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Example : mass-spring-damper system

//////////////////////////////////////

State : X=z€eR
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

b K Equation of motion :

mz" = —kz — bz + mg+u

Model with external input u(t)
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State : X =z€eR

zl b k Equation of motion :
mz" = —kz — bz + mg +u
m — Affine but not first order
u(t
I & State : X = (z,2/,1) e R®
Model with external input u(t) Equation of motion :
z ! Vi
_ k b 1
i/ = _mZ—mZ(;-i-g-i-mU

2/12



Example : mass-spring-damper system

State : X =z€eR

2 p K Equation of motion :
mz" = —kz — bz + mg+u
m — Affine but not first order
Iu(t) / X
State: X =(z,2/,1) e R
Model with external input U(t) Equation of motion :
— Linear time invariant system 1 S
I = _ k b 1

X = AX + Bu Z| =|-kz-bz 19+ tu

with some constraints on u. 1 0

2/12



Linear dynamical systems

Discrete case
x(n+1) = Ax(n)
biology,
software verification,

>
>
» probabilistic model checking,
» combinatorics,

>

Continuous case
X'(t) = Ax(t)
> biology,
> physics,
> probabilistic model checking,
» electrical circuits,
>

Typical questions

> reachability
> safety
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Linear dynamical systems

Discrete case Continuous case
x(n+1) = Ax(n) + Bu(n) x'(t) = Ax(t) + Bu(t)
biology,
software verification,

> > biology,

> » physics,

» probabilistic model checking, » probabilistic model checking,
» combinatorics, » electrical circuits,

> >

Typical questions

> reachability
> safety
» controllability
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The problem

» asource s € Q7

> atarget t € QF,

> a transition matrix A € Q9x9,
» a set of controls U C RY,

decide if 3T € N, ug, ..., ur_1 € U such that x; = t where
Xo = S, Xnt1 = AXp + Up.
$ t
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The problem

LTI-REACHABILITY
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Existing work

LTI-REACHABILITY

» asource s € QY,
> atarget t € QF,
> a transition matrix A € Q9x9,
> a set of controls U C RY,
decide if 3T € N, ug,...,ur_1 € U such that x; = t where

Xg = S, Xnt+1 = AXp + Up.
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> a transition matrix A € Q9x9,
> a set of controls U C RY,
decide if 3T € N, ug,...,ur_1 € U such that x; = t where

Xg = S, Xnt1 = AXp + Up.

Theorem (Lipton and Kannan, 1986)

LTI-REACHABILITY is decidable if U is an affine subspace of RY.

Almost no exact results for other classes of U in particular when U is
bounded (which is the most natural case).
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Study the impact of the control set on the hardness of reachability
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LTI-REACHABILITY IS
» undecidable if U is a finite union of affine subspaces.
» Skolem-hard if U = {0} U V where V is an affine subspace
» Positivity-hard if U is a convex polytope

Given s € Q9 and A € Q99 :
» Skolem problem : decide if 3T € N such that (A”s); = 0,
> Positivity problem : decide if (A”s); > 0 forall T € N,

Why is this a hardness result ?

Decidability of Skolen and Positivity has been open for 70 years !

Since we cannot solve Skolem/Positivity, we need some strong
assumptions for decidability.
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Our results : a positive result

A LTI system (s, A, t, U) is simple if s = 0 and
» U is a bounded polytope that contains 0 in its (relative) interior,
» the spectral radius of A is less than 1 (stability),
» some positive power of A has exclusively real spectrum.

LTI-REACHABILITY Is decidable for simple systems.

Remark : in fact we can decide reachability to a convex polytope Q.
ot

Assumptions imply that the
reachable set is an open
convex bounded set, but
not always a polytope!
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Why is this problem hard

The reachable set A*(U) can have infinitely many faces.
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Why is this problem hard

The reachable set A*(U) can have faces of lower dimension : the
"top" extreme point does not belong to any facet.
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Why is this problem hard

Approach : two semi-decision procedures
» reachability : under-approximations of the reachable set
» non-reachability : separating hyperplanes

Further difficulty : a separating hyperplane may not be supported by a
facet of either A*(U) or Q.
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Why is this problem hard

Even more difficulty : B*(V) has two extreme points that do not belong
to any facet and have rational coordinates, but whose (unique)
separating hyperplane requires the use of algebraic irrationals
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Why is this problem hard

Even more difficulty : B*(V) has two extreme points that do not belong
to any facet and have rational coordinates, but whose (unique)
separating hyperplane requires the use of algebraic irrationals

Theorem (Non-reachable instances)

There is a separating hyperplane with algebraic coefficients.
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Conclusion and future work

Exact reachability of X1 = Axp + Up :
» decidability crucially depends on the shape of the control set
» even with convex bounded inputs, the problem is very hard
(Skolem/Positivity, open for 70 years)
> we can recover decidability using strong spectral assumptions

Open questions :
» for convex bounded inputs, is it Positivity-easy ?
» weaken spectral assumptions ? Minimal difficult example :
A <c056’ —S|n0>’ U=0.1] x {0}.

“ 2 \sinf cosh

Decidability of t < >~ max(0, 27" cos(n6)) unknown.
n=0

Future work : continuous case x’(t) = Ax(t) + u(t)
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