Continuous models of computation: computability, complexity, universality

Amaury Pouly

Joint work with Olivier Bournez and Daniel Graça

21 september 2018

What is a computer?

What is a computer?

What is a computer?

Church Thesis

Computability

Church Thesis

All reasonable models of computation are equivalent.

Church Thesis

Effective Church Thesis

All **reasonable** models of computation are equivalent for complexity.

Polynomial Differential Equations

$$\ddot{ heta} + rac{g}{\ell}\sin(heta) = 0$$

$$\ddot{\theta} + \tfrac{g}{\ell} \sin(\theta) = 0$$

$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{l} y_3 \\ y_3' = y_2 y_4 \\ y_4' = -y_2 y_3 \end{cases} \Leftrightarrow \begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases}$$

$$\ddot{\theta} + \frac{g}{\ell}\sin(\theta) = 0$$

$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{l} y_3 \\ y_3' = y_2 y_4 \\ y_4' = -y_2 y_3 \end{cases} \Leftrightarrow \begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases}$$

$$\ddot{ heta} + rac{g}{\ell} \sin(heta) = 0$$

$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{7}y_3 \\ y_3' = y_2y_4 \\ y_4' = -y_2y_3 \end{cases} \Leftrightarrow \begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases}$$

Historical remark: the word "analog"

The pendulum and the circuit have the same equation. One can study one using the other by analogy.

Generable functions

$$\begin{cases} y(0) = y_0 \\ y'(x) = p(y(x)) \end{cases} \quad x \in \mathbb{R}$$

Shannon's notion

Generable functions

$$\begin{cases} y(0) = y_0 \\ y'(x) = p(y(x)) \end{cases} \quad x \in \mathbb{R}$$

$$f(x)=y_1(x)$$

Shannon's notion

 $\sin, \cos, \exp, \log, ...$

Strictly weaker than Turing machines [Shannon, 1941]

Generable functions

$$\begin{cases} y(0) = y_0 \\ y'(x) = p(y(x)) \end{cases} \quad x \in \mathbb{R}$$

Shannon's notion

 $\sin, \cos, \exp, \log, ...$

Strictly weaker than Turing machines [Shannon, 1941]

Computable

$$\begin{cases} y(0) = q(x) & x \in \mathbb{R} \\ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{cases}$$

$$f(x) = \lim_{t \to \infty} y_1(t)$$
Modern notion

Generable functions

$$\begin{cases} y(0) = y_0 \\ y'(x) = p(y(x)) \end{cases} \quad x \in \mathbb{R}$$

Shannon's notion

 $\sin, \cos, \exp, \log, ...$

Strictly weaker than Turing machines [Shannon, 1941]

Computable

$$\begin{cases} y(0) = q(x) & x \in \mathbb{R} \\ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{cases}$$

$$f(x) = \lim_{t \to \infty} y_1(t)$$

Modern notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \mathsf{\Gamma}, \zeta, \dots$

Turing powerful [Bournez et al., 2007]

Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y'(t) = p(y(t))$

satisfies $|f(x) - y_1(t)| \leq y_2(t)$ et $y_2(t) \xrightarrow[t \to \infty]{} 0$.

$$y_1(t) \xrightarrow[t \to \infty]{} f(x)$$

 $y_2(t) = \text{error bound}$

Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y'(t) = p(y(t))$

satisfies $|f(x) - y_1(t)| \leq y_2(t)$ et $y_2(t) \xrightarrow[t \to \infty]{} 0$.

$$y_1(t) \xrightarrow[t \to \infty]{} f(x)$$

 $y_2(t) = \text{error bound}$

Theorem (Bournez et al, 2007)

 $f:[a,b] \to \mathbb{R}$ computable $^1 \Leftrightarrow f$ computable by GPAC

Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y'(t) = p(y(t))$

satisfies $|f(x) - y_1(t)| \leq y_2(t)$ et $y_2(t) \xrightarrow[t \to \infty]{} 0$.

$$y_1(t) \xrightarrow[t \to \infty]{} f(x)$$

 $y_2(t) = \text{error bound}$

Theorem (Bournez et al, 2007)

 $f:[a,b]\to\mathbb{R}$ computable $^1\Leftrightarrow f$ computable by GPAC

1. In Computable Analysis, a standard model over reals built from Turing machines.

▶ Turing machines : T(x) = number of steps to compute on x

- ▶ Turing machines : T(x) = number of steps to compute on x
- ► GPAC:

$$T(x) = ??$$

- ▶ Turing machines : T(x) = number of steps to compute on x
- ► GPAC:

$$T(x, \mu) =$$

- ▶ Turing machines : T(x) = number of steps to compute on x
- ► GPAC:

$$T(x,\mu) = \text{first time } t \text{ so that } |y_1(t) - f(x)| \leqslant e^{-\mu}$$

- ▶ Turing machines : T(x) = number of steps to compute on x
- ► GPAC:

$$T(x,\mu) = \text{first time } t \text{ so that } |y_1(t) - f(x)| \leqslant e^{-\mu}$$

- ▶ Turing machines : T(x) = number of steps to compute on x
- ► GPAC:

$$T(x,\mu) = \text{first time } t \text{ so that } |y_1(t) - f(x)| \leqslant e^{-\mu}$$

- ▶ Turing machines : T(x) = number of steps to compute on x
- ► GPAC : time contraction problem → open problem

Tentative definition

$$T(x,\mu) = \text{first time } t \text{ so that } |y_1(t) - f(x)| \leq e^{-\mu}$$

$$y(0) = (x, 0, \dots, 0) \qquad y' = p(y)$$

$$x \qquad \qquad t \qquad \qquad x \qquad \qquad$$

Something is wrong...

All functions have constant time complexity.

Time-space correlation of the GPAC

Time-space correlation of the GPAC

Time-space correlation of the GPAC

Time scaling costs "space".

Time complexity for the GPAC must involve time and space!

Complexity of solving polynomial ODEs

$$y(0) = x$$
 $y'(t) = p(y(t))$

Complexity of solving polynomial ODEs

$$y(0) = x$$
 $y'(t) = p(y(t))$

Theorem

If y(t) exists, one can compute p,q such that $\left|\frac{p}{q}-y(t)\right|\leqslant 2^{-n}$ in time poly (size of x and $p,n,\ell(t)$)

where $\ell(t) \approx \text{length of the curve (between } x \text{ and } y(t))$

length of the curve = complexity = ressource

Characterization of real polynomial time

Definition : $f : [a, b] \to \mathbb{R}$ in ANALOG- $P_{\mathbb{R}} \Leftrightarrow \exists p$ polynomial, $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

Characterization of real polynomial time

Definition : $f : [a, b] \to \mathbb{R}$ in ANALOG- $P_{\mathbb{R}} \Leftrightarrow \exists p$ polynomial, $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

satisfies:

1.
$$|y_1(t) - f(x)| \leq 2^{-\ell(t)}$$

 $"greater length \Rightarrow greater precision"$

2. $\ell(t) \geqslant t$

«length increases with time»

Characterization of real polynomial time

Definition: $f:[a,b] \to \mathbb{R}$ in ANALOG- $P_{\mathbb{R}} \Leftrightarrow \exists p$ polynomial, $\forall x \in [a,b]$

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

satisfies:

1.
$$|y_1(t) - f(x)| \leq 2^{-\ell(t)}$$

 \circ greater length \Rightarrow greater precision \circ

2. $\ell(t) \geqslant t$

«length increases with time»

Theorem

 $f:[a,b]\to\mathbb{R}$ computable in polynomial time $\Leftrightarrow f\in\mathsf{ANALOG}\text{-}\mathsf{P}_\mathbb{R}.$

Characterization of polynomial time

Definition: $\mathcal{L} \in \mathsf{ANALOG}\text{-}\mathsf{PTIME} \Leftrightarrow \exists p \mathsf{ polynomial}, \forall \mathsf{ word } w$

$$y(0) = (\psi(w), |w|, 0, ..., 0)$$
 $y' = p(y)$ $\psi(w) = \sum_{i=1}^{|w|} w_i 2^{-i}$

1

 $\psi(w)$

-1

 $\ell(t) = \text{length of } y$

Characterization of polynomial time

Definition : $\mathcal{L} \in \mathsf{ANALOG}\text{-}\mathsf{PTIME} \Leftrightarrow \exists p \mathsf{ polynomial}, \forall \mathsf{ word } w$

$$y(0) = (\psi(w), |w|, 0, \dots, 0) \qquad y' = p(y) \qquad \psi(w) = \sum_{i=1}^{|w|} w_i 2^{-i}$$

$$\downarrow 0$$

satisfies

1. if $y_1(t) \geqslant 1$ then $w \in \mathcal{L}$

Characterization of polynomial time

Definition: $\mathcal{L} \in \mathsf{ANALOG}\text{-}\mathsf{PTIME} \Leftrightarrow \exists p \text{ polynomial}, \forall \text{ word } w$

$$y(0) = (\psi(w), |w|, 0, \dots, 0)$$
 $y' = p(y)$ $\psi(w) = \sum_{i=1}^{|w|} w_i 2^{-i}$

accept: $w \in \mathcal{L}$
 $\psi(w)$

computing

 $\psi(t) = \text{length of } y$

reject: $w \notin \mathcal{L}$

satisfies

2. if $y_1(t) \leqslant -1$ then $w \notin \mathcal{L}$

Characterization of polynomial time

Definition: $\mathcal{L} \in \mathsf{ANALOG}\text{-}\mathsf{PTIME} \Leftrightarrow \exists p \text{ polynomial}, \forall \text{ word } w$

$$y(0) = (\psi(w), |w|, 0, \dots, 0) \qquad y' = p(y) \qquad \psi(w) = \sum_{i=1}^{|w|} w_i 2^{-i}$$

$$\frac{1}{\psi(w)} \qquad \frac{y_1(t) \text{ forbidden}}{\text{computing}} \qquad \ell(t) = \text{length of } y$$

$$\frac{1}{\text{reject : } w \notin \mathcal{L}}$$

satisfies

3. if $\ell(t) \geqslant \text{poly}(|w|)$ then $|y_1(t)| \geqslant 1$

Characterization of polynomial time

Definition : $\mathcal{L} \in \mathsf{ANALOG}\text{-}\mathsf{PTIME} \Leftrightarrow \exists p \mathsf{ polynomial}, \forall \mathsf{ word } w$

Theorem

PTIME = ANALOG-PTIME

Summary

Theorem

- ▶ \mathcal{L} ∈ PTIME of and only if \mathcal{L} ∈ ANALOG-PTIME
- ▶ $f: [a,b] \to \mathbb{R}$ computable in polynomial time $\Leftrightarrow f \in \mathsf{ANALOG-P}_\mathbb{R}$
- Analog complexity theory based on length
- ► Time of Turing machine ⇔ length of the GPAC
- Purely continuous characterization of PTIME

Summary

Theorem

- ▶ \mathcal{L} ∈ PTIME of and only if \mathcal{L} ∈ ANALOG-PTIME
- ▶ $f : [a, b] \to \mathbb{R}$ computable in polynomial time $\Leftrightarrow f \in \mathsf{ANALOG-P}_\mathbb{R}$
- Analog complexity theory based on length
- ► Time of Turing machine ⇔ length of the GPAC
- Purely continuous characterization of PTIME
- Only rational coefficients needed

In the remaining time...

Two applications of the "technology" we have developed:

Universal differential equation

Chemical Reaction Networks

Universal differential equations

subclass of analytic functions

Computable functions

any computable function

Universal differential equations

Computable functions

subclass of analytic functions

any computable function

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

For any continuous functions f and ε , there exists $y : \mathbb{R} \to \mathbb{R}$ solution to

$$3y'^{4}y''y'''^{2} -4y'^{4}y'''^{2}y'''' + 6y'^{3}y''^{2}y'''y'''' + 24y'^{2}y''^{4}y'''' -12y'^{3}y''y'''^{3} - 29y'^{2}y''^{3}y'''^{2} + 12y''^{7} = 0$$

such that $\forall t \in \mathbb{R}$,

$$|y(t)-f(t)| \leq \varepsilon(t)$$
.

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists a solution $g: \mathbb{R} \to \mathbb{R}$ to

$$p(y,y',\ldots,y^{(k)})=0$$

such that $\forall t \in \mathbb{R}$,

$$|y(t)-f(t)|\leqslant \varepsilon(t).$$

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists a solution $g: \mathbb{R} \to \mathbb{R}$ to

$$p(y,y',\ldots,y^{(k)})=0$$

such that $\forall t \in \mathbb{R}$,

$$|y(t)-f(t)| \leq \varepsilon(t).$$

Problem: this is «weak» result.

The problem with Rubel's DAE

The solution y is not unique, even with added initial conditions:

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel's proof to work!

The problem with Rubel's DAE

The solution *y* is not unique, **even with added initial conditions** :

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel's proof to work!

- Rubel's statement : this DAE is universal
- More realistic interpretation: this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y' = p(y)?

Note: explicit polynomial ODE ⇒ unique solution

Universal initial value problem (IVP)

Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha,$$
 $y'(t) = \rho(y(t))$

has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t)-f(t)| \leq \varepsilon(t).$$

Universal initial value problem (IVP)

Notes:

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha,$$
 $y'(t) = p(y(t))$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t)-f(t)| \leq \varepsilon(t).$$

Universal initial value problem (IVP)

Notes:

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha,$$
 $y'(t) = \rho(y(t))$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t)-f(t)| \leq \varepsilon(t).$$

Remark : α is usually transcendental, but computable from f and ε

Definition: a reaction system is a finite set of

- ightharpoonup molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example:

$$\begin{array}{cccc} 2H_2 & + & O & \rightarrow & 2H_2O \\ C & + & O_2 & \rightarrow & CO_2 \end{array}$$

Definition: a reaction system is a finite set of

- ightharpoonup molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example:

$$\begin{array}{cccc} 2H_2 & + & O & \rightarrow & 2H_2O \\ C & + & O_2 & \rightarrow & CO_2 \end{array}$$

Assumption: law of mass action

$$\sum_{i} a_{i} y_{i} \xrightarrow{k} \sum_{i} b_{i} y_{i} \rightsquigarrow f(y) = k \prod_{i} y_{i}^{a_{i}}$$

Definition: a reaction system is a finite set of

- ightharpoonup molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example:

$$\begin{array}{cccc} 2H_2 & + & O & \rightarrow & 2H_2O \\ C & + & O_2 & \rightarrow & CO_2 \end{array}$$

Assumption: law of mass action

$$\sum_{i} a_{i} y_{i} \xrightarrow{k} \sum_{i} b_{i} y_{i} \sim f(y) = k \prod_{i} y_{i}^{a_{i}}$$

Semantics:

- discrete
- differential
- stochastic

Definition: a reaction system is a finite set of

- ightharpoonup molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example:

$$\begin{array}{cccc} 2H_2 & + & O & \rightarrow & 2H_2O \\ C & + & O_2 & \rightarrow & CO_2 \end{array}$$

Assumption: law of mass action

$$\sum_{i} a_{i} y_{i} \xrightarrow{k} \sum_{i} b_{i} y_{i} \sim f(y) = k \prod_{i} y_{i}^{a_{i}}$$

Semantics:

- discrete
- ightharpoonup differential ightarrow

$$y_i' = \sum_{\text{reaction } R} (b_i^R - a_i^R) f^R(y)$$

Definition: a reaction system is a finite set of

- ightharpoonup molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example:

$$\begin{array}{cccc} 2H_2 & + & O & \rightarrow & 2H_2O \\ C & + & O_2 & \rightarrow & CO_2 \end{array}$$

Assumption: law of mass action

$$\sum_{i} a_{i} y_{i} \xrightarrow{k} \sum_{i} b_{i} y_{i} \sim f(y) = k \prod_{i} y_{i}^{a_{i}}$$

Semantics:

- discrete
- ightharpoonup differential ightarrow
- stochastic

$$y_i' = \sum_{ ext{reaction } R} (b_i^R - a_i^R) k^R \prod_j y_j^{a_j}$$

- CRNs with differential semantics and mass action law = polynomial ODEs
- polynomial ODEs are Turing complete

- CRNs with differential semantics and mass action law = polynomial ODEs
- polynomial ODEs are Turing complete

CRNs are Turing complete?

CRNs are Turing complete? Two "slight" problems:

- ightharpoonup concentrations cannot be negative ($y_i < 0$)
- arbitrary reactions are not realistic

CRNs are Turing complete? Two "slight" problems:

- ightharpoonup concentrations cannot be negative ($y_i < 0$)
- arbitrary reactions are not realistic

- easy to solve
- ▶ what is realistic?

CRNs are Turing complete? Two "slight" problems:

- ightharpoonup concentrations cannot be negative ($y_i < 0$)
- arbitrary reactions are not realistic

- easy to solve
- ▶ what is realistic?

Definition: a reaction is **elementary** if it has at most two reactants

⇒ can be implemented with DNA, RNA or proteins

CRNs are Turing complete? Two "slight" problems:

- ightharpoonup concentrations cannot be negative ($y_i < 0$)
 - easy to solve

arbitrary reactions are not realistic

▶ what is realistic?

Definition: a reaction is **elementary** if it has at most two reactants ⇒ can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs:

$$ay + bz \xrightarrow{k} \cdots \qquad \sim \qquad f(y,z) = ky^a z^b$$

CRNs are Turing complete? Two "slight" problems:

- ightharpoonup concentrations cannot be negative ($y_i < 0$)
- easy to solve

arbitrary reactions are not realistic

▶ what is realistic?

Definition: a reaction is **elementary** if it has at most two reactants ⇒ can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs:

$$ay + bz \xrightarrow{k} \cdots \qquad \Rightarrow \qquad f(y,z) = ky^a z^b$$

Theorem (Folklore)

Every polynomial ODE can be rewritten as a quadratic ODE.

Definition: a reaction is **elementary** if it has at most two reactants

⇒ can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs:

$$ay + bz \xrightarrow{k} \cdots \qquad \Rightarrow \qquad f(y, z) = ky^a z^b$$

Theorem (CMSB, joint work with François Fages, Guillaume Le Guludec)

Elementary mass-action-law reaction system on finite universes of molecules are Turing-complete under the differential semantics.

Notes:

- proof preserves polynomial length
- ▶ in fact the following elementary reactions suffice :

$$\varnothing \xrightarrow{k} x \qquad x \xrightarrow{k} x + z \qquad x + y \xrightarrow{k} x + y + z \qquad x + y \xrightarrow{k} \varnothing_{20/21}$$

Future work

► Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise. It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0$.

► Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1-t^2)^2 f''(t) + 2tf'(t) = 0$$
.

► For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

$$3y'^4y'''y''''^2 -4y'^4y''^2y'''' + 6y'^3y''^2y'''y'''' + 24y'^2y'''^4y'''' -12y'^3y''y''^3 - 29y'^2y''^3y'''^2 + 12y''^7 = 0$$

► Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise. It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0$.

For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

$$3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y''''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$$

Can glue together arbitrary many such pieces

- ► Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise. It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0$.
- For any $a,b,c\in\mathbb{R}$, y(t)=cf(at+b) satisfies

$$3{y'}^4{y'''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y'''}^2{y''''}{y'''''} + 24{y'}^2{y''}^4{y'''''} - 12{y'}^3{y'''}{y''''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$$

- Can glue together arbitrary many such pieces
- ► Can arrange so that $\int f$ is solution: piecewise pseudo-linear

► Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1-t^2)^2 f''(t) + 2tf'(t) = 0$$
.

For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

$$3{y'}^4{y'''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y''''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y''''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$$

- Can glue together arbitrary many such pieces
- ► Can arrange so that $\int f$ is solution : piecewise pseudo-linear

Conclusion: Rubel's equation allows any piecewise pseudo-linear functions, and those are **dense in** C^0

Universal DAE revisited

Theorem

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists $\alpha_0, \ldots, \alpha_k \in \mathbb{R}$ such that

$$p(y, y', ..., y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, ..., y^{(k)}(0) = \alpha_k$$

has a unique analytic solution and this solution satisfies such that

$$|y(t)-f(t)|\leqslant \varepsilon(t).$$