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Learning with Error (LWE)

Fundamental problem for lattice-based cryptography

▶ n: dimension of secret
▶ m: number of samples
▶ χe: error distribution over Zq

▶ q: prime number
▶ s ∈ Zn

q : secret

LWE(m, s, χe) distribution

Sample A ∈ Zm×n
q uniformly at random and e ∈ Zm

q according to χm
e .

Output (A,b) where b = As+ e.

Search LWE problem

Given (A,b) sampled from LWE(m, s, χe), recover (part of) s.

In this paper:
▶ no assumption on s and χe

▶ m ≈ 2n (more on that at the end)
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Dual attacks: brief history and controversy

Two main types of attacks: primal and dual.

[GJ21] dual attack with sieving, DFT, suggested modulus switching
[MAT22] formal analysis of dual attack with sieving + modulus switching

; claims comparable with best primal attacks (in some regime)
; correctness relies on statistical assumptions: do these really hold?

[DP23a]:
▶ Formalizes a simplified version of [MAT22]’s key assumption
▶ Shows that it does not hold for [MAT22]’s parameters
▶ Concludes that [MAT22]’s result is unsubstantiated

Open question: is [DP23a]’s simplified assumption really equivalent to
[MAT22]’s key assumption? ; more on this later
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Contributions

Main result
Completely formal, non-asymptotic analysis of a simplified dual attack.

▶ no assumptions ; no controversy
▶ makes it clear in which parameter regime the attack works

; almost complementary with [DP23a]’s contradictory regime in our
simplified setting

▶ uses discrete Gaussian sampling (DGS) instead of sieving

Other contributions:
▶ Quantum version of the algorithm with non-trivial speed up based on

ideas from [AS22]
▶ Improved analysis of DGS with BKZ reduced basis based on the

Monte Carlo Markov Chain sampler [WL19]
▶ Complexity estimates for concrete parameters (Kyber)
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Our dual attack on LWE: high-level

Given b = As+ e, split secret into two parts (n = nguess + ndual):

A =
(
Aguess Adual

)
, s =

(
sguess
sdual

)
Consider the lattice

L = AdualZndual
q + qZm

Assume we have a function

f(t) ≈ g(dist(t, L)), t ∈ Rm

for some decreasing function g. Guess s̃guess and compute

f(b−Aguesss̃guess) ≈ g(dist(Aguess(sguess − s̃guess) + e, L))
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for some decreasing function g. Guess s̃guess and compute

f(b−Aguesss̃guess) ≈ g(dist(Aguess(sguess − s̃guess) + e, L))

Good guess: s̃guess = sguess

f(b−Aguesss̃guess) ≈ g(dist(e, L)) = g(∥e∥) if e is sufficiently small.
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Bad guess: s̃guess ̸= sguess

For most A, dist(Aguess(sguess − s̃guess) + e, L) > ∥e∥ if e is sufficiently
small. So f(b−Aguesss̃guess) ⪅ g(∥e∥).
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for some decreasing function g. Guess s̃guess and compute

f(b−Aguesss̃guess) ≈ g(dist(Aguess(sguess − s̃guess) + e, L))

Summary: If e is sufficiently small and for most A,

sguess = argmax
s̃guess∈Z

nguess
q

f(b−Aguesss̃guess)
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The score function f

Goal: given a lattice L, construct f(t) ≈ g(dist(t, L)) for all t ∈ Rm.

Find (exponentially) many short vectors x1, . . . ,xN ∈ L̂, define

f(t) =
N∑
i=1

cos(2π⟨xi, t⟩)

How to generate short vectors?
▶ BKZ + sieving in sublattice: used by all best attacks

; complicated to analyze, major source of problems in [MAT22] and
leads to statistical assumptions

▶ BKZ + Gaussian sampler:
; well understood, f(t) ≈ ρs(dist(t, L)) [AR05]
; considered inefficient for dual attacks, maybe wrongly so!
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Complexity of Discrete Gaussian Sampling

Sampling from the discrete Gaussian over L with parameter s:

s

largesmall

easy (PTIME)hard (SVP)

smoothing parameter
ηε(L)

unclear

For dual attack: smaller s is better, want s < ηε(L) if possible.

Run BKZ to reduce the basis, then

1. Klein sampler: PTIME, s depends on basis but s ⩾ ηε(L) by
construction ; not good enough

2. Monte Carlo Markov Chain (MCMC) sampler [WL19]: complexity and
s depend on basis, no constraint on s
▶ regime where s < ηε(L) and the sampler runs in exponential time
▶ the generic complexity bound in [WL19] is not good enough
▶ we improved it specifically for BKZ-reduced basis under GSA
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Main result and working/contradictory regime

Main result (very informal)

Our dual attack works for most (A,As+ e) as long as ∥e∥ ⩽ 1
2λ1(Lq(A)).

In [DP23a], the authors introduced a “contradictory regime” where dual
attacks provably do not work. In our setting (simplified attack), this regime
is roughly

∥e∥ > λ1(Lq(A)).

Take away (for simplified attack):
▶ [DP23a] + our work covers most of the parameter range

▶ Open question: what happens for 1
2 ⩽ ∥e∥

λ1(Lq(A)) ⩽ 1?

8 / 11



Main result and working/contradictory regime

Main result (very informal)

Our dual attack works for most (A,As+ e) as long as ∥e∥ ⩽ 1
2λ1(Lq(A)).

In [DP23a], the authors introduced a “contradictory regime” where dual
attacks provably do not work. In our setting (simplified attack), this regime
is roughly

∥e∥ > λ1(Lq(A)).

Take away (for simplified attack):
▶ [DP23a] + our work covers most of the parameter range

▶ Open question: what happens for 1
2 ⩽ ∥e∥

λ1(Lq(A)) ⩽ 1?

8 / 11



Main result and working/contradictory regime

Main result (very informal)

Our dual attack works for most (A,As+ e) as long as ∥e∥ ⩽ 1
2λ1(Lq(A)).

In [DP23a], the authors introduced a “contradictory regime” where dual
attacks provably do not work. In our setting (simplified attack), this regime
is roughly

∥e∥ > λ1(Lq(A)).

Take away (for simplified attack):
▶ [DP23a] + our work covers most of the parameter range

▶ Open question: what happens for 1
2 ⩽ ∥e∥

λ1(Lq(A)) ⩽ 1?

8 / 11



Complexity estimates

Our attack does not have modulus switching ; not competitive

Scheme attack m nguess ndual β

Kyber512 185 1013 15 497 550
Kyber768 273 1469 23 745 870
Kyber1024 376 2025 31 993 1230

We estimated the complexity of a hypothetical extension of our attack with
modulus switching (MS):

Scheme Our attack MS MATZOV

Kyber512 185 141 143
Kyber768 273 202 200
Kyber1024 376 279 264

▶ promising but unproven, most likely too optimistic
▶ validates the approach of BKZ + MCMC DGS sampling
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Targets and related works

Given b = As+ e,

sguess = argmax
s̃guess∈Z

nguess
q

f(b−Aguesss̃guess︸ ︷︷ ︸
target

)

where f = fX for some (sampled) dual vectors X ⊆ L̂.

Study

PrX

 f(e)︸︷︷︸
good guess

> f(e+Aguessu)︸ ︷︷ ︸
bad guess

,∀u ∈ Znguess
q \ {0}

. (1)

Difficult because it depends on Aguess and e. [DP23a] “simplifies” this to

PrX ,t(i)∼U(Zm/L)

[
f(e) > f(t(i)), i = 1, . . . , qnguess

]
. (2)

Later [CDMT24] and [DP23b] analyzed the distribution of f(t) when
t ∼ U(Zm/L) and X comes from sieving in L̂.

Open question: (1) is NOT equivalent to (2), how do they compare?
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Conclusion and future work

▶ strong foundation for provable dual attacks with no assumptions
▶ BKZ + MCMC DGS sampling seems competitive with BKZ + sieving

but simpler to analyze
▶ promising complexity estimates
▶ quantum algorithm with non-trivial speed up

Open questions:
▶ analyze modulus switching or coding theory-based dimension reduction

from [CST22]
▶ close the gap between working and contradictory regime
▶ make the attack work with m = n samples by using{

(x,y) ∈ Zm × Zndual : AT
dualx = y mod q

}
instead of dual lattice
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