A universal ordinary differential equation

Olivier Bournez¹, Amaury Pouly²

¹LIX, École Polytechnique, France ²Max Planck Institute for Software Systems, Germany

19 july 2017

Universal differential algebraic equation (Rubel)

Theorem (Rubel, 1981)

For any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$3{y'}^{4}{y''}{y''''}^{2} -4{y'}^{4}{y'''}^{2}{y''''} + 6{y'}^{3}{y''}^{2}{y'''}{y''''} + 24{y'}^{2}{y''}^{4}{y''''} -12{y'}^{3}{y''}{y'''}^{3} - 29{y'}^{2}{y''}^{3}{y'''}^{2} + 12{y''}^{7} = 0$$

such that $\forall t \in \mathbb{R}$,

Universal differential algebraic equation (Rubel)

Theorem (Rubel, 1981)

There exists a **fixed** *k* and nontrivial polynomial *p* such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y,y',\ldots,y^{(k)})=0$$

such that $\forall t \in \mathbb{R}$,

Universal differential algebraic equation (Rubel)

Open Problem

Can we have unicity of the solution with initial conditions?

Theorem (Rubel, 1981)

There exists a **fixed** *k* and nontrivial polynomial *p* such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y, y', \ldots, y^{(k)}) = 0$$

such that $\forall t \in \mathbb{R}$,

• Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise.

It satisfies
$$(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$$

• Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise.

It satisfies
$$(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$$

• Can do the same with cf(at + b) (translation+scaling)

• Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise.

It satisfies
$$(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$$

- Can do the same with cf(at + b) (translation+scaling)
- Can glue together arbitrary many such pieces

• Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise.

It satisfies
$$(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$$

- Can do the same with cf(at + b) (translation+scaling)
- Can glue together arbitrary many such pieces
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear

• Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise.

It satisfies
$$(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$$

- Can do the same with cf(at + b) (translation+scaling)
- Can glue together arbitrary many such pieces
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear

Conclusion : Rubel's equation allows any piecewise pseudo-linear functions, and those are **dense in** C^0

The solution y is not unique, even with added initial conditions :

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel's proof to work !

The solution y is not unique, even with added initial conditions :

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel's proof to work!

- Rubel's statement : this DAE is universal
- More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y' = p(y)? Note : explicit polynomial ODE \Rightarrow unique solution

Universal explicit ordinary differential equation

Main result

There exists a **fixed** (vector of) polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t)-f(t)|\leqslant \varepsilon(t).$

Universal explicit ordinary differential equation

Notes :

- system of ODEs,
- y must be analytic,
- we need $d \approx 300$.

Main result

There exists a **fixed** (vector of) polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha, \qquad y'(t) = p(y(t))$$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t) - f(t)| \leq \varepsilon(t).$

Universal DAE, again but better

Corollary of main result

There exists a **fixed** *k* and nontrivial polynomial *p* such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha_0, \ldots, \alpha_k \in \mathbb{R}$ such that

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

has a **unique analytic solution** $y : \mathbb{R} \to \mathbb{R}$ and $\forall t \in \mathbb{R}$,

Some motivation

Polynomial ODEs correspond to analog computers :

Differential Analyser

British Navy mecanical computer

Some motivation

Polynomial ODEs correspond to analog computers :

Differential Analyser

British Navy mecanical computer

- They are **equivalent** to Turing machines!
- One can characterize P with pODEs (ICALP 2016)

Take away : polynomial ODEs are a natural programming language.

Example of differential equation

General Purpose Analog Computer (GPAC) Shannon's model of the Differential Analyser

$$\ddot{ heta} + rac{g}{\ell} \sin(heta) = 0$$

$$\begin{cases} y'_{1} = y_{2} \\ y'_{2} = -\frac{g}{\ell} y_{3} \\ y'_{3} = y_{2} y_{4} \\ y'_{4} = -y_{2} y_{3} \end{cases} \Leftrightarrow \begin{cases} y_{1} = \theta \\ y_{2} = \dot{\theta} \\ y_{3} = \sin(\theta) \\ y_{4} = \cos(\theta) \end{cases}$$

Building a fast-growing ODE, that exists over ${\mathbb R}$:

$$y'_1 = y_1 \qquad \qquad \rightsquigarrow \qquad y_1(t) = \exp(t)$$

Building a fast-growing ODE, that exists over ${\mathbb R}$:

$$y'_1 = y_1 \qquad \rightsquigarrow \qquad y_1(t) = \exp(t)$$

 $y'_2 = y_1 y_2 \qquad \rightsquigarrow \qquad y_1(t) = \exp(\exp(t))$

Building a fast-growing ODE, that exists over ${\mathbb R}$:

$$y'_{1} = y_{1} \qquad \rightsquigarrow \qquad y_{1}(t) = \exp(t)$$

$$y'_{2} = y_{1}y_{2} \qquad \rightsquigarrow \qquad y_{1}(t) = \exp(\exp(t))$$

$$\cdots \qquad \cdots$$

$$y'_{n} = y_{1} \cdots y_{n} \qquad \rightsquigarrow \qquad y_{n}(t) = \exp(\cdots \exp(t) \cdots) := e_{n}(t)$$

Building a fast-growing ODE, that exists over $\mathbb R$:

$$\begin{array}{lll} y_1' = y_1 & \rightsquigarrow & y_1(t) = \exp(t) \\ y_2' = y_1 y_2 & \rightsquigarrow & y_1(t) = \exp(\exp(t)) \\ \cdots & & \cdots \\ y_n' = y_1 \cdots y_n & \rightsquigarrow & y_n(t) = \exp(\cdots \exp(t) \cdots) := e_n(t) \end{array}$$

Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

$$e_n(t) = \exp(\cdots \exp(t) \cdots)$$
 (*n* compositions)

Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)

$$\frac{1}{2-\cos(t)-\cos(\alpha t)}$$

Sequence of **arbitrarily** growing spikes.

$$e_n(t) = \exp(\cdots \exp(t) \cdots)$$
 (*n* compositions)

Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)

$$\frac{1}{2-\cos(t)-\cos(\alpha t)}$$

Sequence of **arbitrarily** growing spikes. But not good enough for us.

$$e_n(t) = \exp(\cdots \exp(t) \cdots)$$
 (*n* compositions)

Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)

$$\frac{1}{2-\cos(t)-\cos(\alpha t)}$$

Theorem (In the paper)

There exists a polynomial $p : \mathbb{R}^d \to \mathbb{R}^d$ such that for any continuous function $f : \mathbb{R}_{\geq 0} \to \mathbb{R}$, we can find $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

satisfies

$$y_1(t) \ge f(t), \qquad \forall t \ge 0.$$

$$e_n(t) = \exp(\cdots \exp(t) \cdots)$$
 (*n* compositions)

Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)

$$\frac{1}{2-\cos(t)-\cos(\alpha t)}$$

Theorem (In the paper)

There exists a polynomial $p : \mathbb{R}^d \to \mathbb{R}^d$ such that for any continuous function $f : \mathbb{R}_{\geq 0} \to \mathbb{R}$, we can find $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha, \qquad y'(t) = p(y(t))$$

satisfies

$$y_1(t) \ge f(t), \quad \forall t \ge 0.$$

Note : both results require α to be **transcendental**. Conjecture still open for **rational** coefficients.

Goal

Goal

Goal

Goal

Main result (reminder)

There exists a **fixed** (vector of) polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t)-f(t)|\leqslant \varepsilon(t).$

Question : is α computable from *f* and ε ?

Main result (reminder)

There exists a **fixed** (vector of) polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

 $\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t)-f(t)|\leqslant \varepsilon(t).$

Question : is α computable from *f* and ε ? Yes¹

^{1.} With the right notion of computability.

This paper

positive answer to Rubel's open problem

Take home

ODE is a simple, nice and fun programming language

Possible development

Each universal ODE defines a map :

$$(f,\varepsilon) \in C^0 \times C^0 \mapsto \alpha \in \mathbb{R}$$

Kolmogorov-like complexity for continuous functions?

Polynomial Differential Equations

No closed-form solution

Digital vs analog computers

Digital vs analog computers

Computability

Church Thesis

All reasonable models of computation are equivalent.

Complexity

Effective Church Thesis

All reasonable models of computation are equivalent for complexity.

Generable functions

$$egin{cases} y(0)=y_0\ y'(x)=p(y(x)) \ & x\in\mathbb{R} \end{cases}$$

$$f(x)=y_1(x)$$

Shannon's notion

Generable functions

$$\begin{cases} y(0) = y_0 \\ y'(x) = p(y(x)) \end{cases} \quad x \in \mathbb{R} \\ f(x) = y_1(x) \\ \hline y_1(x) \\ \hline y_1(x) \\ \hline x \end{cases}$$

Shannon's notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \dots$

Strictly weaker than Turing machines [Shannon, 1941]

Computing with the GPAC

Generable functions

$$\left\{egin{array}{ll} y(0)=y_0 \ y'(x)=p(y(x)) \end{array}
ight. x\in\mathbb{R}$$

$$f(x) = y_1(x)$$

Shannon's notion

 $\sin,\cos,\exp,\log,\ldots$

Strictly weaker than Turing machines [Shannon, 1941]

Computable

$$\begin{cases} y(0) = q(x) & x \in \mathbb{R} \\ y'(t) = p(y(t)) & t \in \mathbb{R}_{\geq 0} \end{cases}$$

$$f(x) = \lim_{t\to\infty} y_1(t)$$

Modern notion

Computing with the GPAC

Generable functions

$$\left\{egin{array}{ll} y(0)=y_0 \ y'(x)=p(y(x)) \end{array}
ight. x\in\mathbb{R}$$

$$f(x) = y_1(x)$$

Shannon's notion

 $\sin,\cos,\exp,\log,\ldots$

Strictly weaker than Turing machines [Shannon, 1941]

Computable

$$\begin{cases} y(0) = q(x) & x \in \mathbb{R} \\ y'(t) = p(y(t)) & t \in \mathbb{R}_{\geq 0} \end{cases}$$

$$f(x) = \lim_{t\to\infty} y_1(t)$$

Modern notion

 $\sin, \cos, \exp, \log, \Gamma, \zeta, \dots$

Turing powerful [Bournez et al., 2007]

Universal differential equations

Generable functions

Computable functions

(t)

subclass of analytic functions

any computable function

f(x)

Universal differential equations

Generable functions

Computable functions

subclass of analytic functions

any computable function

Almost-Theorem

 $f : [0, 1] \to \mathbb{R}$ is **computable** if and only if there exists $\tau > 1$, $y_0 \in \mathbb{R}^d$ and p polynomial such that

$$y'(0) = y_0, \qquad y'(t) = p(y(t))$$

satisfies

$$|f(x) - y(x + n\tau)| \leq 2^{-n}, \quad \forall x \in [0, 1], \forall n \in \mathbb{N}$$

