le 10^{-n}$$
 $x, y \in \mathbb{R}, n \in \mathbb{N}$
 $|f(r) - \psi(r, n)| \le 10^{-n}$ $r \in \mathbb{Q}, n \in \mathbb{N}$

Examples : polynomials, sin, exp, $\sqrt{\cdot}$

Note :all computable functions are continuous

Beware :there exists (continuous) uncomputable real functions!

Polytime complexity

Add "polynomial time computable" everywhere.

Equivalence with computable analysis

Definition (Bournez et al., 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y'(t) = p(y(t))$

satisfies $|f(x) - y_1(t)| \leq y_2(t)$ et $y_2(t) \xrightarrow[t \to \infty]{} 0$.

$$y_1(t) \xrightarrow[t \to \infty]{} f(x)$$

 $y_2(t) = \text{error bound}$

Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y'(t) = p(y(t))$

satisfies $|f(x) - y_1(t)| \leqslant y_2(t)$ et $y_2(t) \xrightarrow[t \to \infty]{} 0$.

$$y_1(t) \xrightarrow[t \to \infty]{} f(x)$$

 $y_2(t) = \text{error bound}$

Theorem (Bournez et al, 2007)

 $f:[a,b] \to \mathbb{R}$ computable $^1 \Leftrightarrow f$ computable by GPAC

Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y'(t) = p(y(t))$

satisfies
$$|f(x) - y_1(t)| \leq y_2(t)$$
 et $y_2(t) \xrightarrow[t \to \infty]{} 0$.

 $y_1(t) \xrightarrow[t \to \infty]{} f(x)$ $y_2(t) = \text{error bound}$

Theorem (Bournez et al, 2007)

 $f:[a,b] \to \mathbb{R}$ computable $^1 \Leftrightarrow f$ computable by GPAC

1. In Computable Analysis, a standard model over reals built from Turing machines.

"Perfect round":

◆ Back to presentation

$$round(x) := x - \frac{1}{\pi} \arctan(\tan(\pi x)).$$

"Perfect round":

$$round(x) := x - \frac{1}{\pi} \arctan(\tan(\pi x)).$$

Undefined at $x = n + \frac{1}{2}$: observe that

$$tan(\theta) = sgn(\theta) \frac{\sin \theta}{|\cos(\theta)|}$$

"Perfect round":

$$round(x) := x - \frac{1}{\pi} \arctan(\tan(\pi x)).$$

Undefined at $x = n + \frac{1}{2}$: observe that

$$tan(\theta) = sgn(\theta) \frac{\sin \theta}{|\cos(\theta)|}$$

Approximate $sgn(\theta)$:

$$sgn(\theta) \approx tanh(\lambda x)$$
 for big λ

"Perfect round":

$$round(x) := x - \frac{1}{\pi} \arctan(\tan(\pi x)).$$

Undefined at $x = n + \frac{1}{2}$: observe that

$$\tan(\theta) = \operatorname{sgn}(\theta) \frac{\sin \theta}{|\cos(\theta)|}$$

Approximate $sgn(\theta)$:

$$sgn(\theta) \approx tanh(\lambda x)$$
 for big λ

Prevent explosion:

$$|\cos(\theta)| \sim \sqrt{\mathsf{nz}(\cos(\theta)^2)}$$

where $nz(x) \approx x$ but nz(x) > 0 for all x:

"Perfect round":

$$round(x) := x - \frac{1}{\pi} \arctan(\tan(\pi x)).$$

Undefined at $x = n + \frac{1}{2}$: observe that

$$tan(\theta) = sgn(\theta) \frac{\sin \theta}{|\cos(\theta)|}$$

Approximate $sgn(\theta)$:

$$sgn(\theta) \approx tanh(\lambda x)$$
 for big λ

Prevent explosion:

$$|\cos(\theta)| \sim \sqrt{\mathsf{nz}(\cos(\theta)^2)}$$

where $nz(x) \approx x$ but nz(x) > 0 for all x:

$$nz(x) = x + some variation on tanh$$

Almost-rounding function: gory details

Formally:

◆ Back to presentation

$$\operatorname{rnd}(x,\mu,\lambda) = x - \frac{1}{\pi} \arctan(\operatorname{cltan}(\pi x,\mu,\lambda))$$

$$\operatorname{cltan}(\theta,\mu,\lambda) = \frac{\sin(\theta)}{\sqrt{\operatorname{nz}(\cos^2\theta,\mu+16\lambda^3,4\lambda^2)}} \operatorname{sg}(\cos\theta,\mu+3\lambda,2\lambda)$$

$$\operatorname{nz}(x,\mu,\lambda) = x + \frac{2}{\lambda} \operatorname{ip}_1\left(1-x+\frac{3}{4\lambda},\mu+1,4\lambda\right)$$

$$\operatorname{ip}_1(x,\mu,\lambda) = \frac{1+\operatorname{sg}(x-1,\mu,\lambda)}{2}$$

$$\operatorname{sg}(x,\mu,\lambda) = \tanh(x\mu\lambda)$$

All generable functions!