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Main result and consequences

Theorem (Informal)

PTIME = PIVP of polynomial length

PIVP: Ordinary Differential Equations (ODE) with polynomial
right-hand side.

» Implicit complexity: purely continuous (time and space)
characterization of PTIME

» Continuous-time models of computations: Turing machines
and the GPAC are equivalent at the complexity level



Digital vs analog computers




Digital vs analog computers




Let’s modell!

Physical Computer

Model

Laptop, ...

Turing machines

A-calculus

Recursive functions

Circuits

Discrete dynamical systems

Differential Analyzer, ...

GPAC
Continuous dynamical systems




Let’s modell!

Physical Computer Model

Laptop, ... Turing machines
A-calculus
Recursive functions
Circuits
Discrete dynamical systems

Differential Analyzer, ... GPAC
Continuous dynamical systems

All reasonable models of computation are equivalent.




Let’s modell!

Physical Computer Model

Laptop, ... Turing machines
A-calculus
Recursive functions
Circuits
Discrete dynamical systems

Differential Analyzer, ... GPAC
Continuous dynamical systems

All reasonable models of computation are equivalent.
Implicit corollary
Some models are too general/unreasonable.




Let’s modell!

Physical Computer Model

Laptop, ... Turing machines
A-calculus
Recursive functions
Circuits

Discrete dynamical systems

Differential Analyzer, ... GPAC—reasonable ?
Continuous dynamical systems

All reasonable models of computation are equivalent.
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General Purpose Analog Computer (GPAC)

» invented by Shannon (1941)
» idealization of the Differential Analyzer:

» circuits made of:

k Constant L\j uv Multiplier
U+ u+v Adder u fu  Integrator



Examples of GPAC

Exponential:
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Examples of GPAC

Rational function:

2 Li X X / yi(t)

|-

_
1 f T 8
ya(t)
{}q’ =-2ypy; {y1(t)= e
Yo=1 yo(t)=t

Theorem (Graga and Costa)

y = (»,.-.,Yq) is generated by a GPAC iff it satisfies a Polyno-
mial Initial Value Problem (PIVP):

{ Yy =ply)
y(to)= Yo

where p is a vector of polynomials.
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Computing with the GPAC

Generable functions

Computable

{y(O)z a(x) xeR
y'(=p(y(t) teRy

f(x) = lim ya(t)

y(0)= o
{y/(x)— ply(x)) *EF
f(x) = y1(x)
yi(x)
X ]

N0 ()

alx f

Shannon’s notion
sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

\Y

Modern notion
sin, cos, exp, log, T, ¢, ...

Turing powerful
[Bournez et al., 2007]
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Different kinds of equivalence
Theorem (Bournez et al)

The GPAC is equivalent to Turing machines for computability.

» Computability: compute the same functions
» Complexity: same functions with same “complexity”

(Quantum computers)

Believed different (Boolean circuits)
(—(Turing machines ) Equivalent
Unknown (Recursive functions)

L (GPacs)

Main Result of the paper
Turing machines and GPACs are equivalent for complexity.




Time complexity for continuous systems

» Turing machines: T(x) = number of steps to compute on x



Time complexity for continuous systems

» Turing machines: T(x) = number of steps to compute on x
» GPAC: time contraction problem

Intuitive definition

T(x, u) = first time t so that |y;(t) — f(x)| < e7#

y(0)=q(x) ¥y =ply)

NN O i




Time complexity for continuous systems

» Turing machines: T(x) = number of steps to compute on x
» GPAC: time contraction problem

Intuitive definition

T(x, u) = first time t so that |y;(t) — f(x)| < e7#

y(0)=q(x) ¥y =py) z(t) = y(e')

A \/\/\ A0 f(x ~ ™ z1(1) f(x

jot fsc




Time complexity for continuous systems

» Turing machines: T(x) = number of steps to compute on x
» GPAC: time contraction problem

Intuitive definition

T(x, u) = first time t so that |y;(t) — f(x)| < e7#

y(0)=q(x) ¥ =py) z(t) = y(e")
A \v/\/\ A0 f(x ~ v(\ﬂm (1) f(x
\/g& t 19(x t
w(t) = y(e%)
~ wi (1) F(x




Time complexity for continuous systems

» Turing machines: T(x) = number of steps to compute on x
» GPAC: time contraction problem— open problem

Intuitive definition

T(x, u) = first time t so that |y;(t) — f(x)| < e7#

y(0)=q(x) ¥y =py) z(t) = y(e')

A \/\/\ A0 f(x ~ ™ z1(1) f(x
LY Lo

(x ¢ g( ¢
e —T— wit) = y(e°)
This definition is broken:
all functions have arbitrar- wq(t)

f(x

ily small complexity.
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Time-space correlation of the GPAC
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Time-space correlation of the GPAC

y(0)=q(x) ¥y =py) z(t) = y(é'
/\ \v/\/\ A f(x ~ V{M (1) f(x
Jq(\){ t 18(x t

extra component: w(t) = e

/
Time scaling costs “space”. /
Time complexity for the GPAC /
must involve time and space !
’ w(t)
t




Two equivalent notions of complexity

/\v \UA ALY 1) {5'((%2 Z%iim

1 a(x) f(x) = tirgo yi(t)




Two equivalent notions of complexity

y(0)= q(x)
/\ \AA o 1) {y'(t)z p(y(1)
\/ V
1 a(x) , f(x) = tingo yi(t)

Length based complexity: L

¢(t) = length of y over [0, ]

/up DIl du

L(x, ) = length ¢(t) so that
Iy (t) = FOll < e
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Characterization of Turing polynomial time

Definition: £ C {0,1}* is polytime-recognizable iff for all w:
w|

y(0) =q(w) ¥ =ply) dw)=) w2
i=1

satisfies:

accept: w € £ ()
1 p— ——

N AV forbidden = /3 Ily’l
ViR - e ¢(t)= length of y
q(q/;(w))-\/ computing Lp U over [0, {]
-1 T
reject: w ¢ L g

L € Pif and only if £ is polytime-recognizable. \
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Characterization of real polynomial time

Definition: f : [a, b] — R is analog-polytime iff for all x:

y(0)=a(x) ¥y =py)
satisfies:

@ Vne N, if £(t) > poly(||x] , n) then |y; (t) — f(x)] <27
t
where ((t) = / |y (u)]| du
0
«If curve is long enough, precision is good enough»

Q Vte R, [y (D)) > 1

«Curve grows at least linearly with time»

f:[a, b] — R is polytime computable iff f is analog-polytime. I
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Perspectives:

Better understanding of time complexity
Space complexity

Nondeterminism

Constants (a.k.a getting rid of )
Robustness of errors/perturbations

v

v

v

v

v
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