Polynomial Time corresponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length

Olivier Bournez, Daniel Graça and Amaury Pouly

July 13, 2015

Main result and consequences

Theorem (Informal)

PTIME = PIVP of polynomial length

PIVP: Ordinary Differential Equations (ODE) with polynomial right-hand side.

- Implicit complexity: purely continuous (time and space) characterization of PTIME
- Continuous-time models of computations: Turing machines and the GPAC are equivalent at the complexity level

Digital vs analog computers

Digital vs analog computers

Physical Computer	Model
Laptop,	Turing machines
	Recursive functions
	Circuits Discrete dynamical systems
Differential Analyzer,	GPAC Continuous dynamical systems

Physical Computer	Model
Laptop,	Turing machines
	Recursive functions
	Circuits
	Discrete dynamical systems
Differential Analyzer,	GPAC Continuous dynamical systems

Church Thesis

All reasonable models of computation are equivalent.

Physical Computer	Model
Laptop,	Turing machines
	A-calculus Recursive functions
	Circuits
	Discrete dynamical systems
Differential Analyzer,	GPAC Continuous dynamical systems

Church Thesis

All reasonable models of computation are equivalent.

Implicit corollary

Some models are too general/unreasonable.

Physical Computer	Model
Laptop,	Turing machines
	λ -calculus
	Recursive functions
	Circuits
	Discrete dynamical systems
Differential Analyzer,	GPAC → reasonable ? Continuous dynamical systems

Church Thesis

All reasonable models of computation are equivalent.

Implicit corollary

Some models are too general/unreasonable.

General Purpose Analog Computer (GPAC)

- invented by Shannon (1941)
- idealization of the Differential Analyzer:

circuits made of:

Exponential:

$$\int - y(t) \quad \rightsquigarrow \quad y = \int y \quad \rightsquigarrow \quad y(t) = \exp(t)$$

Exponential:

$$\int \phi y(t) \quad \rightsquigarrow \quad y' = y \quad \rightsquigarrow \quad y(t) = \exp(t)$$

Exponential:

$$\int - \mathbf{y}(t) \quad \sim \quad \mathbf{y}' = \mathbf{y} \quad \sim \quad \mathbf{y}(t) = \exp(t)$$

(Co)sine:

Rational function:

$\int y_1' = -2y_2y_1^2$	$\int y_1(t) = \frac{1}{1+t^2}$
$\int y_2' = 1$	$\int y_2(t) = t$

Rational function:

Theorem (Graça and Costa)

 $y = (y_1, \dots, y_d)$ is generated by a GPAC iff it satisfies a Polynomial Initial Value Problem (PIVP):

$$\begin{cases} y' = p(y) \\ y(t_0) = y_0 \end{cases}$$

where *p* is a vector of polynomials.

Generable functions

$$egin{cases} y(0)=y_0\ y'(x)=
ho(y(x)) \ & x\in\mathbb{R} \end{cases}$$

$$f(x)=y_1(x)$$

Shannon's notion

Generable functions

$$egin{cases} y(0)=y_0\ y'(x)=
ho(y(x)) \ & x\in\mathbb{R} \end{cases}$$

$$f(x)=y_1(x)$$

Shannon's notion

 $\sin,\cos,\exp,\log,\ldots$

Strictly weaker than Turing machines [Shannon, 1941]

Generable functions

$$\left\{egin{array}{ll} y(0)=y_0 \ y'(x)=
ho(y(x)) \end{array}
ight. x\in\mathbb{R}$$

$$f(x)=y_1(x)$$

Shannon's notion

 $\sin,\cos,\exp,\log,\ldots$

Strictly weaker than Turing machines [Shannon, 1941]

Computable

$$egin{cases} y(0) = q(x) & x \in \mathbb{R} \ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{cases}$$

$$f(x) = \lim_{t\to\infty} y_1(t)$$

Modern notion

Generable functions

$$\left\{egin{array}{l} y(0)=y_0 \ y'(x)=
ho(y(x)) \end{array}
ight. x\in\mathbb{R}$$

$$f(x)=y_1(x)$$

Shannon's notion

 $\sin,\cos,\exp,\log,\ldots$

Strictly weaker than Turing machines [Shannon, 1941]

Computable

$$egin{cases} y(0) = q(x) & x \in \mathbb{R} \ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{cases}$$

$$f(x) = \lim_{t\to\infty} y_1(t)$$

Modern notion

 $\sin,\cos,\exp,\log,\Gamma,\zeta,\ldots$

Turing powerful [Bournez et al., 2007]

Different kinds of equivalence

Theorem (Bournez et al)

The GPAC is equivalent to Turing machines for computability.

Computability: compute the same functions

Different kinds of equivalence

Theorem (Bournez et al)

The GPAC is equivalent to Turing machines for computability.

- Computability: compute the same functions
- Complexity: same functions with same "complexity"

Different kinds of equivalence

Theorem (Bournez et al)

The GPAC is equivalent to Turing machines for computability.

- Computability: compute the same functions
- Complexity: same functions with same "complexity"

Main Result of the paper

Turing machines and GPACs are equivalent for complexity.

• Turing machines: T(x) = number of steps to compute on x

- ▶ Turing machines: T(x) = number of steps to compute on x
- GPAC: time contraction problem

Intuitive definition

 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq e^{-\mu}$

- ▶ Turing machines: T(x) = number of steps to compute on x
- GPAC: time contraction problem

- Turing machines: T(x) = number of steps to compute on x
- GPAC: time contraction problem

Intuitive definition $T(x,\mu) = \text{first time } t \text{ so that } |y_1(t) - f(x)| \leq e^{-\mu}$

$$Z(t) = y(e^{t})$$

$$\overbrace{\tilde{g}(x)}{}$$

 $w(t) = y(e^{e^t})$

- Turing machines: T(x) = number of steps to compute on x
- ► GPAC: time contraction problem → open problem

Observation

This definition is broken: all functions have arbitrarily small complexity.

extra component: $w(t) = e^t$

Observation

Time scaling costs "space".

extra component: $w(t) = e^t$

Observation

Time scaling costs "space".

Time complexity for the GPAC must involve time and space !

Two equivalent notions of complexity

Two equivalent notions of complexity

Length based complexity: L

$$\ell(t) = \text{length of } y \text{ over } [0, t]$$
$$= \int_0^t \|p(y(u))\| \, du$$

$$L(x,\mu) = ext{length } \ell(t) ext{ so that} \ \|y_1(t) - f(x)\| \leq e^{-\mu}$$

Definition: $\mathcal{L} \subseteq \{0, 1\}^*$ is polytime-recognizable iff for all *w*:

Definition: $\mathcal{L} \subseteq \{0, 1\}^*$ is polytime-recognizable iff for all *w*: $y(0) = q(\psi(w))$ y' = p(y) $\psi(w) = \sum_{i=1}^{|w|} w_i 2^{-i}$

satisfies:

Definition: $\mathcal{L} \subseteq \{0, 1\}^*$ is polytime-recognizable iff for all *w*: $y(0) = q(\psi(w))$ y' = p(y) $\psi(w) = \sum_{i=1}^{n+1} w_i 2^{-i}$ satisfies: accept: $w \in \mathcal{L}$ $y_1(t)$ 1 $= \int_0^t \|y'\|$ $\ell(t) = \text{ length of } y$ $q(\psi(w))$. computing over [0, *t*]

• if $y_1(t) \ge 1$ then $w \in \mathcal{L}$

Definition: $\mathcal{L} \subseteq \{0, 1\}^*$ is polytime-recognizable iff for all *w*: $y(0) = q(\psi(w))$ y' = p(y) $\psi(w) = \sum_{i=1}^{n-1} w_i 2^{-i}$ satisfies: accept: $w \in \mathcal{L}$ 1 $= \int_0^t \|y'\|$ $\ell(t) = \text{ length of } y$ computing $q(\psi(w))$ over [0, *t*] $y_1(t)$ reject: $w \notin \mathcal{L}$

2 if $y_1(t) \leq -1$ then $w \notin \mathcal{L}$

Definition: $\mathcal{L} \subseteq \{0, 1\}^*$ is polytime-recognizable iff for all *w*: $y(0) = q(\psi(w))$ y' = p(y) $\psi(w) = \sum_{i=1}^{n-1} w_i 2^{-i}$ satisfies: accept: $w \in \mathcal{L}$ 1 $= \int_0^t \|y'\|$ $\ell(t) = \text{length of } y$ forbidden $Xy_1(t)$ poly(|w|)computing $q(\psi(w))$ over [0, *t*] reject: $w \notin \mathcal{L}$

• if $\ell(t) \ge \operatorname{poly}(|w|)$ then $|y_1(t)| \ge 1$

Definition: $\mathcal{L} \subseteq \{0, 1\}^*$ is polytime-recognizable iff for all *w*: $y(0) = q(\psi(w))$ y' = p(y) $\psi(w) = \sum_{i=1}^{n-1} w_i 2^{-i}$ satisfies: accept: $w \in \mathcal{L}$ 1 $= \int_0^t \|y'\|$ $\ell(t) = \text{ length of } y$ forbidden $\mathbf{X} y_1(t)$ poly(|w|)computing $q(\psi(w))$. over [0, *t*] reject: $w \notin \mathcal{L}$

Definition: $\mathcal{L} \subseteq \{0, 1\}^*$ is polytime-recognizable iff for all *w*: $y(0) = q(\psi(w))$ y' = p(y) $\psi(w) = \sum_{i=1}^{i-1} w_i 2^{-i}$ satisfies: accept: $w \in \mathcal{L}$ $y_1(t)$ 1 forbidden = $\int_0^t \|y'\|$ $\ell(t) = \text{length of } y$ poly(|w|)computing $q(\psi(w))$ over [0, *t*] $y_1(t)$ reject: $w \notin \mathcal{L}$ Theorem $\mathcal{L} \in \mathsf{P}$ if and only if \mathcal{L} is polytime-recognizable.

Definition: $f : [a, b] \to \mathbb{R}$ is analog-polytime iff for all x: y(0) = q(x) y' = p(y)satisfies:

Definition: $f : [a, b] \to \mathbb{R}$ is analog-polytime iff for all x: y(0) = q(x) y' = p(y)

satisfies:

•
$$\forall n \in \mathbb{N}$$
, if $\ell(t) \ge \operatorname{poly}(||x||, n)$ then $|y_1(t) - f(x)| \le 2^{-n}$
where $\ell(t) = \int_0^t ||y'(u)|| du$

«If curve is long enough, precision is good enough»

Definition: $f : [a, b] \to \mathbb{R}$ is analog-polytime iff for all x: y(0) = q(x) y' = p(y)

satisfies:

•
$$\forall n \in \mathbb{N}$$
, if $\ell(t) \ge \operatorname{poly}(||x||, n)$ then $|y_1(t) - f(x)| \le 2^{-n}$
where $\ell(t) = \int_0^t ||y'(u)|| du$

«If curve is long enough, precision is good enough»

$$2 \forall t \in \mathbb{R}_+, \|y'(t)\| \ge 1$$

«Curve grows at least linearly with time»

Definition: $f : [a, b] \to \mathbb{R}$ is analog-polytime iff for all x: y(0) = q(x) y' = p(y)

satisfies:

▶
$$\forall n \in \mathbb{N}$$
, if $\ell(t) \ge \operatorname{poly}(\|x\|, n)$ then $|y_1(t) - f(x)| \le 2^{-n}$
where $\ell(t) = \int_0^t \|y'(u)\| du$

«If curve is long enough, precision is good enough»

$$\forall t \in \mathbb{R}_+, \|y'(t)\| \ge 1$$

«Curve grows at least linearly with time»

Main result

 $f : [a, b] \rightarrow \mathbb{R}$ is polytime computable iff *f* is analog-polytime.

Conclusion

- Time complexity for the GPAC: length or time+space
- Turing machines and GPACs are equivalent for time complexity
- Purely analog and machine-independent characterization of (discrete and real) polynomial time

Conclusion

- Time complexity for the GPAC: length or time+space
- Turing machines and GPACs are equivalent for time complexity
- Purely analog and machine-independent characterization of (discrete and real) polynomial time

Perspectives:

- Better understanding of time complexity
- Space complexity
- Nondeterminism
- Constants (a.k.a getting rid of π)
- Robustness of errors/perturbations

 Bournez, O., Campagnolo, M. L., Graça, D. S., and Hainry, E. (2007).
 Polynomial differential equations compute all real

computable functions on computable compact intervals. 23(3):317–335.

Shannon, C. E. (1941).

Mathematical theory of the differential analyser.

Journal of Mathematics and Physics MIT, 20:337–354.