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Teaser

Characterization of P using differential equations

Universal differential equation
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What is a computer ?
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Analog Computers

Differential Analyser Admiralty Fire Control Table
“Mathematica of the 1920s” British Navy ships (WW2)
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Church Thesis

Computability
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analog

discrete

continuous

Church Thesis

All reasonable models of computation are equivalent.
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Church Thesis

Complexity
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e s continuous
Effective Church Thesis

All reasonable models of computation are equivalent for complexity.
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Polynomial Differential Equations

General Purpose

Analog Computer Differential Analyzer

Newton mechanics polynomial differential
equations :
{y(0)= Yo
Reaction networks : ()= py(1)
» chemical .
> enzymatic » Rich class

» Stable (+,x,0,/,ED)
» No closed-form solution
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Example of dynamical system

6+ 9sin(9) =0
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Example of dynamical system

Yi=ye yi=10
vh=-9ys o )ye=0

2 .
Y3 =YoYa y3 = sin(0)

g o
0+ 7sin(6) =0 Yi=—Yo¥3 Ya = cos(f)
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Example of dynamical system

nEn

Ya

yi=Ye yi =0

vh=-9ys o )ye=0
N Y3 =YoYa 3 = sin(6)
0+ 7sin(6) =0 Yi=—Yo¥3 Ya = cos(f)

Historical remark : the word “analog”

The pendulum and the circuit have the same equation. One can study
one using the other by analogy.
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Computing with differential equations

Generable functions

y(0)= yo
{y'(x)z ply(x)) *EF
f(x) = y1(x)
Vi (x) / X

Shannon’s notion
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Generable functions

y(0)= yo
{y'(x)z ply(x)) *EF

f(x) = y1(x)

Vi (x)

Shannon’s notion
sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computable

{Y(O)Z q(x) xeR
y'()=p(y(t)) teRy

flx) = lim ys(t)

NN A 1)

U vV

Modern notion
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Computing with differential equations

Generable functions

y(0)= yo
{y'(x)z ply(x)) *EF

f(x) = y1(x)

Vi (x)

Shannon’s notion
sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computable

{Y(O)Z q(x) xeR
y'()=p(y(t)) teRy

flx) = lim ys(t)

NV )

U vV

Modern notion
sin, cos, exp, log, I, C, ...

Turing powerful
[Bournez et al., 2007]
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From discrete to real computability

Computable Analysis : “Turing” computability over real numbers
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From discrete to real computability

Computable Analysis : “Turing” computability over real numbers
Definition (Ko, 1991 ; Weihrauch, 2000)

x € R is computable iff 3 a computable f : N — Q such that :
x —f(n)] <10™" neN

Examples : rational numbers, =, e, ...

n f(n) |m — f(n)]

0 3 014< 100
1 3.1 0.04 <101
2 3.14 0.001 <1072

10 3.1415926535 0.9 1010 < 1010
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From discrete to real computability

Computable Analysis : “Turing” computability over real numbers
Definition (Ko, 1991 ; Weihrauch, 2000)

x € R is computable iff 3 a computable f : N — Q such that :
x —f(n)] <10™" neN

Examples : rational numbers, =, e, ...

n f(n) |m — f(n)]

0 3 014< 100
1 3.1 0.04 <101
2 3.14 0.001 <1072

10 3.1415926535 0.9-10'0 < 1010
Beware : there exists uncomputable real numbers !

x=Y"27" T ={n:the n" Turing machine halts}
nelr
9/23



From discrete to real computability

// f(x)

f(x)
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From discrete to real computability

V) T30
f(x) —
I<10*’"(0)\
// < ?
X
X y

Definition (Computable function)

f:la, b] — Ris computable iff 3 m: N — N,
computable functions such that :

x —y] <107 = |f(x) — f(y)| < 107" x,y €R,neN

m : modulus of continuity
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From discrete to real computability

Vi
/ r A

Definition (Computable function)

f:la,b] - Ris computableiff 3m: N — N,¢: Q xN— Q
computable functions such that :

x —y] <107 = |f(x) — f(y)| < 107" x,y €R,neN

m : modulus of continuity
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From discrete to real computability

fy) | g<1072 —
f(x) ==
sl <10
/ 7€
— X
Xy

Definition (Computable function)

f:la,b] - Ris computableiff 3m: N — N,¢: Q xN— Q
computable functions such that :

x —y] <107 = |f(x) — f(y)| < 107" x,y €R,neN

m : modulus of continuity
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From discrete to real computability

]

p(r,0)
) I@ofo

,//”////////

reQ
Definition (Computable function)

f:la,b] - Ris computableiff 3m: N — N,¢: QxN— Q
computable functions such that :

X —y| <107 = |f(x) — f(y)| < 107"  x,yeR,neN

f(r) —4(r,n)| <107"  reQneN
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From discrete to real computability
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,//”////////
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From discrete to real computability

¥(r2) | | <10-2 |
H(r) =%
req@Q

Definition (Computable function)

f:la,b] - Ris computableiff 3m: N — N,¢: QxN— Q
computable functions such that :

X —y| <107 = |f(x) — f(y)| < 107"  x,yeR,neN

f(r) —4(r,n)| <107"  reQneN
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From discrete to real computability

Definition (Computable function)

f:[a b] — Riscomputable iff 3 m: N — N/ :Q x N — Q
computable functions such that :

X —y| <107 = |f(x) — f(y)| < 107"  x,yeR,neN
|f(r) —(r,n)|<107™" reQ,neN
Examples : polynomials, sin, exp, v/~

Note : all computable functions are continuous
Beware : there exists (continuous) uncomputable real functions!
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From discrete to real computability

Definition (Computable function)

f:[a b] — Riscomputable iff 3 m: N — N/ :Q x N — Q
computable functions such that :

X —y| <107 = |f(x) — f(y)| < 107"  x,yeR,neN

|f(r) —(r,n)|<107™" reQ,neN

Examples : polynomials, sin, exp, v/~
Note : all computable functions are continuous
Beware : there exists (continuous) uncomputable real functions!

Polytime complexity

Add “polynomial time computable” everywhere.
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Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if 3p polynomial such that Vx € [a, b]

y(0) =(x,0,...,0)  y'(t) = p(y(1))
satisfies |f(x) — y1(1)| < yo(t) et ya(1) = 0.

NV A 210 - yi(t) == f(x)
AV . y»(t) = error bound
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Equivalence with computable analysis

Definition (Bournez et al, 2007)
f computable by GPAC if 3p polynomial such that Vx € [a, b]

y(0) =(x,0,...,0)  y'(t) = p(y(1))
satisfies |f(x) — y1(1)| < yo(t) et ya(1) = 0.

NV A 210 - yi(t) == f(x)
AV . y»(t) = error bound

Theorem (Bournez et al, 2007)

f:[a, b] — R computable (Computable Analysis) < f computable by
GPAC
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Complexity of analog systems

» Turing machines : T(x) = number of steps to compute on x
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Complexity of analog systems

» Turing machines : T(x) = number of steps to compute on x
» GPAC :

Tentative definition

T(x) = ?7?
y(0) =(x,0,...,0) ¥y =p(y)
A\AA /@(” f(x
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Complexity of analog systems

» Turing machines : T(x) = number of steps to compute on x
» GPAC :

Tentative definition
T(x,p) =

y(0)

I

VY

(x,0,...,0) Yy =p(y)
/\/\ /{1(2‘) f(x

,/II
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Complexity of analog systems

» Turing machines : T(x) = number of steps to compute on x
» GPAC :

Tentative definition
T(x, p) = first time t so that |y;(t) — f(x)| < e

y(0) = (x,0,...,0)  y' =p(y) z(t) = y(e)
/\ A/\ /{1(0 f(x v[\n (1) f(x

\/ ~r

,/II
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Complexity of analog systems

» Turing machines : T(x) = number of steps to compute on x
» GPAC :

Tentative definition
T(x, p) = first time t so that |y;(t) — f(x)| < e

y(0) = (x,0,...,0)  y' =p(y) z(t) = y(e)
/\ A/\ /{1(0 f(x v[\n (1) f(x

\/ ~r

,/II

w(t) = y(e)
W1(t) f(x

~
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Complexity of analog systems

» Turing machines : T(x) = number of steps to compute on x
» GPAC : time contraction problem — open problem

Tentative definition
T(x, p) = first time t so that |y;(t) — f(x)| < e

y(0) =(x,0,...,0) ¥y =p(y) z(t) = y(e)
N \AA /W) f(x I 20
X \/ ~ x-v
t t
w(t) = y(e®)
Something is wrong... wi (t) f(x
All functions have constant X ¢

time complexity.
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Time-space correlation of the GPAC

y(0)=q(x) ¥y =py) z(t) = y(e')
Mo T 40 | Ly
Lo , 14(x )
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Time-space correlation of the GPAC

y(0)=q(x) ¥y =py) z(t) = y(e')
Mo T 40 | Ly
1 , 14(x )

extra component : w(t) = &'

/
/
|
/

w(t)

12/23



Time-space correlation of the GPAC

y(0)=q(x) ¥y =py) z(t) = y(e')
Mo T 40 | Ly
. , 14(x ,

extra component : w(t) = &'

/

Time scaling costs “space”. /

~>

Time complexity for the GPAC
must involve time and space !
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Complexity of solving polynomial ODEs

y(0)=x  y'(t)=py(t))

X y(1) X y(1)
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Complexity of solving polynomial ODEs

y0)=x  y'(t)=p(y(t))

If y(t) exists, one can compute p, q such that )g — y(t)‘ <27 "intime

poly (size of x and p, n, ((1))
where ((t) = length of the curve (between x and y(t))

7 o/_\o
X %wy(t) X y(t)

length of the curve = complexity = ressource
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Characterization of real polynomial time

Definition : f : [a, b] — R in ANALOG-Pr < 3p polynomial, Vx € [a, b]

y(O):(X,O,...,O) y,:p(y)

70,
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Characterization of real polynomial time

Definition : f : [a, b] — R in ANALOG-Pr < 3p polynomial, Vx € [a, b]
satisfies :

1. Jys () — f)] < 2710
«greater length = greater precision»
2. () >t
«length increases with time»

NN A0 )

\/ \Y

70,
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Characterization of real polynomial time

Definition : f : [a, b] — R in ANALOG-Pr < 3p polynomial, Vx € [a, b]

satisfies :
1. Jys () — f)] < 2710
«greater length = greater precision»
2. () >t
«length increases with time»

NN A0 )

\/ \Y

70,

f: [a, b] — R computable in polynomial time < f € ANALOG-Pg.
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Characterization of polynomial time

Definition : £ € ANALOG-PTIME < dp polynomial, ¥ word w
[w|

y(O)=(¢(W),‘W|,O,...,O) y/=p(}/) ¢(W)=2Wi2_i
i=1

()

w(W)-V/\/\/\/V (t) = length of y
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Characterization of polynomial time

Definition : £ € ANALOG-PTIME < dp polynomial, ¥ word w
[w|

y(O)=(¢(W),‘W|,O,...,O) y’:p(y) ¢(W)=ZWI2_i
i=1

accept: we L R S (et
1 L= ]
\/\/\/\
P(w)1 /\\/\/ ((t) = length of y
\/ computing

satisfies
1. ify(t) =1thenwe L
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Characterization of polynomial time
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~
P(w)d [\ /\/\/\/ ((t) = length of y

VA computing L

reject : wi ¢ L e

satisfies
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Characterization of polynomial time

Definition : £ € ANALOG-PTIME < dp polynomial, ¥ word w

|wl

y(O)=(¢(W),‘W|,O,...,O) y’:p(y) ¢(W)=ZWI2_i
i=1

accept: we L
1
P(w)a N\ /\/\/\/\/\ y1(t) forbidden
\/ Y computing poly(wl)
-1
reject : w ¢ L
satisfies

3. if £(t) = poly(|w|) then |y;(t)| > 1

{(t) = length of y
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Characterization of polynomial time

Definition : £ € ANALOG-PTIME < dp polynomial, ¥ word w

|w|

}/(0)=(¢(W)7\W|707---70) y’:p(y) ¢(W)=ZW/2_i
i=1

w(w)]

accept: we L S B— Y ¢
/\_/
A f\/\/\/\ yi(1) forbidden
/\\/ £(t) = length of y
\/ computing Lpaly(IWI)
reject : w ¢ L IR

Theorem

PTIME = ANALOG-PTIME
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Summary

ANALOG-PTIME

ANALOG-Pr
wel ()
1 -
B(w) /\/\/\/\/\4 y1 (1) v /\ \/\/\ /{1“) f(x
v > (1) Vv
V poly(|w/) X1
—1 R T a«n)
Ngz y1()
Theorem

» L € PTIME of and only if L € ANALOG-PTIME
» f:[a,b] — R computable in polynomial time < f € ANALOG-Pr

» Analog complexity theory based on length
» Time of Turing machine < length of the GPAC
» Purely continuous characterization of PTIME
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Summary

ANALOG-PTIME ANALOG-Pg
wel (D)
;Z;(Jv) /\/\/\/\/\4 yi(t) \ /\ \/\/\ /{1“) fx
. 5 0(t) VIR
\/ \\J’MY(lwd) X4
-1 . (1)
Ngz y1()

» L € PTIME of and only if L € ANALOG-PTIME
» f:[a,b] — R computable in polynomial time < f € ANALOG-Pr

» Analog complexity theory based on length

» Time of Turing machine < length of the GPAC
» Purely continuous characterization of PTIME
» Only rational coefficients needed

16/23



In the remaining time...

An applications of the “technology” we have developed :

Universal differential equation

17/23



Universal differential equations

Generable functions Computable functions
5109 N A0 )
VY
t
“Real-time” computability : “Asymptotic” computability :

subclass of analytic functions any computable function
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Universal differential equations

Generable functions Computable functions
5,0 VITAVAVIEE S ()
IR
t
“Real-time” computability : “Asymptotic” computability :
subclass of analytic functions any computable function

/

~

0y )

\
\/ |
WY,

“Real-time” approximability : ? ?
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Universal differential algebraic equation (DAE)

—1

Y

Theorem (Rubel, 1981)

For any continuous functions f and ¢, there exists y : R — R solution to

14 2

///2 "
3y"y"y Ay y

—4y"y
1 2y/3y//y///3

such that vVt € R,

+ 6y,3y//2y///y//// + 24y,2yu4y1///
—209y2y"%y"% 112y —0

() — f()] < e(b).
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Universal differential algebraic equation (DAE)

—1

Y

Theorem (Rubel, 1981)

There exists a fixed polynomial p and k € N such that for any conti-
nuous functions f and e, there exists a solutiony : R — R to

p(y7yl7"'7y(k)):O

such thatVt e R,
ly(t) — f(B)] < (1)
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Universal differential algebraic equation (DAE)

—1

Y

Theorem (Rubel, 1981)

There exists a fixed polynomial p and k € N such that for any conti-
nuous functions f and e, there exists a solutiony : R — R to

p(y7yl7"'7y(k)):O

such thatVt e R,
ly(t) — f(B)] < (1)

Problem : this is «weak» result.

19/23



The problem with Rubel’s DAE

The solution y is not unique, even with added initial conditions :

p(y7y/7 cee 7y(k)) = Oa y(O) = a07y/(0) =1, .. ’y(k)(o) = Ok
In fact, this is fundamental for Rubel’s proof to work !
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The problem with Rubel’'s DAE

The solution y is not unique, even with added initial conditions :
p(y7y/7 s 7y(k)) =0, y(O) = Oéo,y/(O) = Q1. ’y(k)(o) = Ok
In fact, this is fundamental for Rubel’s proof to work !

» Rubel’s statement : this DAE is universal
» More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y’ = p(y)?
Note : unique solution

20/23



Rubel’s proof in one slide

—1
> Take f(t) = e'-2 for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" () + 2tf'(t) = 0.
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Rubel’s proof in one slide

—1

> Take f(t) = e'-2 for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" () + 2tf'(t) = 0.

» Forany a,b,c € R, y(t) = cf(at + b) satisfies

3 y/4 y// y////2 4 y/4 y//2 y//// +6 y y//2 y/// y//// + 24 y y y////
1 2y/3y//y///3 29y/2y//3y///2 +1 2y//7 0

n4

Translation and rescaling :

T
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Rubel’s proof in one slide

=1
> Take f(t) = e1-2 for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" (t) + 2tf'(t) = 0.
» Forany a,b,c € R, y(t) = cf(at + b) satisfies
14 1111012 14 112 111 13 112 111 1111 12 114 13 11,1113 12 113 1112 n7

3y Tyl YIS _ayt YISy IS Y I gyt S IR 4yl Sy IS gyt SIS IS 1y T g

» Can glue together arbitrary many such pieces

i

M
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Rubel’s proof in one slide
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> Take f(t) = e'-2 for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" (t) + 2tf'(t) = 0.

» Forany a,b,c € R, y(t) = cf(at + b) satisfies

4 2 4 112 3 12 2 4 3 3 2 113 12 7
3y Ay 12 g 1A 12 1 g 13 112 I 01 g 12 104 110 g0 1311 1113 _og 12 113 1112 | g, 11T g

» Can glue together arbitrary many such pieces
» Can arrange so that [ f is solution : piecewise pseudo-linear

— |
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Rubel’s proof in one slide

—1

> Take f(t) = e'-2 for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" (t) + 2tf'(t) = 0.

» Forany a,b,c € R, y(t) = cf(at + b) satisfies

4 2 4 112 3 12 2 4 3 3 2 113 12 7
3y Ay 12 g 1A 12 1 g 13 112 I 01 g 12 104 110 g0 1311 1113 _og 12 113 1112 | g, 11T g

» Can glue together arbitrary many such pieces
» Can arrange so that [ f is solution : piecewise pseudo-linear

— |

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C°

21/23



Universal initial value problem (IVP)

\ .
\ /
Y,

Theorem (A truly universal ODE)

There exists a fixed (vector of) polynomial p such that for any
continuous functions f and e, there exists o € RY such that

y(0)=a,  y'(t)=py(t)
has a unique solution y : R — R? and Vt € R,
i (t) — f(B)] < e(d).

22/23



Universal initial value problem (IVP)

Notes :
\ 1(X) . > system of ODEs,
\\ / > y is analytic,
\/ > we need d = 300.

Theorem (A truly universal ODE)

There exists a fixed (vector of) polynomial p such that for any
continuous functions f and e, there exists o € RY such that

y(0)=a,  y'(t)=py(t)
has a unique solution y : R — R? and Vt € R,
i (t) — f(B)] < e(d).
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Universal initial value problem (IVP)

Notes :
\ 1(X) . > system of ODEs,
\\ / > yis analytic,
\/ > we need d ~ 300.

Theorem (A truly universal ODE)

There exists a fixed (vector of) polynomial p such that for any
continuous functions f and e, there exists o € RY such that

y(0)=a,  y'(t)=py(t)
has a unique solution y : R — R? and Vt € R,

1 (1) = F(O)] < ().

Remark : « is usually transcendental, but computable from f and
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Reaction networks :
» chemical

» enzymatic

» Finer time complexity (linear)
» Nondeterminism

» Robustness

» « Space» complexity

» Other models

» Stochastic
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Backup slides
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Universal DAE revisited

k
\

LY

Theorem

There exists a fixed polynomial p and k € N such that for any
continuous functions f and ¢, there exists ay, . . ., ax € R such that

P(%yla ° o0 7y(k)) = Oa y(O) = aan/(O) = 0q,... ’y(k)(o) = Ok
has a unique analytic solution and this solution satisfies such that
() = ()] < e(b).
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Chemical Reaction Networks

Definition : a reaction system is a finite set of
» molecular species y1, ..., ¥n

> reactions of the form >, a;y; 1 >.ibiyi (aj, bj € N, f = rate)
Example :

2H, + O — 2H50
C + 0O, —» CO,
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Chemical Reaction Networks

Definition : a reaction system is a finite set of
» molecular species y1, ..., ¥n

> reactions of the form >, a;y; 1 >.ibiyi (aj, bj € N, f = rate)

Example :
2H, + O — 2H,0
C + 0O, —» CO,

Assumption : law of mass action

Zalylézblyl ~ fy)= kHy
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Chemical Reaction Networks

Definition : a reaction system is a finite set of
» molecular species y1, ..., ¥n

> reactions of the form >, a;y; 1 >.ibiyi (aj, bj € N, f = rate)

Example :
2H, + O — 2H,0
C + 0O, —» CO,

Assumption : law of mass action
Za,y, - Zb,y, ~ f(y) = H

Semantics :
» discrete
» differential
» stochastic
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> reactions of the form >, a;y; 1 >.ibiyi (aj, bj € N, f = rate)

Example :
2H, + O — 2H,0
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Assumption : law of mass action
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Chemical Reaction Networks

Definition : a reaction system is a finite set of
» molecular species y1, ..., ¥n

> reactions of the form >, a;y; 1 >.ibiyi (aj, bj € N, f = rate)

Example :
2H, + O — 2H,0
C + 0O, —» CO,

Assumption : law of mass action
Za,y, - Zb,y, ~ f(y) = H

Semantics :

» discrete , A _A\LR a
/_ R_ aR\k 3
> differential — vi= > (bf-a) 1;[}’/

reaction R
» stochastic
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Chemical Reaction Networks (CRNSs)

» CRNSs with differential semantics and mass action law =
polynomial ODEs
» polynomial ODEs are Turing complete
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Chemical Reaction Networks (CRNSs)

CRNs are Turing complete ? Two “slight” problems :
> concentrations cannot be negative (y; < 0) » easy to solve
> arbitrary reactions are not realistic » what is realistic ?

Definition : a reaction is elementary if it has at most two reactants
= can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

ay+bz %~ f(y,2) = ky2®

Theorem (Folklore)

Every polynomial ODE can be rewritten as a quadratic ODE.
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Chemical Reaction Networks (CRNSs)

Definition : a reaction is elementary if it has at most two reactants
= can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

ay+bz 5 ...~ f(y,z) = ky3z®

Theorem (CMSB, joint work with Frangois Fages, Guillaume Le
Guludec)

Elementary mass-action-law reaction system on finite universes of
molecules are Turing-complete under the differential semantics.

Notes :
» proof preserves polynomial length
» in fact the following elementary reactions suffice :

o5 x  xExiz x+y£>x+y+z x+yﬁ>®
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