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Universal differential algebraic equation (Rubel)
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Theorem (Rubel, 1981)

There exists a fixed polynomial p and k € N such that for any conti-
nuous functions f and ¢, there exists a solution y to

py.y,....y*¥)=0

such that

y () = ()] < e(b).
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Universal differential algebraic equation (Rubel)

Open Problem
‘(X)\ This is a DAE. Is there a

\
\ / / * universal ODE ?
Y

Theorem (Rubel, 1981)

There exists a fixed polynomial p and k € N such that for any conti-
nuous functions f and ¢, there exists a solution y to
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Rubel’s (disappointing) proof in one slide

—1
o Take f(t) = e’ for —1 < t < 1 and f(t) = 0 otherwise.

It satisfies (1 — t2)?f"(t) + 2tf'(t) = 0.
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Rubel’s (disappointing) proof in one slide

—1
o Take f(t) = e’ for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f"(t) + 2tf'(t) = 0.

@ Can do the same with cf(at + b) (translation+scaling)
@ Can glue together arbitrary many such pieces
@ Can arrange so that [ f is solution : piecewise pseudo-linear

—

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C°



The problem with Rubel’s DAE

@ the solution y is not unique, even with added initial conditions :

p(y, Y., y®¥) =0, y(0)=ae,y'(0)=aq,...,yR(0) = ax
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The problem with Rubel’s DAE

@ the solution y is not unique, even with added initial conditions :

p(y’y/’”"y(k)) =0, y(O) :Oé(),y/(O) :a1""7y(k)(0) = Qg

@ ...even with a countable number of extra conditions :
p(y.y,....y")y =0,y (a)=b,ieN

In fact, this is fundamental for Rubel’s proof to work !

@ Rubel’s statement : this DAE is universal
@ More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

This is a DAE. Is there a universal ODE y’ = p(y)?
Note : ODE = unique solution




Universal ordinary differential equation (ODE)
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There exists a fixed polynomial p and d € N such that for any conti-
nuous functions f and ¢, there exists o € RY such that

y(0)=a,  y'(t)=ply(1))

has a unique solution and this solution satisfies

() — ()] < e(b).
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There exists a fixed polynomial p and d € N such that for any conti-
nuous functions f and ¢, there exists o € RY such that

y(0)=a,  y'(t)=ply(1))

has a unique solution and this solution satisfies

() — ()] < e(b).

Unfortunately, we need d = 300.



Wait, is this a CS talk ?

Polynomial ODEs correspond to analog computers :

Differential Analyser British Navy mecanical computer
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Wait, is this a CS talk ?

Polynomial ODEs correspond to analog computers :

Differential Analyser British Navy mecanical computer

@ They are equivalent to Turing machines!
@ One can characterize P with pODEs (ICALP 2016)

Take away : polynomial ODEs is a natural programming language.



binary stream

aeR

generator digits of «
Jof[1 1]o[1]o[1]0 0

This is the ideal curve, the real
one is an approximation of it.
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binary stream

aeR

generator digits of «
ODE}— [0[1 1]o[1]o[1]o of1 1 1...
T \/\V/\\ t ODE

“Digital” to Analog
Converter (fixed frequency)

functions with fixed precision.

Approximate Lipschitz and bounded}

That’s the trickiest part. ]
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“Digital” to Analog
Converter (fixed frequency)

ODE?—

We need something more :
a fast-growing ODE.




binary stream

aeR

generator digits of «
ODE}— [0[1 1]o[1]o[1]o of1 1 1...
T \/\/\ t ODE

“Digital” to Analog
Converter (fixed frequency)

ODE?—

We need something more :
an arbitrarily fast-growing ODE.




An old question on growth

Building a fast-growing ODE :

Yi=" ~ y1(t) = exp(t)
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Building a fast-growing ODE :

Y1 = Y1 ~ y1(t) = exp(t)
Yy = Y1)o ~ y1(t) = exp(exp(t))
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en(t) = exp(---exp(t)---) (ncompositions)
Conjecture (Emil Borel, 1899)
With n variables, cannot do better than Oy(en(AtX)).

Counter-example (Vijayaraghavan, 1932)
1
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Sequence of arbitrarily
growing spikes.
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Counter-example (Vijayaraghavan, 1932)
1

2 — cos(t) — cos(at)

/

Sequence of arbitrarily

growing spikes. But not
good enough for us.
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An old question on growth

en(t) = exp(---exp(t)---) (ncompositions)
Conjecture (Emil Borel, 1899)
With n variables, cannot do better than Oy(en(AtX)).

Counter-example (Vijayaraghavan, 1932)

1
2 — cos(t) — cos(at)

Theorem (In the paper)
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An old question on growth

en(t) = exp(---exp(t)---) (ncompositions)
Conjecture (Emil Borel, 1899)
With n variables, cannot do better than Oy(en(AtX)).

Counter-example (Vijayaraghavan, 1932)

1
2 — cos(t) — cos(at)

Theorem (In the paper)

There exists a polynomial p : R? — R such that for any continuous
function f : R, — R, we can find o € RY such that

y(0)=a,  y'(t)=ply(1))

satisfies

yi(t) = f(t)  Vt=0.

Note : both results require « to be transcendental. Conjecture still
open for rational coefficients. 10



Proof gem : iteration with differential equations

Goal
lterate f with a GPAC : y(n) ~ fl"l([x]) J
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Proof gem : iteration with differential equations

Goal
lterate f with a GPAC : y(n) ~ fl"l([x]) J
Rl(x) +-------- SYUYURY NyS | Sy -
F(x) A
X
- — - t
0 y'~0 ; y'mz—y 1 % 2
Z'=f(y)—z z'~0
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Conclusion

This paper
positive answer to Rubel’s open problem

Take home
ODE is a simple, nice and fun programming language

Possible development
Each universal ODE defines a map :
(f,e)eCO'xC'—aecR

Kolmogorov-like complexity for continuous functions ?
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Polynomial Differential Equations

General Purpose

Analog Computer Differential Analyzer

Newton mechanics polynomial differential
equations :
{y(O)z Yo
Reaction networks : "W (= py(t)
@ chemical
. @ Rich class
@ enzymatic

e Stable (+,x,0,/,ED)
@ No closed-form solution
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Example of differential equation

Yo

=
=]

A

Yi=1Ye yi=90
Vh=-9y, o Jye=0
: .
V3 =YoYa y3 = sin(0)

Y4 = —Yoy3 Y4 = cos(6)
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Universal differential equation (DAE)
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There exists a fixed polynomial p and k € N such that for any conti-
nuous functions f and ¢, there exists ag, . .., ax € R such that

P,y y* ) =0, y(0) = ao,y'(0) = a,..., y")(0) =
has a unique analytic solution and this solution satisfies

y () — ()] < e(2).
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Digital vs analog computers
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Digital vs analog computers
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Church Thesis

Computability

. logic boolean circuits
discrete
recursive Turing lambda
functions machine calculus

continuous
MU u analog

All reasonable models of computation are equivalent. l
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Church Thesis

Complexity
. logic boolean circuits
discrete
recursive Turing lambda
functions machine calculus

: continuous
MU u analog

Effective Church Thesis
All reasonable models of computation are equivalent for complexity.
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Computing with the GPAC

Generable functions

y(0)=yo
{y'(x)z ply(x)) XK
f(x) = y1(x)
yi(x) 4 X

Shannon’s notion
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Modern notion
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Computing with the GPAC

Generable functions

y(0)=yo
{y'(x)z ply(x)) XK
f(x) = y1(x)
yi(x)
X ]

Shannon’s notion
sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computable

{y(0)= q(x) x€eR
y'(t)=py(t) teRy

() = lim ya (1)

t—o0

N A A0 )

U V

Modern notion
sin, cos, exp, log, I, C, ...

Turing powerful
[Bournez et al., 2007]

16/10



Universal differential equations

Generable functions Computable functions
7100 ITITAVAVIEEC ()
X VAR
/ x
t
subclass of analytic functions any computable function
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7100 ITITAVAVIEEC ()
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/ x
t
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v, /

17/10



A new notion of computability

Almost-Theorem

f:[0,1] — R is computable if and only if there exists 7 > 1, y € R?
and p polynomial such that

Y'0) =y, Yy (t)=py()

satisfies
If(x) —y(x+nr)| <27 Vx € [0,1],Yne N )
N \ N Y
\ / \ \ — f(t mod 7)
/ t

0 1 T T+1 27 27 +1 37
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