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Church Thesis

Computability
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Church Thesis

All reasonable models of computation are equivalent.

3/24



Church Thesis

Complexity
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Effective Church Thesis

All reasonable models of computation are equivalent for complexity.
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Polynomial Differential Equations

Differential Analyzer
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Polynomial Differential Equations
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Polynomial Differential Equations

(ke VX
5u+v ufu

General Purpose Analog : : "
Computer, Shannon 1936 Differential Analyzer

\

Polynomial differential
equations :
{y(O)z Yo

y'(t)= p(y(1))

» Rich class
» Stable (+,x,0,/,ED)
» No closed-form solution
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Polynomial Differential Equations

General Purpose Analog
Computer, Shannon 1936

Differential Analyzer

Newton mechanics \ Polynomial differential
| equations :
{y(O)z Yo
Reaction networks : W ()= py(1)
» chemical _
_ » Rich class
> enzymatic

» Stable (+,x,0,/,ED)
» No closed-form solution
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Example of dynamical system

6+ 9sin(9) =0
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Example of dynamical system

Yi=ye yi=10
vh=-9ys o )ye=0

2 .
Y3 =YoYa y3 = sin(0)

g o
0+ 7sin(6) =0 Yi=—Yo¥3 Ya = cos(f)
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Example of dynamical system

nEn

Ya

yi=Ye yi =0

vh=-9ys o )ye=0
N Y3 =YoYa 3 = sin(6)
0+ 7sin(6) =0 Yi=—Yo¥3 Ya = cos(f)

Historical remark : the word “analog”

The pendulum and the circuit have the same equation. One can study
one using the other by analogy.
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Computing with differential equations

Generable functions

y(0)=yo
{y'(x)z ply(x)) *EF
F(x) = y1(x)
Vi (x) / X

Shannon’s notion
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Computing with differential equations

Generable functions

y(0)=yo
{y'(x)z ply(x)) *EF
F(x) = y1(x)
Vi (x) / X

Shannon’s notion
sin, cos, exp, log, ...

Considered "weak" : not I and ¢
Only analytic functions
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Does a balance scale compute a function ?

Inputs : x,y € [0, +00)
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Does a balance scale compute a function ?

Inputs : x,y € [0, +00)

X=y
Output : sign(x — y)?
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More formally

Yes
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More formally

Yes (D)

1
LA /\fww\/J o

No

Theorem (Bournez et al, 2010)

This is equivalent to a Turing machine.
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More formally

Yes L
1 —
W
x-\//\\//\ /‘\/\/ t—/f—% 2109) t
1 \_
No T

Theorem (Bournez et al, 2010)

This is equivalent to a Turing machine.

» analog computability theory
» purely continuous characterization of classical computability
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Computing with differential equations (cont.)

Generable functions

y(0)= yo
{y'(x)z ply(x)) *EF
F(x) = y1(x)
Vi (x) / X

Shannon’s notion
sin, cos, exp, log, ...

Considered "weak" : not I and ¢
Only analytic functions

Computable
{y(0)= q(x) xR
y'(t)=py(t) teRy

flx) = lim ys(f)

WA )

Modern notion
sin, cos, exp, log, [, C, ...

Turing powerful
[Bournez et al., 2007]
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Universal differential equations

Generable functions Computable functions
710 N A0 f(x)
IS TR
t

subclass of analytic functions any computable function
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Universal differential equations

Generable functions Computable functions
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Universal differential algebraic equation (DAE)

Y

Theorem (Rubel, 1981)

For any continuous functions f and ¢, there exists y : R — R solution to

14 2

///2 "
3y"y"y Ay y

—4y"y
1 2y/3y//y///3

such that vVt € R,

+ 6y,3y//2y///y//// + 24y,2yu4y1///
—209y2y"%y"% 112y —0

() — f()] < e(b).
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Universal differential algebraic equation (DAE)

Y

Theorem (Rubel, 1981)

There exists a fixed polynomial p and k € N such that for any conti-
nuous functions f and e, there exists a solutiony : R — R to

p(y7y/""7y(4))zo

such thatVt € R,
ly(t) — f(B)] < e(2).
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Universal differential algebraic equation (DAE)

Y

Theorem (Rubel, 1981)

There exists a fixed polynomial p and k € N such that for any conti-
nuous functions f and e, there exists a solutiony : R — R to

p(y7y/""7y(4))zo

such thatVt € R,
ly(t) — f(B)] < e(2).

Problem : this is «weak» result.
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The problem with Rubel’s DAE

The solution y is not unique, even with added initial conditions :

p(y7yla s 7y(k)) =0, y(O) = a07y/(0) =Qq,. .. ’y(k)(o) = Ok
In fact, this is fundamental for Rubel’s proof to work !
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The problem with Rubel’'s DAE

The solution y is not unique, even with added initial conditions :
p(y7yla <. 7y(k)) =0, y(O) = a07y/(0) =Qq,. .. 7y(k)(0) = Gk
In fact, this is fundamental for Rubel’s proof to work !

» Rubel’s statement : this DAE is universal
» More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y’ = p(y)?
Note : explicit polynomial ODE =- unique solution
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Rubel’s proof in one slide

—1
> Take f(t) = e1-# for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — £2)2f " (t) + 2tf(t) = 0.

13/24



Rubel’s proof in one slide

—1

> Take f(t) = e'-2 for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" () + 2tf'(t) = 0.

» Forany a,b,c € R, y(t) = cf(at + b) satisfies

3 y/4 y// y////2 4 y/4 y//2 y//// +6 y/3 y//2 y/// y//// +24 y/2 y y////
1 2y/3y//y///3 _ 29y12y//3y///2 +1 2y//7 -0

n4

Translation and rescaling :

T
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Rubel’s proof in one slide

1
> Take f(t) = e~ for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" () + 2tf'(t) = 0.
» Forany a,b,c € R, y(t) = cf(at + b) satisfies
14 1111012 14 112 1111 5 13102 101 1101 2 //4y////_12y/3 17,0113 12113 ///2+12y//7:0

3y yty =4y YTy ey Ty Ty T 24y y yryrT =29yt ty Ty

» Can glue together arbitrary many such pieces
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Rubel’s proof in one slide

=N
> Take f(t) = e1-2 for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" () + 2tf'(t) = 0.
» Forany a,b,c € R, y(t) = cf(at + b) satisfies
14 11 11112 14 112 1111 13 112 111 1111 12 114 13 11 1113 12 113 1112
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» Can glue together arbitrary many such pieces
» Can arrange so that [ f is solution : piecewise pseudo-linear
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Rubel’s proof in one slide

=N
> Take f(t) = e1-2 for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" () + 2tf'(t) = 0.
» Forany a,b,c € R, y(t) = cf(at + b) satisfies
14 11 11112 14 112 1111 13 112 111 1111 12 114 13 11 1113 12 113 1112

7
3y Yy S _ay! Ty E I gy S YIS I I gy 1S IR I gy 1S 1T IS gy IS 118 IITE 4211 T g

» Can glue together arbitrary many such pieces
» Can arrange so that [ f is solution : piecewise pseudo-linear

—

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C°
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Universal initial value problem (IVP)

/
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Theorem

‘<

There exists a fixed (vector of) polynomial p such that for any
continuous functions f and e, there exists o € R? such that

y(0)=a,  y'(t)=p(y(1))
has a unique solution y : R — R? and Vt € R,

ya (1) = F()] < ().
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Universal initial value problem (IVP)

/ Notes :
\ J 1‘”\ . » system of ODEs,
\ // | / > y is analytic,
\/ > we need d = 300.

Theorem

There exists a fixed (vector of) polynomial p such that for any
continuous functions f and e, there exists o € R? such that

y(0)=a,  y'(t)=p(y(1))
has a unique solution y : R — R? and Vt € R,
lya(t) = F(1)] < e(2).
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Universal initial value problem (IVP)

Notes :
\ / 1(x) . » system of ODEs,
\ | / > y is analytic,
\/ > we need d ~ 300.

Theorem

There exists a fixed (vector of) polynomial p such that for any
continuous functions f and e, there exists o € R? such that

y(0)=a,  y'(t)=p(y(1))
has a unique solution y : R — R? and Vt € R,

ya (1) = F()] < ().

Remark : « is usually transcendental, but computable from f and ¢
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Universal DAE revisited
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There exists a fixed polynomial p and k € N such that for any
continuous functions f and ¢, there exists ay, . . ., ax € R such that

P(%yla ° o0 7y(k)) = Oa y(O) = aan/(O) = 0q,... ’y(k)(o) = Ok
has a unique analytic solution and this solution satisfies such that
() = ()] < e(b).
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A brief stop

Before | can explain the proof, you need to know more of polynomial
ODEs and what | mean by programming with ODEs.
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Generable functions : a summary
f:R — Ris generable if 3 d, p and yy such that the solution y to

y(0) =y,  yY(x)=py(x))
satisfies f(x) = y1(x) for all x € R.
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Generable functions : a summary
f:R — Ris generable if 3 d, p and yy such that the solution y to

y(©0) =yo,  Y'(x) =p(y(x))
satisfies f(x) = y1(x) for all x € R.

Nice theory for the class of total and univariate generable functions :
> analytic
» contains polynomials, sin, cos, tanh, exp
» stable under +, x, /, o and Initial Value Problems (IVP)

y' =1(y)
» solutions to polynomial ODEs form a very large class
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Why is this useful ?

Writing polynomial ODEs by hand is hard.
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Using generable functions, we can build complicated multivariate

partial functions using other operations, and we know they are
solutions to polynomial ODEs by construction.
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Why is this useful ?

Writing polynomial ODEs by hand is hard.
Using generable functions, we can build complicated multivariate

partial functions using other operations, and we know they are
solutions to polynomial ODEs by construction.

Example : almost rounding function

There exists a generable function round such that for any n € Z, x € R,
A>2andp>0:
> if x € [n—%,n+ 3] then |round(x, 1, \) — n| < 3,

> ifxe[n—1+1 n+ %~ 1] then|round(x,u,\) — n| < e

18/24



A simplified proof

binary stream
generator

acR ODE}l—[0[1 1.0/10[1]0 0[1 1 1...

digits of «

This is the ideal curve, the real
one is an approximation of it.
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A simplified proof

binary stream
generator

digits of «

aeR

ODE

- ,To[1 1]ol1/0[1]0 01 1 1... .

t ODE

“Digital” to Analog
Converter (fixed frequency)

Approximate Lipschitz and bounded
functions with fixed precision.

[That’s the trickiest part. ]
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A simplified proof

binary stream
generator

digits of «

aeR

ODE

__JbﬁgﬂoHMFﬂooﬁﬁgint

t ODE

“Digital” to Analog
Converter (fixed frequency)

ODE?—W

- M/\MN\/\MMMH t
vvaUVUUWWUUW

We need something more :
a fast-growing ODE.
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A simplified proof

binary stream
generator

digits of «

aeR

ODE

__JbﬁgﬂoHMFﬂooﬁﬁgint

\t ODE

“Digital” to Analog
Converter (fixed frequency)

ODE?—W

- M/\MN\/\MMMH t
vvaUVUUVWWUW

We need something more :
an arbitrarily fast-growing ODE.
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A less simplified proof

binary stream generator : digits of « € R
1 1 1 1
0 0 0 0 ;

f(e, p, A t) = 5 + S tanh(u sin(2ar4 (=142 4 47 /3))

It's horrible, but generable

round is the mysterious rounding function... 00/24



A less simplified proof

binary stream generator : digits of « € R

PRI P

a1 N | S
NNl .

dyadic stream generator : dj = m2~%, a; = 9i + 3_;_; ]
f(a,v, t) = sin(2am2ound(t=1/41)))

round is the mysterious rounding function... 00/24



A less simplified proof

a>
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A less simplified proof

PP S P

copy signal

F -

cd
o d

a>
ao a > as

]
Q
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A less simplified proof

ﬂo Oﬂ()ﬂot

hcopy signal copy signal
. ﬂ
do

| % | il a

ao 1 > as

—

O

DL
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A less simplified proof

- —y

0

(I

[

-
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copy signal hc y signal copy signal .
odr ﬂ
0
Ch Lﬂ cﬁz Cj
dIO é1 652 d3 t
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A less simplified proof

i

—

! !
0 ‘ 0 Lo,

do

hcopy signal hc y signal copy signal copy signal
Cd“
0
faNmIE:
1 1 t

Q.
iy
Q=
N
joll
w
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A less simplified proof

=7
()
_——

;
0 ‘ 0

|
\ 0 t

copy signal hc y signal copy signal copy signal
Cd"
0
SN
éfo é1 ciz dB !

This copy operation is the “non-trivial” part.
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A less simplified proof

We can do almost piecewise constant functions...
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A less simplified proof

We can do almost piecewise constant functions...
» ...that are bounded by 1...
» ...and have super slow changing frequency.
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A less simplified proof

We can do almost piecewise constant functions...
» ...that are bounded by 1...
» ...and have super slow changing frequency.

How do we go to arbitrarily large and growing functions ? Can a
polynomial ODE even have arbitrary growth ?

20/24



An old question on growth

Building a fast-growing ODE, that exists over R :
Yi=¥ ~ y1(t) = exp(t)
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Yi=w ~ y1(t) = exp(t)
Yo =Y1¥o ~ y1(t) = exp(exp(t))
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An old question on growth

Building a fast-growing ODE, that exists over R :

Yi=w ~ y1(t) = exp(t)
Yo =Y1¥o ~ y1(t) = exp(exp(t))

Yn=Y1"Yn ~ ;/.n'(t) = exp(---exp(t)---) = en(l)

21/24



An old question on growth

Building a fast-growing ODE, that exists over R :

Yi=w ~ y1(t) = exp(t)
Yo =Y1¥o ~ y1(t) = exp(exp(t))

Yn=Y1"Yn ~ ;/.n'(t) = exp(---exp(t)---) = en(l)

Conjecture (Emil Borel, 1899)
With n variables, cannot do better than Oy(en(AtX)).

21/24



An old question on growth

Counter-example (Vijayaraghavan, 1932)

1
2 — cos(t) — cos(at)

/

Sequence of arbitrarily
growing spikes.

[ B
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An old question on growth

Counter-example (Vijayaraghavan, 1932)

1
2 — cos(t) — cos(at)

/

Sequence of arbitrarily

growing spikes. But not
good enough for us.

[ B
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An old question on growth

Theorem

There exists a polynomial p : RY — RY such that for any continuous
function f : R, — R, we can find o € R? such that

satisfies y(0)=a,  y'(t)=py(1)
yi(t) = £(1), vt > 0.
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An old question on growth

Theorem

There exists a polynomial p : RY — RY such that for any continuous
function f : R, — R, we can find o € R? such that

y0)=a,  y(t)=py(t))
yi(t) = f(t), Vt=0.

satisfies

Note : both results require a to be transcendental. Conjecture still
open for rational (or algebraic) coefficients.
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Proof gem : iteration with differential equations

Assume f is generable, can we iterate f with an ODE ?
That is, build a generable y such that y(x, n) ~ f"l(x) forall n € N
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Proof gem : iteration with differential equations

Assume f is generable, can we iterate f with an ODE ?
That is, build a generable y such that y(x, n) ~ f"l(x) forall n € N
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Proof gem : iteration with differential equations

Assume f is generable, can we iterate f with an ODE ?
That is, build a generable y such that y(x, n) ~ f"l(x) forall n € N

o

,
J

\

|—

,

\

—

Njw

N

22/24



Proof gem : iteration with differential equations

Assume f is generable, can we iterate f with an ODE ?
That is, build a generable y such that y(x, n) ~ f"l(x) forall n € N
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Universal initial value problem (IVP)

Notes :
\ / 1(x) . » system of ODEs,
\ | / > y is analytic,
\/ > we need d ~ 300.

Theorem

There exists a fixed (vector of) polynomial p such that for any
continuous functions f and e, there exists o € R? such that

y(0)=a,  y'(t)=p(y(1))
has a unique solution y : R — R? and Vt € R,

ya (1) = F(O)] < ().

Remark : « is usually transcendental, but computable from f and ¢
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Universal DAE revisited
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There exists a fixed polynomial p and k € N such that for any
continuous functions f and ¢, there exists ay, . . ., ax € R such that

P(%yla ° o0 7y(k)) = Oa y(O) = aan/(O) = 0q,... ’y(k)(o) = Ok
has a unique analytic solution and this solution satisfies such that
() = ()] < e(b).
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Backup slides



Generable functions (total, univariate)

f:R — Ris generable if there exists » d c N : dimension
d, p and y, such that the solution y to > pe Rd[R”] . polynomial
y©0)=y0, Y'(x)=pK(x) vector

satisfies f(x) = y;(x) for all x € R. > o Ry :R - R?

Note : existence and unicity of y by Cauchy-Lipschitz theorem.
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Generable functions (total, univariate)

f:R — Ris generable if there exists » d c N : dimension
d, p and y, such that the solution y to > pe Rd[R”] . polynomial
y©0)=y0, Y'(x)=pK(x) vector

satisfies f(x) = y;(x) for all x € R. > o Ry :R - R?

Example : f(x) = x » identity
y(0)=0, y'=1 ~ yx)=x
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Generable functions (total, univariate)

f:R — Ris generable if there exists » d c N : dimension
d, p and y, such that the solution y to > pe Rd[R”] . polynomial
y©0)=y0, Y'(x)=pK(x) vector

satisfies f(x) = y;(x) for all x € R. > o Ry :R - R?

Example : f(x) = x>  » squaring

y1(0)=0, yi=2y> ~ yi(x)
y2(0)=0, y=1 ~ ys(x)

= )(2
=X

26/24



Generable functions (total, univariate)

f:R — Ris generable if there exists » d c N : dimension

d, p and y, such that the solution y to > pe Rd[R”] . polynomial
y(0)=yo,  ¥Y'(x)=p(y(x)) vector

satisfies f(x) = y;(x) for all x € R. > o Ry :R - R?

Example : f(x) = x"  » n'" power

y1(0)=0, }’1_”}’2 ~  yi(x)=x"
¥2(0)=0, yh=(n—1)yz ~ yo(x)=x""

yn(0)=10, Yn—1 ~r yn(X) X

26/24



Generable functions (total, univariate)

f:R — Ris generable if there exists » d c N : dimension
d, p and y, such that the solution y to > pe Rd[R”] . polynomial
y©0)=y0, Y'(x)=pK(x) vector

satisfies f(x) = y;(x) for all x € R. > o Ry :R - R?

Example : f(x) = exp(x) » exponential
yO=1, y=y ~ yx)=exp(x)

26/24



Generable functions (total, univariate)

f:R — Ris generable if there exists » d c N : dimension
d, p and y, such that the solution y to > pe Rd[R”] . polynomial
y©0)=y0, Y'(x)=pK(x) vector

satisfies f(x) = y;(x) for all x € R. > o Ry :R - R?

Example : f(x) = sin(x) or f(x) = cos(x) » sine/cosine

y1(0)=0, yi=y2 ~ yi(x)=sin(x)
y2(0)=1,  ys=—-y1 ~ ya(x)= cos(x)

26/24



Generable functions (total, univariate)

f:R — R is generable if there exists » d c N : dimension
d, p and y, such that the solution y to

> p € RIR"] : polynomial
y(0)=yo,  Y'(x)=py(x)) vector
satisfies f(x) = y;(x) for all x € R. > o Ry :R - R?
Example : f(x) = tanh(x) » hyperbolic tangent
y(0)=0, y'=1-y® ~ y(x)=tanh(x)

L |

tanh(x)
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Generable functions (total, univariate)

f:R — R is generable if there exists » dc N :dimension
d, p and y, such that the solution y to > pe Rd[R”] . polynomial
y(0)=yo, Y (x)=py(x)) vector
satisfies f(x) = y;(x) for all x € R. > o Ry :R - R?
Example : f(x) = 1+X2 » rational function
f'(x) = ﬁ = —2xf(x)?

10)=1,  yi=-2py? ~ y()=%2
¥2(0)=0,  y,=1 ~  Yo(X)= X
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Generable functions (total, univariate)

f:R — Ris generable if there exists » d c N : dimension
d, p and y, such that the solution y to > pe Rd[R”] . polynomial
y©0)=y0, Y'(x)=pK(x) vector

satisfies f(x) = y;(x) for all x € R. > o Ry :R - R?

Example:f=g+h » sum/difference
(fLg) =f+g

26/24



Generable functions (total, univariate)

f:R — Ris generable if there exists » d c N : dimension
d, p and y, such that the solution y to > pe Rd[R”] . polynomial
y©0)=y0, Y'(x)=pK(x) vector

satisfies f(x) = y;(x) for all x € R. > o Ry :R - R?

Example : f=gh » product
(ghy = g'h+ gt

26/24



Generable functions (total, univariate)

f:R — Ris generable if there exists » d c N : dimension
d, p and y, such that the solution y to > pe Rd[R”] . polynomial
y©0)=y0, Y'(x)=pK(x) vector

satisfies f(x) = y;(x) for all x € R. > o Ry :R - R?

Example: f=1  »inverse

f — —g_gzl’ _ _g/fz
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Generable functions (total, univariate)

f:R — Ris generable if there exists » d c N : dimension
d, p and y, such that the solution y to > pe Rd[R”] . polynomial
y©0)=y0, Y'(x)=pK(x) vector

satisfies f(x) = y;(x) for all x € R. > o Ry :R - R?

Example : f= [g » integral
f'=g

26/24



Generable functions (total, univariate)

f:R — Ris generable if there exists » d c N : dimension
d, p and y, such that the solution y to > pe Rd[R”] . polynomial
y©0)=y0, Y'(x)=pK(x) vector

satisfies f(x) = y;(x) for all x € R. > o Ry :R - R?

Example : f = ¢’ » derivative
f'=g"=(p(2)) =Vpi(2)- 7
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Generable functions (total, univariate)

f:R — Ris generable if there exists » d c N : dimension
d, p and y, such that the solution y to > pe Rd[R”] . polynomial
y©0)=y0, Y'(x)=pK(x) vector

satisfies f(x) = y;(x) for all x € R. > o Ry :R - R?

Example:f=goh » composition
(zoh) = (2 o h) = p(zo h)H
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Generable functions (total, univariate)

f:R — Ris generable if there exists » d c N : dimension
d, p and y, such that the solution y to > pe Rd[R”] . polynomial
y©0)=y0, Y'(x)=pK(x) vector

satisfies f(x) = y;(x) for all x € R. > o Ry :R - R?

Example : f = tanh of » Non-polynomial differential equation
f" = (tanh’ of)f' = (1 — (tanh of)?)f’
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Generable functions (total, univariate)

f:R — Ris generable if there exists » d c N : dimension
d, p and y, such that the solution y to > pe Rd[R”] . polynomial
y©0)=y0, Y'(x)=pK(x) vector

satisfies f(x) = y;(x) for all x € R. > o Ry :R - R?

Example : f(0) = fo,f =gof » Initial Value Problem (IVP)
f'=9"=(p(2)) =Vp(z) 2
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Generable functions : a first summary

Nice theory for the class of total and univariate generable functions :
> analytic
» contains polynomials, sin, cos, tanh, exp
» stable under +, x, /, o and Initial Value Problems (IVP)
» technicality on the field K of coefficients for stability under o
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Generable functions : a first summary

Nice theory for the class of total and univariate generable functions :
> analytic
» contains polynomials, sin, cos, tanh, exp
» stable under +, x, /, o and Initial Value Problems (IVP)
» technicality on the field K of coefficients for stability under o

Limitations :
» total functions
» univariate
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Generable functions (generalization)

.
Defintion

f: X CR" — Ris generable if X isopen ~ » 1€ N:input dimension
connected and 3d, p, Xo, ¥o, ¥ such that  » d € N : dimension
y(x0) =Yo,  Jy(x) =p(y(x)) > p e K™IR:

and f(X) = 1 (X) for all x € X. polynom|a| matrix
> x5 € K”

Jy(x) = Jacobian matrix of y at x > pekKdy: X —>R?

Notes :
» Partial differential equation!
» Unicity of solution y...
> ... but not existence (ie you have to show it exists)
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Generable functions (generalization)

.
Definiton

f: X CR"— Risgenerable if X isopen ~ » N € N :inputdimension
connected and 3d, p, xg, o, y such that » d e N :dimension
y() =0, J(x) = ply(x)) > p € KPR :
polynomial matrix
> Xxg € K"
Jy(x) = Jacobian matrix of y at x > yoeKkd y: X - RY

and f(x) = yq(x) for all x € X.

Example : f(x1, %) = x1x3 (n=2,d = 3) » monomial
0 Y5 3yays X1 X5
y(0,00=10|, Jy=11 0 ~ yx)=1 x
0 0 1 X2
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Generable functions (generalization)

Definition
f: X CR" — Ris generable if X is open
connected and 3d, p, Xp, Vo, ¥ such that

y(o) =yo,  Jy(x) = py(x))
and f(x) = yq(x) for all x € X.

Jy(x) = Jacobian matrix of y at x

. _ 2 ;
Example : f(xq, X2) = Xy X5 » monomial

}/1(070): 07 ax1}/1:y:,?7
}’2(07 0): 07 8X1_y2: 17 aX2y2: 0
y3(07 O): 07 8x1}’3: 07 8x2}’3: 1

This is tedious!

OxY1=8Yoys ~ Yi(X) = X1X5

» n € N :input dimension

» d € N :dimension

> pe ded[Rd] :
polynomial matrix

> Xxg € K"

> ek y: X —RI

2

>

Yo(X) = X4
¥3(x) = X2

>
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Generable functions (generalization)

.
Defintion

f: X CR"— Risgenerable if X isopen ~ » N € N :inputdimension
connected and 3d, p, xg, o, y such that » d e N :dimension

y(x0) =Yo,  Jy(x) =p(y(x)) > p e K™IR:
polynomial matrix

> Xxg € K"
Jy(x) = Jacobian matrix of y at x > pekKdy: X —>R?

and f(x) = yq(x) for all x € X.

Last example : f(x) = 1 for x € (0, 00) » inverse function

y()=1, oy=-y? ~ y(x)=1
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Generable functions : summary

Nice theory for the class of multivariate generable functions (over
connected domains) :

> analytic

> contains polynomials, sin, cos, tanh, exp

» stable under +, x, /, o and Initial Value Problems (IVP)

» technicality on the field K of coefficients for stability under o
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Generable functions : summary

Nice theory for the class of multivariate generable functions (over
connected domains) :

> analytic

> contains polynomials, sin, cos, tanh, exp

» stable under +, x, /, o and Initial Value Problems (IVP)

» technicality on the field K of coefficients for stability under o

Natural questions :
» analytic — isn’t that very limited ?
» can we generate all analytic functions ?
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Generable functions : summary

Nice theory for the class of multivariate generable functions (over
connected domains) :

> analytic

> contains polynomials, sin, cos, tanh, exp

» stable under +, x, /, o and Initial Value Problems (IVP)

» technicality on the field K of coefficients for stability under o

Natural questions :

» analytic — isn’t that very limited ?

» can we generate all analytic functions ? No
Riemann I and ¢ are not generable.
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From discrete to real computability

Computable Analysis : lift Turing computability to real numbers
[Ko, 1991 ; Weihrauch, 2000]
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From discrete to real computability

Computable Analysis : lift Turing computability to real numbers
[Ko, 1991 ; Weihrauch, 2000]

Definition

X € R is computable iff 3 a computable f : N — Q such that :
Ix —f(n)] <10™" neN

Examples : rational numbers, =, e, ...

n f(n) |m — f(n)]

0 3 014 <100
1 3.1 0.04 <101
2 3.14 0.001 <1072

10 3.1415926535 0.9-10-10 < 1010
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From discrete to real computability

Computable Analysis : lift Turing computability to real numbers
[Ko, 1991 ; Weihrauch, 2000]

Definition

X € R is computable iff 3 a computable f : N — Q such that :

Ix —f(n)] <10™" neN

Examples : rational numbers, =, e, ...

n f(n) |m — f(n)]

0 3 014 <100
1 3.1 0.04 <101
2 3.14 0.001 <1072

10 3.1415926535 0.9-10-10 < 1010

Beware :there exists uncomputable real numbers !
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From discrete to real computability

// f(x)

f(x)
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From discrete to real computability

V) 755
f(x) —
I<10*’"(0)\
// < ?
X
X y

Definition (Computable function)

f:la, b] — Ris computable iff 3 m: N — N,
computable functions such that :

x —y] <107 = |f(x) — f(y)| < 107" x,y €R,neN

m : modulus of continuity
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From discrete to real computability

Vi
/ r A

Definition (Computable function)

f:la,b] - Ris computableiff 3m: N — N,¢: Q xN— Q
computable functions such that :

x —y] <107 = |f(x) — f(y)| < 107" x,y €R,neN

m : modulus of continuity
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From discrete to real computability

) | g0 —
f(x) =%
sl <107
/ 7€
—
X
XYy

Definition (Computable function)

f:la,b] - Ris computableiff 3m: N — N,¢: Q xN— Q
computable functions such that :

x —y] <107 = |f(x) — f(y)| < 107" x,y €R,neN

m : modulus of continuity
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From discrete to real computability

]

p(r,0)
) I@ofo

,//”////////

reQ
Definition (Computable function)

f:la,b] - Ris computableiff 3m: N — N,¢: QxN— Q
computable functions such that :

X —y| <107 = |f(x) — f(y)| < 107"  x,yeR,neN

f(r) —4(r,n)| <107"  reQneN
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From discrete to real computability

lb(r,1) -/§;1 04,1 ////’///»///4
f(r) ==

,//”////////

req@Q

Definition (Computable function)

f:la,b] - Ris computableiff 3m: N — N,¢: QxN— Q
computable functions such that :

X —y| <107 = |f(x) — f(y)| < 107"  x,yeR,neN

f(r) —4(r,n)| <107"  reQneN
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From discrete to real computability

»(r,2) <102 /
f(r)

i
/

,//”////////

req@Q

Definition (Computable function)

f:la,b] - Ris computableiff 3m: N — N,¢: QxN— Q
computable functions such that :

X —y| <107 = |f(x) — f(y)| < 107"  x,yeR,neN

f(r) —4(r,n)| <107"  reQneN
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From discrete to real computability

Definition (Computable function)

f:[a b] — Riscomputable iff 3 m: N — N/ :Q x N — Q
computable functions such that :

X —y| <107 = |f(x) — f(y)| < 107"  x,yeR,neN
|f(r) —(r,n)|<107™" reQ,neN
Examples : polynomials, sin, exp, v/~

Note :all computable functions are continuous
Beware :there exists (continuous) uncomputable real functions!
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From discrete to real computability

Definition (Computable function)

f:[a b] — Riscomputable iff 3 m: N — N/ :Q x N — Q
computable functions such that :

X —y| <107 = |f(x) — f(y)| < 107"  x,yeR,neN

|f(r) —(r,n)|<107™" reQ,neN

Examples : polynomials, sin, exp, v/~
Note :all computable functions are continuous
Beware :there exists (continuous) uncomputable real functions!

Polytime complexity

Add “polynomial time computable” everywhere.
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Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if 3p polynomial such that Vx € [a, b]

y(0)=(x,0,...,0)  y'(t) =p(y(1)
satisfies |[f(x) — y1(t)| < yo(t) et yo(t) - 0.

IFITAVIVRC 1) () g 1)
X v . y»(t) = error bound
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Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if 3p polynomial such that Vx € [a, b]

y(0)=(x,0,...,0)  y'(t) =p(y(1)
satisfies |[f(x) — y1(t)| < yo(t) et yo(t) - 0.

IFITAVIVRC 1) () g 1)
X v . y»(t) = error bound

Theorem (Bournez et al, 2007)

f:[a,b] — R computable' < f computable by GPAC
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Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if 3p polynomial such that Vx € [a, b]

y(0)=(x,0,...,0)  y'(t) =p(y(1)
satisfies |[f(x) — y1(t)| < yo(t) et yo(t) - 0.

%(Umf(x)

N A2

oV y»(t) = error bound

—
~~

—
b

~—

Theorem (Bournez et al, 2007)

f:[a,b] — R computable' < f computable by GPAC

1. In Computable Analysis, a standard model over reals built from Turing machines.
31/24



Almost-rounding function

“Perfect round” :

round(x) := x — L arctan(tan(rx)).
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Almost-rounding function

“Perfect round” :
round(x) := x — L arctan(tan(rx)).
Undefined at x = n + % : observe that

tan(0) = sgn(ﬁ)%
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Almost-rounding function

“Perfect round” :
round(x) := x — L arctan(tan(rx)).
Undefined at x = n+ % : observe that
tan(0) = sgn(ﬁ)%
Approximate sgn(#) :
sgn(f) ~ tanh(\x) for big A
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Almost-rounding function

“Perfect round” :
round(x) := x — L arctan(tan(rx)).
Undefined at x = n+ % : Observe that
tan(0) = sgn(@)%
Approximate sgn(#) :
sgn(f) ~ tanh(\x) for big A
Prevent explosion :
|cos(0)] ~ nz(cos(6)?)

where nz(x) ~ x but nz(x) > 0 for all x :
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Almost-rounding function

“Perfect round” :

round(x) := x — L arctan(tan(rx)).
Undefined at x = n+ % : observe that

tan(0) = sgn(@)%
Approximate sgn(#) :
sgn(f) ~ tanh(\x) for big A
Prevent explosion :
|cos(0)] ~ nz(cos(6)?)

where nz(x) ~ x but nz(x) > 0 for all x :

nz(x) = X + some variation on tanh
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Almost-rounding function : gory details

Formally :
1
rd(X, pu, \) = x — — arctan(cltan(7x, 1, A))
s

sin(6)
cltan(6, u, \) = sg(cosf, i+ 3\, 2\
(6. :2) \/nz(cos? 0, i1 + 16)3,4)2) &l : )

2. 3
nz(X,u,)\):X—i—le (1 _X+E’M+1’4)\)

. 1+sg(x—1,pu,A
|p1(X7M7)‘): g( 2 a )

sg(X, p, A) = tanh(xpA)
All generable functions'!
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