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Main result and consequences

Theorem (Informal)

PTIME = PIVP of polynomial length

PIVP: Ordinary Differential Equations (ODE) with polynomial
right-hand side.

I Implicit complexity: purely continuous (time and space)
characterization of PTIME

I Continuous-time models of computations: Turing machines
and the GPAC are equivalent at the complexity level
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Let’s model!

Physical Computer Model

Laptop, ... Turing machines
λ-calculus
Recursive functions
Circuits
Discrete dynamical systems

Differential Analyzer, ... GPAC
Continuous dynamical systems

Church Thesis
All reasonable models of computation are equivalent.

Implicit corollary
Some models are too general/unreasonable.
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General Purpose Analog Computer (GPAC)
I invented by Shannon (1941)
I idealization of the Differential Analyzer:

I circuits made of:

k k Constant

+ u + vu
v Adder

× uvu
v Multiplier

∫ ∫
uu Integrator



Examples of GPAC

Exponential:

∫
y(t) ; y =

∫
y ; y(t) = exp(t)

(Co)sine:

−1 ×
∫ ∫

y1(t)

y2(t){
y ′1= y2
y ′2= −y1

;
{

y1(t)= sin(t)
y2(t)= cos(t)
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Examples of GPAC
Rational function:

1
∫

y2(t)

−2

×
× ×

∫
y1(t)

{
y ′1= −2y2y2

1
y ′2= 1

;
{

y1(t)= 1
1+t2

y2(t)= t

Theorem (Graça and Costa)

y = (y1, . . . , yd ) is generated by a GPAC iff it satisfies a Polyno-
mial Initial Value Problem (PIVP):{

y ′ = p(y)
y(t0)= y0

where p is a vector of polynomials.
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Computing with the GPAC

Generable functions{
y(0)= y0

y ′(x)= p(y(x))
x ∈ R

f (x) = y1(x)

x
y1(x)

Shannon’s notion

sin, cos,exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computable{
y(0)= q(x)
y ′(t)= p(y(t))

x ∈ R
t ∈ R+

f (x) = lim
t→∞

y1(t)

t

f (x)

q(x)

y1(t)

Modern notion

sin, cos,exp, log, Γ, ζ, ...

Turing powerful
[Bournez et al., 2007]
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Different kinds of equivalence
Theorem (Bournez et al)
The GPAC is equivalent to Turing machines for computability.

I Computability: compute the same functions

I Complexity: same functions with same “complexity”

Quantum computers

Boolean circuits

Turing machines

Recursive functions

GPACs

Equivalent

Believed different

Unknown

Main Result of the paper
Turing machines and GPACs are equivalent for complexity.
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Time complexity for continuous systems

I Turing machines: T (x) = number of steps to compute on x

I GPAC: time contraction problem

Intuitive definition
T (x , µ) = first time t so that |y1(t)− f (x)| 6 e−µ

y(0) = q(x) y ′ = p(y)

t

f (x)

g(x)

y1(t) ;

z(t) = y(et )

t

f (x)

g̃(x)

z1(t)

Observation
This definition is broken:
all functions have arbitrar-
ily small complexity.

;

w(t) = y(eet
)

t

f (x)

ĝ(x)

w1(t)
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Time complexity for continuous systems

I Turing machines: T (x) = number of steps to compute on x
I GPAC: time contraction problem→ open problem
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Time-space correlation of the GPAC

y(0) = q(x) y ′ = p(y)

t

f (x)

q(x)

y1(t)

;

z(t) = y(et )

t

f (x)
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Observation
Time scaling costs “space”.

;

Time complexity for the GPAC
must involve time and space !

extra component: w(t) = et

t

w(t)
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Two equivalent notions of complexity

t

f (x)

q(x)

y1(t)

{
y(0)= q(x)
y ′(t)= p(y(t))

f (x) = lim
t→∞

y1(t)

Length based complexity: L

`(t) = length of y over [0, t ]

=

∫ t

0
‖p(y(u))‖ du

L(x , µ) = length `(t) so that
‖y1(t)− f (x)‖ 6 e−µ
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Characterization of Turing polynomial time

Definition: L ⊆ {0,1}∗ is polytime-recognizable iff for all w :

y(0) = q(ψ(w)) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2−i

satisfies:

=
∫ t

0 ‖y
′‖

`(t)= length of y
over [0, t ]

1

−1

q(ψ(w))
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Characterization of Turing polynomial time

Definition: L ⊆ {0,1}∗ is polytime-recognizable iff for all w :

y(0) = q(ψ(w)) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2−i

satisfies:

=
∫ t

0 ‖y
′‖

`(t)= length of y
over [0, t ]

1

−1

poly(|w |)

accept: w ∈ L

reject: w /∈ L

computing

forbidden

y1(t)

y1(t)

q(ψ(w))

Theorem
L ∈ P if and only if L is polytime-recognizable.



Characterization of real polynomial time

Definition: f : [a,b]→ R is analog-polytime iff for all x :
y(0) = q(x) y ′ = p(y)

satisfies:

1 ∀n ∈ N, if `(t) > poly(‖x‖ ,n) then |y1(t)− f (x)| 6 2−n

where `(t) =

∫ t

0

∥∥y ′(u)
∥∥ du

«If curve is long enough, precision is good enough»

2 ∀t ∈ R+, ‖y ′(t)‖ > 1

«Curve grows at least linearly with time»

Main result
f : [a,b]→ R is polytime computable iff f is analog-polytime.
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Conclusion

I Time complexity for the GPAC: length or time+space
I Turing machines and GPACs are equivalent for time

complexity
I Purely analog and machine-independent characterization

of (discrete and real) polynomial time

Perspectives:
I Better understanding of time complexity
I Space complexity
I Nondeterminism
I Constants (a.k.a getting rid of π)
I Robustness of errors/perturbations
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