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Universal differential algebraic equation (Rubel)

x
y1(x)

Theorem (Rubel, 1981)

For any f ∈ C0(R) and ε ∈ C0(R,R>0), there exists a solution y : R→ R
to
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′′
y
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′′7

= 0

such that ∀t ∈ R,
|y(t)− f (t)| 6 ε(t).
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Theorem (Rubel, 1981)
There exists a fixed k and nontrivial polynomial p such that for any
f ∈ C0(R) and ε ∈ C0(R,R>0), there exists a solution y : R→ R to

p(y , y ′, . . . , y (k)) = 0
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Universal differential algebraic equation (Rubel)

x
y1(x)

Open Problem
Can we have unicity of
the solution with initial
conditions?

Theorem (Rubel, 1981)
There exists a fixed k and nontrivial polynomial p such that for any
f ∈ C0(R) and ε ∈ C0(R,R>0), there exists a solution y : R→ R to

p(y , y ′, . . . , y (k)) = 0

such that ∀t ∈ R,
|y(t)− f (t)| 6 ε(t).
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Rubel’s ("disappointing") proof in one slide

Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1− t2)2f
′′

(t) + 2tf ′(t) = 0.

Can do the same with cf (at + b) (translation+scaling)
Can glue together arbitrary many such pieces
Can arrange so that

∫
f is solution : piecewise pseudo-linear

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0

3 / 13



Rubel’s ("disappointing") proof in one slide

Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1− t2)2f
′′

(t) + 2tf ′(t) = 0.

Can do the same with cf (at + b) (translation+scaling)

Can glue together arbitrary many such pieces
Can arrange so that

∫
f is solution : piecewise pseudo-linear

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0

3 / 13



Rubel’s ("disappointing") proof in one slide

Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1− t2)2f
′′

(t) + 2tf ′(t) = 0.

Can do the same with cf (at + b) (translation+scaling)
Can glue together arbitrary many such pieces

Can arrange so that
∫

f is solution : piecewise pseudo-linear

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0

3 / 13



Rubel’s ("disappointing") proof in one slide

Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1− t2)2f
′′

(t) + 2tf ′(t) = 0.

Can do the same with cf (at + b) (translation+scaling)
Can glue together arbitrary many such pieces
Can arrange so that

∫
f is solution : piecewise pseudo-linear

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0

3 / 13



Rubel’s ("disappointing") proof in one slide

Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1− t2)2f
′′

(t) + 2tf ′(t) = 0.

Can do the same with cf (at + b) (translation+scaling)
Can glue together arbitrary many such pieces
Can arrange so that

∫
f is solution : piecewise pseudo-linear

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0

3 / 13



The problem with Rubel’s DAE

The solution y is not unique, even with added initial conditions :

p(y , y ′, . . . , y (k)) = 0, y(0) = α0, y ′(0) = α1, . . . , y (k)(0) = αk

In fact, this is fundamental for Rubel’s proof to work !

Rubel’s statement : this DAE is universal
More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y ′ = p(y) ?
Note : explicit polynomial ODE⇒ unique solution
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Universal explicit ordinary differential equation

x
y1(x)

Main result

There exists a fixed (vector of) polynomial p such that for any f ∈ C0(R)
and ε ∈ C0(R,R>0), there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).
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Universal explicit ordinary differential equation

x
y1(x)

Notes :
system of ODEs,
y must be analytic,
we need d ≈ 300.

Main result

There exists a fixed (vector of) polynomial p such that for any f ∈ C0(R)
and ε ∈ C0(R,R>0), there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).
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Universal DAE, again but better

x
y1(x)

Corollary of main result
There exists a fixed k and nontrivial polynomial p such that for any
f ∈ C0(R) and ε ∈ C0(R,R>0), there exists α0, . . . , αk ∈ R such that

p(y , y ′, . . . , y (k)) = 0, y(0) = α0, y ′(0) = α1, . . . , y (k)(0) = αk

has a unique analytic solution y : R→ R and ∀t ∈ R,

|y(t)− f (t)| 6 ε(t).

6 / 13



Some motivation

Polynomial ODEs correspond to analog computers :

Differential Analyser British Navy mecanical computer

They are equivalent to Turing machines !
One can characterize P with pODEs (ICALP 2016)

Take away : polynomial ODEs are a natural programming language.
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Example of differential equation

θ

`

m

×
∫ ∫

×
∫−g

`

××−1
∫

y1
y2

y3 y4

General Purpose Analog Computer (GPAC)
Shannon’s model of the Differential Analyser

θ̈ + g
` sin(θ) = 0 

y ′1 = y2
y ′2 = −g

` y3
y ′3 = y2y4
y ′4 = −y2y3

⇔


y1 = θ

y2 = θ̇
y3 = sin(θ)
y4 = cos(θ)
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A simplified proof

α ∈ R ODE t
0 1 1 0 1 0 1 0 0 1 1 1 . . .

digits of α
binary stream

generator

This is the ideal curve, the real
one is an approximation of it.

N
O

TE
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A simplified proof

α ∈ R ODE t
0 1 1 0 1 0 1 0 0 1 1 1 . . .

digits of α
binary stream

generator

ODEt

“Digital” to Analog
Converter (fixed frequency)

Approximate Lipschitz and bounded
functions with fixed precision.

N
O

TE

That’s the trickiest part.
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A simplified proof

α ∈ R ODE t
0 1 1 0 1 0 1 0 0 1 1 1 . . .

digits of α
binary stream

generator

ODEt

“Digital” to Analog
Converter (fixed frequency)

ODE?

t

We need something more :
a fast-growing ODE.
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A simplified proof

α ∈ R ODE t
0 1 1 0 1 0 1 0 0 1 1 1 . . .

digits of α
binary stream

generator

ODEt

“Digital” to Analog
Converter (fixed frequency)

ODE?

t

We need something more :
an arbitrarily fast-growing ODE.

N
O
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An old question on growth

Building a fast-growing ODE, that exists over R :

y ′1 = y1 ; y1(t) = exp(t)

y ′2 = y1y2 ; y1(t) = exp(exp(t))
. . . . . .
y ′n = y1 · · · yn ; yn(t) = exp(· · · exp(t) · · · ):= en(t)

Conjecture (Emil Borel, 1899)

With n variables, cannot do better than Ot (en(Atk )).

Counter-example (Vijayaraghavan, 1932)

1
2− cos(t)− cos(αt)
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An old question on growth

en(t) = exp(· · · exp(t) · · · ) (n compositions)
Conjecture (Emil Borel, 1899)

With n variables, cannot do better than Ot (en(Atk )).

Counter-example (Vijayaraghavan, 1932)

1
2− cos(t)− cos(αt)

t

Sequence of arbitrarily
growing spikes.
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With n variables, cannot do better than Ot (en(Atk )).

Counter-example (Vijayaraghavan, 1932)

1
2− cos(t)− cos(αt)

t

Sequence of arbitrarily
growing spikes. But not
good enough for us.
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Theorem (In the paper)

There exists a polynomial p : Rd → Rd such that for any continuous
function f : R>0 → R, we can find α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))
satisfies

y1(t) > f (t), ∀t > 0.

Note : both results require α to be transcendental. Conjecture still
open for rational coefficients.
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Proof gem : iteration with differential equations

Goal

Iterate f with a GPAC : y(n) ≈ f [n]([x ])

t
x

f (x)

f [2](x)

0 1
2

1 3
2

2y ′≈0

z′≈f (y)−z

y ′≈z−y

z′≈0
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A computability question

Main result (reminder)

There exists a fixed (vector of) polynomial p such that for any f ∈ C0(R)
and ε ∈ C0(R,R>0), there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).

Question : is α computable from f and ε?
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A computability question

Main result (reminder)

There exists a fixed (vector of) polynomial p such that for any f ∈ C0(R)
and ε ∈ C0(R,R>0), there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).

Question : is α computable from f and ε? Yes 1

1. With the right notion of computability.
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Conclusion

This paper
positive answer to Rubel’s open problem

Take home
ODE is a simple, nice and fun programming language

Possible development

Each universal ODE defines a map :

(f , ε) ∈ C0 × C0 7→ α ∈ R

Kolmogorov-like complexity for continuous functions?
13 / 13



Polynomial Differential Equations

k k

+ u+vu
v

× uvu
v

∫ ∫
uu

General Purpose
Analog Computer Differential Analyzer

Reaction networks :
chemical
enzymatic

Newton mechanics polynomial differential
equations :{

y(0)= y0
y ′(t)= p(y(t))

Rich class
Stable (+,×,◦,/,ED)
No closed-form solution
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Digital vs analog computers

VS
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Church Thesis

Computability

discrete

Turing
machine

boolean circuitslogic

recursive
functions

lambda
calculus

quantum analog
continuous

Church Thesis
All reasonable models of computation are equivalent.
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Church Thesis

Complexity

discrete

Turing
machine

boolean circuitslogic

recursive
functions

lambda
calculus

quantum analog
continuous

>
?

?

Effective Church Thesis
All reasonable models of computation are equivalent for complexity.
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Computing with the GPAC

Generable functions{
y(0)= y0

y ′(x)= p(y(x))
x ∈ R

f (x) = y1(x)

x
y1(x)

Shannon’s notion

sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computable{
y(0)= q(x)
y ′(t)= p(y(t))

x ∈ R
t ∈ R>0

f (x) = lim
t→∞

y1(t)

t

f (x)

x

y1(t)

Modern notion

sin, cos, exp, log, Γ, ζ, ...

Turing powerful
[Bournez et al., 2007]
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Universal differential equations

Generable functions

x
y1(x)

subclass of analytic functions

Computable functions

t

f (x)

x

y1(t)

any computable function

x
y1(x)
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A new notion of computability

Almost-Theorem

f : [0,1] → R is computable if and only if there exists τ > 1, y0 ∈ Rd

and p polynomial such that

y ′(0) = y0, y ′(t) = p(y(t))

satisfies

|f (x)− y(x + nτ)| 6 2−n, ∀x ∈ [0,1],∀n ∈ N

t
0 1 τ τ + 1 2τ 2τ + 1 3τ

y(t)
f (t mod τ)
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