Zariski closure of finitely generated (semi)groups of matrices

Amaury Pouly

Universite de Paris, CNRS, IRIF
Department of Computer Science, Oxford University

08 June 2022

Co-authors: Ehud Hrushovski, Rupak Majumdar, Klara Nosan, Joél
Ouaknine, Sylvain Schmitz, Mahsa Shirmohammadi, James Worrell

1/25



Does this program halt?
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Does this program halt?

Affine program

x = 9—10 Certificate of non-termination:

= 2, 3 _ 1023
s X"Y — X = {o73741824 (1)
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Does this program halt?

Affine program

x = 9—10 Certificate of non-termination:
— 2 3 1023
y = Xy = X* = for37a1eea (1)

» (1) is an invariant: it holds at every
step

» (1) implies the guard is true
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Invariants

invariant = overapproximation of the reachable states
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Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition
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Inductive invariants: example
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Inductive invariants: example

X,y,z range over Q fi: R® —» R3
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Inductive invariants: example

X,y,z range over Q fi: R® —» R3
S
fi
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l1,l>,l3 is an invariant
4/25



Inductive invariants: example

X,y,z range over Q fi: R® - RS

ls

l1,l,1; is NOT an inductive invariant
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Inductive invariants: example

X,y,z range over Q fi: R® - RS

ls

l1,b,l3 is an inductive invariant
4/25



Why Invariants?

/ BAD!

o
The classical approach to the verification of temporal safety

properties of programs requires the construction of inductive
invariants [...]. Automation of this construction is the main

challenge in program verification.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko
Invariant Synthesis for Combined Theories, 2007
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Which invariants?
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Affine programs

f5 a
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Affine programs

» Nondeterministic branching (no guards)

f5 a
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Affine programs

» Nondeterministic branching (no guards)
» All assignments are affine

X =3x—-7y+1
f3
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Affine programs

» Nondeterministic branching (no guards)
» All assignments are affine
> Allow nondeterministic assignments (x := %)

X =3x—-7y+1

fa

» Can overapproximate complex programs

» Covers existing formalisms:
probabilistic, quantum, quantitative automata
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Karr's Algorithm

Affine Relationships Among Variables of a Program*
Michael Karr

Received May 8, 1974

Summary. Several optimizations of programs can be performed when in certain
regions of a program equality relationships hold between a linear combination of the
variables of the program and a constant. This paper presents a practical approach to
detecting these relationships by considering the problem from the viewpoint of linear
algebra. Key to the practicality of this approach is an algorithm for the calculation of
the ““sum”’ of linear subspaces.

Theorem (Karr 76)

There is an algorithm which computes, for any given affine program
over Q, its strongest affine inductive invariant.
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Randomized Karr’'s Algorithm @ POPL 2003

Discovering Affine Equalities Using Random Interpretation

Sumit Gulwani George C. Necula
University of California, Berkeley
{gulwani,necula}@Qcs.berkeley.edu

ABSTRACT Keywords
Affine Relationships, Linear Equalities, Random Interpreta-

‘We present a new polynomial-time randomized algorithm for
tion, Randomized Algorithm

discovering affine equalities involving variables in a program.
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Some polynomial invariants

A Note on Karr’s Algorithm

Markus Miiller-Olm'* and Helmut Seidl®

Abstract. We give a simple formulation of Karr’s algorithm for computing all
affine relationships in affine programs. This simplified algorithm runs in time
O(nk") where n is the program size and k is the number of program variables
assuming unit cost for arithmetic operations. This improves upon the original
formulation by a factor of k. Moreover, our re-formulation avoids exponential
growth of the lengths of intermediately occurring numbers (in binary representa-
tion) and uses less complicated elementary operations. We also describe a gener-
alization that determines all polynomial relations up to degree d in time O ('ukw) .

Theorem (ICALP 2004)

There is an algorithm which computes, for any given affine program
over Q, all its polynomial inductive invariants up to any fixed degree d.
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Main result

Theorem (Hrushovski, Ouaknine, P., Worrell, 2018)

There_ is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.
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Main result

Theorem (Hrushovski, Ouaknine, P., Worrell, 2018)

There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.

> strongest polynomial invariant <= smallest algebraic set

» Thus our algorithm computes all polynomial relations that always
hold among program variables at each program location, in all
possible executions of the program

» We represent this using a finite basis of polynomial equalities

12/25



At the edge of decidability

X = M;x

X = Mx Lo —
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At the edge of decidability

X = Myx

x = Mox S

X = Mx Lo —

Theorem (Markov 1947*)

There is a fixed set of 6 x 6 integer matrices My, ..., My such that the
reachability problem “y is reachable from xy ?” is undecidable.

*Original theorems about semigroups, reformulated with affine programs.
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At the edge of decidability

X = Myx

x = Mox S

X = Mx Lo —

Theorem (Markov 1947*)

There is a fixed set of 6 x 6 integer matrices My, ..., My such that the
reachability problem “y is reachable from xy ?” is undecidable.

Theorem (Paterson 1970%)

The mortality problem “0 is reachable from xo with My, ..., My ?” is
undecidable for 3 x 3 matrices.

*Original theorems about semigroups, reformulated with affine programs.
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Zariski closure of finitely generated groups

Our algorithm relies on this result:

Quantum automata and algebraic groups

Harm Derksen®, Emmanuel Jeandel®, Pascal Koiran®*

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States
bLaboratoire de | ‘Informatique du Parallélisme, Ecole Normale Supérieure de Lyon, 69364, France

Received 15 September 2003; accepted 1 November 2004

Theorem (Derksen, Jeandel and Koiran, 2004)

There is an algorithm which computes, for any given affine program
over Q using only invertible transformations, its strongest polynomial
inductive invariant.

Equivalently, compute the Zariski closure of a finitely generated groups
of matrices.
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Main contribution

Theorem (Technical result)

There is an algorithm that computes the Zariski closure of any finitely

semigroup of matrices (with algebraic coefficients), given its
generators as inputs.

Corollary

Given an affine program, we can compute for each location the ideal of
all polynomial relations that hold at that location.
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Going hybrid: a bouncing ball
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Going hybrid: a bouncing ball

)/J\
Vy '= —Vy . .
» affine program: collision
t—0 m + linear differential equation: mechanics
X:=0 X = vy = linear hybrid automaton
y:=h y =Y
— v =0
Vy .= C \'/.y =-g
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Going hybrid: a bouncing ball

)/J\
> X
Vy == —Vy . .
» affine program: collision
t—0 m + linear differential equation: mechanics
x=0 X = Vx = linear hybrid automaton
=h y =V i : .
y_) Ve =0 Invariants: recover conservation
vei=¢ |y =—g > V=¢C of energy!
Vy — O % — 1 > X = ﬂ?

> v +2g(y —h)=0
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Example: RC circuit

| cLosep Ir VR
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OPEN R
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Example: RC circuit

| cLosep Ir VR

OPEN R
TV
t
OPEN

I =0
lg = _RLCIR
Va = —%/r
@ -1y
Ve = &Ir
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Example: RC circuit

| cLosep Ir 7]

OPEN R
TV
t
OPEN CLOSED

I =0 I =—4clr
Ip _RLCIR {R = _RLCIF('
Ve = —Llg Ve =—¢lr
Q =1Ig Q = I
Ve = &ir Ve = &lr
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Example: RC circuit

| cLosep Ir
. . o .
OPEN
TV
t
OPEN ] CLOSED
I =g(V-Ve)
I =0 In = (V—=Vc) I =—4slr
Ip _RLCIR Vp:=V-Ve Ir = _RLC/R
Vg = —lC/R ¢ 1 Vg = —%/R
Q = Ip I =0 Q = Ir
Ve = &ir Ip == Ve Ve = &lr
Vh:::——Vb

17/25



Example: RC circuit

| v Invariants
[ oo 7 A OPEN  CLOSED
OPEN R Ql Q=CV, Q=CV¢
TV Vo Va=Rlr Va=RIg
T C I=0 =g
Va=-Vo Vg=V-Vg
OPEN 1 CLOSED
I =k (V=Vo)
I =0 In = (V—=Vc) I =—4slr
Ip _RLCIR Vp:=V-Ve Ir = _RLC/R
Vg = —%/R ¢ 1 Vg = —%/R
Q = Ip I =0 Q = Ir
Ve = &ir Ip == Ve Ve = &lr
Vg i =—Ve
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Linear Hybrid Automata

» Nondeterministic branching (no guards)
» All assignments are affine
» Linear differential equations in each location

x—oyx | X =3X—=T7y+1 —
— >XAXDf2

y=x-y f
fs /

: 7
X=BxlY "
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Linear Hybrid Automata

v

v

Nondeterministic branching (no guards)

All assignments are affine
Linear differential equations in each location

X =2y—x
y=x-y

x::3x—7y+1\

Af/
fs

fa

X = BX

More general than affine programs
More general than linear differential equations

XAXD f
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Main results

Theorem (Majumdar, Ouaknine, P., Worrell, 2020)

There is an algorithm that computes, for any given guard-free linear
hybrid automaton over Q, its strongest polynomial inductive invariant.
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Main results

Theorem (Majumdar, Ouaknine, P., Worrell, 2020)

There is an algorithm that computes, for any given guard-free linear
hybrid automaton over Q, its strongest polynomial inductive invariant.

For systems with purely continuous dynamics, i.e. no discrete
transitions, called swiiching systems:

Theorem

There is no algorithm that computes the strongest algebraic inductive
invariant for the class of switching systems with equality guards.
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From hybrid automata to affine programs

Theorem

There is an algorithm that computes, for any given guard-free linear
hybrid automaton over Q, an affine program over Q that has the
same polynomial inductive invariants.
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From hybrid automata to affine programs

Theorem

There is an algorithm that computes, for any given guard-free linear
hybrid automaton over Q, an affine program over Q that has the
same polynomial inductive invariants.

Vy = —‘Vy
t:=0 m
X = X = Vx
y = y =Y
— oy = ~
VX =C Vy — __S]
vy =0 t =1
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Linear Differential Equations

For x(t) € R™ and A rational matrix, consider
x = Ax
The solution is
x(t) = e*x(0)
where eX is the matrix exponential.
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Linear Differential Equations

For x(t) € R" and A rational matrix, consider
x = Ax
The solution is
x(t) = e'x(0)
where eX is the matrix exponential. Recall that:
» strongest algebraic invariant = smallest algebraic set
» smallest algebraic set containing X = Zariski closure X of X

Lemma

Let A be a rational matrix, there exists B an algebraic matrix such that
(B) = (eA) = {eAl: t e R}.
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Linear Differential Equations

For x(t) € R" and A rational matrix, consider
x = Ax
The solution is
x(t) = e*'x(0)
where eX is the matrix exponential. Recall that:
> strongest algebraic invariant = smallest algebraic set
» smallest algebraic set containing X = Zariski closure X of X

Lemma

Let A be a rational matrix, there exists B an algebraic matrix such that
(B) = (eA) = {eAl: t e R}.

» obvious candidate B = e” is not algebraic

> “reverse-engineer” B algebraic to encode some multiplicative
relations between the eigenvalues
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Summary

» invariant = overapproximation of reachable states
> invariants allow verification of safety properties

» guard-free linear hybrid automata:

> nondeterministic branching, no guards, affine assignments
> linear differential equations

x—oyx | X =3X—Ty+1 —
— >XAX:>fz

y=x-y f3
f5 > /

Theorem

There is an algorithm that computes, for any given guard-free linear
hybrid automaton over Q, its strongest polynomial inductive invariant.
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Complexity of computing the Zariski closure

How expensive is it to compute this strongest invariant ?

linear hybrid | 29Y%® [semigroup |29
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Complexity of computing the Zariski closure

How expensive is it to compute this strongest invariant ?

linear hybrid

reduce

Theorem (Derksen, Jeandel and Koiran, 2004)

semigroup

reduce -

There is an algorithm that computes the Zariski closure of any finitely
group of matrices, given its generators as inputs.

No complexity bounds. It is not clear it is even elementary.
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Complexity of computing the Zariski closure

How expensive is it to compute this strongest invariant ?

linear hybrid reduce reduce

Theorem (Derksen, Jeandel and Koiran, 2004)

There is an algorithm that computes the Zariski closure of any finitely
group of matrices, given its generators as inputs.

No complexity bounds. It is not clear it is even elementary.

Theorem (Nosan, P., Schmitz, Shirmohammadi, Worrell, 2022)

Given a finite set S of invertible matrices of dimension n, the algebraic

group G := (S) can be defined with equations of degree at most
septuply exponential in n.
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