Polynomial Time corresponds to Solutions of
Polynomial Ordinary Differential Equations of
Polynomial Length

Olivier Bournez, Daniel Graga and Amaury Pouly

July 13, 2015

Main result and consequences

Theorem (Informal)

PTIME = PIVP of polynomial length

PIVP: Ordinary Differential Equations (ODE) with polynomial
right-hand side.

» Implicit complexity: purely continuous (time and space)
characterization of PTIME

» Continuous-time models of computations: Turing machines
and the GPAC are equivalent at the complexity level

Digital vs analog computers

Digital vs analog computers

Let’s modell!

Physical Computer

Model

Laptop, ...

Turing machines

A-calculus

Recursive functions

Circuits

Discrete dynamical systems

Differential Analyzer, ...

GPAC
Continuous dynamical systems

Let’s modell!

Physical Computer Model

Laptop, ... Turing machines
A-calculus
Recursive functions
Circuits
Discrete dynamical systems

Differential Analyzer, ... GPAC
Continuous dynamical systems

All reasonable models of computation are equivalent.

Let’s modell!

Physical Computer Model

Laptop, ... Turing machines
A-calculus
Recursive functions
Circuits
Discrete dynamical systems

Differential Analyzer, ... GPAC
Continuous dynamical systems

All reasonable models of computation are equivalent.
Implicit corollary
Some models are too general/unreasonable.

Let’s modell!

Physical Computer Model

Laptop, ... Turing machines
A-calculus
Recursive functions
Circuits

Discrete dynamical systems

Differential Analyzer, ... GPAC—reasonable ?
Continuous dynamical systems

All reasonable models of computation are equivalent.
Implicit corollary
Some models are too general/unreasonable.

General Purpose Analog Computer (GPAC)

» invented by Shannon (1941)
» idealization of the Differential Analyzer:

» circuits made of:

k Constant L\j uv Multiplier
U+ u+v Adder u fu Integrator

Examples of GPAC

Exponential:

[f yity ~ y=[y ~ y(t)=exp(t)

Examples of GPAC

Exponential:

[il y(t)

Examples of GPAC

Exponential:

[J yiy o~ Y=y o~ y(t)=exp(t)

(Co)sine:

Examples of GPAC

Rational function:

-2

>

yi(t)

Examples of GPAC

Rational function:

2 Li X X / yi(t)

|-

_
1 f T 8
ya(t)
{}q’ =-2ypy; {y1(t)= e
Yo=1 yo(t)=t

Theorem (Graga and Costa)

y = (»,.-.,Yq) is generated by a GPAC iff it satisfies a Polyno-
mial Initial Value Problem (PIVP):

{ Yy =ply)
y(to)= Yo

where p is a vector of polynomials.

Computing with the GPAC

Generable functions

y(0)= o
{y/(x)— ply(x)) *EF
F(X) = y1(x)
yi(x)
\ i

Shannon’s notion

Computing with the GPAC

Generable functions

y(0)= o
{y/(x)— ply(x)) *EF
F(X) = y1(x)
yi(x)
\ i

Shannon’s notion
sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computing with the GPAC

Generable functions Computable
¥(0)=yo y(0)= q(x) xeR
{y/(X)— Py ¥R { Y ()=py(t) teRy
f(x) = y1(x) fx) = Jim (1)
. 71 (x) b A \v/\ N0)
Jax t

Shannon’s notion .
Modern notion

sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computing with the GPAC

Generable functions

Computable

{y(O)z a(x) xeR
y'(=p(y(t) teRy

f(x) = lim ya(t)

y(0)= o
{y/(x)— ply(x)) *EF
f(x) = y1(x)
yi(x)
X]

N0 ()

alx f

Shannon’s notion
sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

\Y

Modern notion
sin, cos, exp, log, T, ¢, ...

Turing powerful
[Bournez et al., 2007]

Different kinds of equivalence
Theorem (Bournez et al)

The GPAC is equivalent to Turing machines for computability.

» Computability: compute the same functions

Different kinds of equivalence
Theorem (Bournez et al)

The GPAC is equivalent to Turing machines for computability.

» Computability: compute the same functions
» Complexity: same functions with same “complexity”

(Quantum computers)

Believed different (Boolean circuits)
(—(Turing machines) Equivalent
Unknown (Recursive functions)

L (GPacs)

Different kinds of equivalence
Theorem (Bournez et al)

The GPAC is equivalent to Turing machines for computability.

» Computability: compute the same functions
» Complexity: same functions with same “complexity”

(Quantum computers)

Believed different (Boolean circuits)
(—(Turing machines) Equivalent
Unknown (Recursive functions)

L (GPacs)

Main Result of the paper
Turing machines and GPACs are equivalent for complexity.

Time complexity for continuous systems

» Turing machines: T(x) = number of steps to compute on x

Time complexity for continuous systems

» Turing machines: T(x) = number of steps to compute on x
» GPAC: time contraction problem

Intuitive definition

T(x, u) = first time t so that |y;(t) — f(x)| < e7#

y(0)=q(x) ¥y =ply)

NN O i

Time complexity for continuous systems

» Turing machines: T(x) = number of steps to compute on x
» GPAC: time contraction problem

Intuitive definition

T(x, u) = first time t so that |y;(t) — f(x)| < e7#

y(0)=q(x) ¥y =py) z(t) = y(e')

A \/\/\ A0 f(x ~ ™ z1(1) f(x

jot fsc

Time complexity for continuous systems

» Turing machines: T(x) = number of steps to compute on x
» GPAC: time contraction problem

Intuitive definition

T(x, u) = first time t so that |y;(t) — f(x)| < e7#

y(0)=q(x) ¥ =py) z(t) = y(e")
A \v/\/\ A0 f(x ~ v(\ﬂm (1) f(x
\/g& t 19(x t
w(t) = y(e%)
~ wi (1) F(x

Time complexity for continuous systems

» Turing machines: T(x) = number of steps to compute on x
» GPAC: time contraction problem— open problem

Intuitive definition

T(x, u) = first time t so that |y;(t) — f(x)| < e7#

y(0)=q(x) ¥y =py) z(t) = y(e')

A \/\/\ A0 f(x ~ ™ z1(1) f(x
LY Lo

(x ¢ g(¢
e —T— wit) = y(e°)
This definition is broken:
all functions have arbitrar- wq(t)

f(x

ily small complexity.

Time-space correlation of the GPAC

y(0)=q(x) ¥y =ply)

NN A0
Jat

Time-space correlation of the GPAC

y(0)=q(x) ¥y =py) z(t) = y(e')

NNAAALD | ~ 2

ja) fac

Time-space correlation of the GPAC

y(0)=q(x) ¥y =p(y) z(t) = y(e")
/\ \/\/\ A f(x ~ N (1) f(x
ey
(x ¢ ax ¢
extra component: w(t) = e
/
Time scaling costs “space”. /

Time-space correlation of the GPAC

y(0)=q(x) ¥y =py) z(t) = y(é'
/\ \v/\/\ A f(x ~ V{M (1) f(x
Jq(\){ t 18(x t

extra component: w(t) = e

/
Time scaling costs “space”. /
Time complexity for the GPAC /
must involve time and space !
’ w(t)
t

Two equivalent notions of complexity

/\v \UA ALY 1) {5'((%2 Z%iim

1 a(x) f(x) = tirgo yi(t)

Two equivalent notions of complexity

y(0)= q(x)
/\ \AA o 1) {y'(t)z p(y(1)
\/ V
1 a(x) , f(x) = tingo yi(t)

Length based complexity: L

¢(t) = length of y over [0,]

/up DIl du

L(x,) = length ¢(t) so that
Iy (t) = FOll < e

Characterization of Turing polynomial time

Definition: £ C {0,1}* is polytime-recognizable iff for all w:

Characterization of Turing polynomial time

Definition: £ C {0,1}* is polytime-recognizable iff for all w:
w|

y(0) =q(w) ¥ =ply) dw)=) w2
i=1

satisfies:

Characterization of Turing polynomial time

Definition: £ C {0,1}* is polytime-recognizable iff for all w:

w|

-y1(t)

= oIyl

y©0)=q(ww) ¥y =ply) ®w)= Z w2~
satisfies: .
1 — —
AAY /\/\/

q(e(w))
—1

v

£(t)= length of y
over [0, t]

Characterization of Turing polynomial time

Definition: £ C {0,1}* is polytime-recognizable iff for all w:

w|

y0)=q(w)) ¥y =ply) pw)=> w2
i=1
satisfies:
accept: w € L (1)
1 —
M = LIyl
0
Ay WA ad ((t)= length of y
q(dz(w))-\/ computing over [0, {]
—1

Q ifys(t)y>1thenwe L

Characterization of Turing polynomial time

Definition: £ C {0,1}* is polytime-recognizable iff for all w:
w|

y(0) =q(ww)) ¥ =py) dw)=) w2
i=1

satisfies:
accept: we L
1
AN = o IVl
\/ \/ ((t)=length of y
q((w))A computing over [0, {]
reject: w ¢ £ g

Q ify;(t) < —1thenw ¢ L

Characterization of Turing polynomial time

Definition: £ C {0,1}* is polytime-recognizable iff for all w:

|w|
y©0)=q(w)) ¥y =py) pw)=> w2
i=1
satisfies:
accept: we L
1
AN) forbidden = o Y]
v (] ((t)= length of y
q(¢(w))-J computing P over [0, 1]
—1
reject: w ¢ L

Q if £(t) > poly(|w]) then |ys(£)| > 1

Characterization of Turing polynomial time

Definition: £ C {0,1}* is polytime-recognizable iff for all w:
w|

y(0) =q(ww)) ¥ =py) dw)=) w2
i=1

satisfies:

accept: we L

"\ A st forbidden. = J; Iyl
v ((t)= length of y

q(¢(w))-/ Y computing over [0, {]
—1

i)

reject: w ¢ L

Q Ut)>t

Characterization of Turing polynomial time

Definition: £ C {0,1}* is polytime-recognizable iff for all w:
w|

y(0) =q(w) ¥ =ply) dw)=) w2
i=1

satisfies:

accept: w € £ ()
1 p— ——

N AV forbidden = /3 Ily’l
ViR - e ¢(t)= length of y
q(q/;(w))-\/ computing Lp U over [0, {]
-1 T
reject: w ¢ L g

L € Pif and only if £ is polytime-recognizable. \

Characterization of real polynomial time

Definition: f : [a, b] — R is analog-polytime iff for all x:

y(0)=a(x) ¥y =py)
satisfies:

Characterization of real polynomial time

Definition: f : [a, b] — R is analog-polytime iff for all x:

y(0)=a(x) ¥y =py)
satisfies:

@ Ve N,if (1) > poly(||x| ,) then |y (£) — f(x)] < 2"

t
where £(t) :/0 |y (u)]| du

«|f curve is long enough, precision is good enough»

Characterization of real polynomial time

Definition: f : [a, b] — R is analog-polytime iff for all x:

y(0)=a(x) ¥y =py)
satisfies:

@ Vne N, if £(t) > poly(||x] , n) then |y; (t) — f(x)] <27
t
where ((t) = / |y (u)]| du
0
«If curve is long enough, precision is good enough»

Q Vte R, [y (D)) > 1

«Curve grows at least linearly with time»

Characterization of real polynomial time

Definition: f : [a, b] — R is analog-polytime iff for all x:

y(0)=a(x) ¥y =py)
satisfies:

@ Vne N, if £(t) > poly(||x] , n) then |y; (t) — f(x)] <27
t
where ((t) = / |y (u)]| du
0
«If curve is long enough, precision is good enough»

Q Vte R, [y (D)) > 1

«Curve grows at least linearly with time»

f:[a, b] — R is polytime computable iff f is analog-polytime. I

Conclusion

» Time complexity for the GPAC: length or time+space

» Turing machines and GPACs are equivalent for time
complexity

» Purely analog and machine-independent characterization
of (discrete and real) polynomial time

Conclusion

» Time complexity for the GPAC: length or time+space

» Turing machines and GPACs are equivalent for time
complexity

» Purely analog and machine-independent characterization
of (discrete and real) polynomial time

Perspectives:

Better understanding of time complexity
Space complexity

Nondeterminism

Constants (a.k.a getting rid of)
Robustness of errors/perturbations

v

v

v

v

v

[§ Bournez, O., Campagnolo, M. L., Graga, D. S., and Hainry,
E. (2007).
Polynomial differential equations compute all real
computable functions on computable compact intervals.
23(3):317-335.

[§ Shannon, C. E. (1941).
Mathematical theory of the differential analyser.
Journal of Mathematics and Physics MIT, 20:337-354.

	On the complexity of the GPAC

