A universal differential equation

Amaury Pouly

Joint work with Olivier Bournez and Daniel Graça

14 june 2019

What is a computer?

What is a computer?

What is a computer?

Church Thesis

Computability

Church Thesis

All reasonable models of computation are equivalent.

Church Thesis

Effective Church Thesis

All **reasonable** models of computation are equivalent for complexity.

Polynomial Differential Equations

$$\ddot{ heta} + rac{g}{\ell}\sin(heta) = 0$$

$$\ddot{\theta} + \tfrac{g}{\ell} \sin(\theta) = 0$$

$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{l} y_3 \\ y_3' = y_2 y_4 \\ y_4' = -y_2 y_3 \end{cases} \Leftrightarrow \begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases}$$

$$\ddot{\theta} + \frac{g}{\ell}\sin(\theta) = 0$$

$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{l} y_3 \\ y_3' = y_2 y_4 \\ y_4' = -y_2 y_3 \end{cases} \Leftrightarrow \begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases}$$

$$\ddot{ heta} + rac{g}{\ell} \sin(heta) = 0$$

$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{l} y_3 \\ y_3' = y_2 y_4 \\ y_4' = -y_2 y_3 \end{cases} \Leftrightarrow \begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases}$$

Historical remark: the word "analog"

The pendulum and the circuit have the same equation. One can study one using the other by analogy.

Generable functions

$$\begin{cases} y(0) = y_0 \\ y'(x) = p(y(x)) \end{cases} \quad x \in \mathbb{R}$$

Shannon's notion

Generable functions

$$\begin{cases} y(0) = y_0 \\ y'(x) = p(y(x)) \end{cases} \quad x \in \mathbb{R}$$

$$f(x)=y_1(x)$$

Shannon's notion

 $\sin, \cos, \exp, \log, ...$

Strictly weaker than Turing machines [Shannon, 1941]

Generable functions

$$\begin{cases} y(0) = y_0 \\ y'(x) = p(y(x)) \end{cases} \quad x \in \mathbb{R}$$

Shannon's notion

 $\sin, \cos, \exp, \log, ...$

Strictly weaker than Turing machines [Shannon, 1941]

Computable

$$\begin{cases} y(0) = q(x) & x \in \mathbb{R} \\ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{cases}$$

$$f(x) = \lim_{t \to \infty} y_1(t)$$

$$x \in \mathbb{R}$$

$$f(x) = \lim_{t \to \infty} y_1(t)$$

$$x \in \mathbb{R}$$

$$f(x) = \lim_{t \to \infty} y_1(t)$$

$$f(x) = \lim_{t \to \infty} y_1(t)$$

$$f(x) = \lim_{t \to \infty} y_1(t)$$

Generable functions

$$\begin{cases} y(0) = y_0 \\ y'(x) = p(y(x)) \end{cases} \quad x \in \mathbb{R}$$

Shannon's notion

 $\sin, \cos, \exp, \log, ...$

Strictly weaker than Turing machines [Shannon, 1941]

Computable

$$\begin{cases} y(0) = q(x) & x \in \mathbb{R} \\ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{cases}$$

$$f(x) = \lim_{t \to \infty} y_1(t)$$

Modern notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \mathsf{\Gamma}, \zeta, \dots$

Turing powerful [Bournez et al., 2007]

Equivalence with computable analysis

Definition (Bournez et al., 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y'(t) = p(y(t))$

satisfies $|f(x) - y_1(t)| \leq y_2(t)$ et $y_2(t) \xrightarrow[t \to \infty]{} 0$.

$$y_1(t) \xrightarrow[t \to \infty]{} f(x)$$

 $y_2(t) = \text{error bound}$

Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y'(t) = p(y(t))$

satisfies $|f(x) - y_1(t)| \leqslant y_2(t)$ et $y_2(t) \xrightarrow[t \to \infty]{} 0$.

$$y_1(t) \xrightarrow[t \to \infty]{} f(x)$$

 $y_2(t) = \text{error bound}$

Theorem (Bournez et al, 2007)

 $f:[a,b] \to \mathbb{R}$ computable $^1 \Leftrightarrow f$ computable by GPAC

Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y'(t) = p(y(t))$

satisfies
$$|f(x) - y_1(t)| \leqslant y_2(t)$$
 et $y_2(t) \xrightarrow[t \to \infty]{} 0$.

$$y_1(t) \xrightarrow[t \to \infty]{} f(x)$$

 $y_2(t) = \text{error bound}$

Theorem (Bournez et al, 2007)

 $f:[a,b]\to\mathbb{R}$ computable $^1\Leftrightarrow f$ computable by GPAC

1. In Computable Analysis, a standard model over reals built from Turing machines.

Universal differential equations

subclass of analytic functions

Computable functions

any computable function

Universal differential equations

Computable functions

subclass of analytic functions

any computable function

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

For any continuous functions f and ε , there exists $y : \mathbb{R} \to \mathbb{R}$ solution to

$$3y'^{4}y''y'''^{2} -4y'^{4}y'''^{2}y'''' + 6y'^{3}y''^{2}y'''y'''' + 24y'^{2}y''^{4}y'''' -12y'^{3}y''y'''^{3} - 29y'^{2}y''^{3}y'''^{2} + 12y''^{7} = 0$$

such that $\forall t \in \mathbb{R}$,

$$|y(t)-f(t)|\leqslant \varepsilon(t).$$

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists a solution $g: \mathbb{R} \to \mathbb{R}$ to

$$p(y,y',\ldots,y^{(k)})=0$$

such that $\forall t \in \mathbb{R}$,

$$|y(t)-f(t)|\leqslant \varepsilon(t).$$

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists a solution $g: \mathbb{R} \to \mathbb{R}$ to

$$p(y,y',\ldots,y^{(k)})=0$$

such that $\forall t \in \mathbb{R}$,

$$|y(t)-f(t)| \leq \varepsilon(t).$$

Problem: this is «weak» result.

The problem with Rubel's DAE

The solution *y* is not unique, **even with added initial conditions** :

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel's proof to work!

The problem with Rubel's DAE

The solution *y* is not unique, **even with added initial conditions** :

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel's proof to work!

- Rubel's statement : this DAE is universal
- More realistic interpretation: this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y' = p(y)?

Note: explicit polynomial ODE ⇒ unique solution

Universal initial value problem (IVP)

Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha, \qquad y'(t) = p(y(t))$$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t)-f(t)| \leq \varepsilon(t).$$

Universal initial value problem (IVP)

Notes:

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha,$$
 $y'(t) = p(y(t))$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t)-f(t)| \leq \varepsilon(t).$$

Universal initial value problem (IVP)

Notes:

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha,$$
 $y'(t) = \rho(y(t))$

has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t)-f(t)| \leq \varepsilon(t).$$

Remark : α is usually transcendental, but computable from f and ε

► Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise. It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0$.

► Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1-t^2)^2 f''(t) + 2tf'(t) = 0$$
.

▶ For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

$$3{y'}^4{y'''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} \\ - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$$

- ► Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise. It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0$.
- For any $a,b,c \in \mathbb{R}$, y(t)=cf(at+b) satisfies ${}_{3y'^4y''y''''^2-4y'^4y'''^2+6y'^3y''^2y'''y''''+24y'^2y''^4y''''-12y'^3y''y'^3-29y'^2y''^3y'''^2+12y''^7=0}$
- Can glue together arbitrary many such pieces

- ► Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise. It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0$.
- For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies $\frac{3y'^4y''y''''^2 4y'^4y'''^2y'''' + 6y'^3y''^2y'''' + 24y'^2y''^4y'''' 12y'^3y''y'''^3 29y'^2y''^3y'''^2 + 12y''^7 = 0}{2}$
- Can glue together arbitrary many such pieces
- ► Can arrange so that $\int f$ is solution : piecewise pseudo-linear

- ► Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise. It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0$.
- For any $a,b,c \in \mathbb{R}$, y(t)=cf(at+b) satisfies ${}_{3y'^4y''y''''^2-4y'^4y'''^2y'''+6y'^3y''^2y'''y''''+24y'^2y''^4y''''-12y'^3y''y''^3-29y'^2y''^3y'''^2+12y''^7=0}$
- Can glue together arbitrary many such pieces
- Can arrange so that ∫ f is solution : piecewise pseudo-linear

Conclusion: Rubel's equation allows any piecewise pseudo-linear functions, and those are **dense in** C^0

Universal DAE revisited

Theorem

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists $\alpha_0, \ldots, \alpha_k \in \mathbb{R}$ such that

$$p(y, y', ..., y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, ..., y^{(k)}(0) = \alpha_k$$

has a unique analytic solution and this solution satisfies such that

$$|y(t)-f(t)|\leqslant \varepsilon(t).$$

A brief stop

Before I can explain the proof, you need to know more of polynomial ODEs and what I mean by programming with ODEs.

Generable functions (total, univariate)

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- ▶ $d \in \mathbb{N}$: dimension
- $ightharpoonup \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- \triangleright $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$

Note: existence and unicity of *y* by Cauchy-Lipschitz theorem.

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

- ▶ $d \in \mathbb{N}$: dimension
- $ightharpoonup \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- \triangleright $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f(x) = x$$
 identity

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

- \triangleright $d \in \mathbb{N}$: dimension
- $ightharpoonup \mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field
- $\triangleright p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- \triangleright $v_0 \in \mathbb{K}^d, v : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f(x) = x^2$$
 squaring

$$y_1(0) = 0,$$
 $y'_1 = 2y_2 \sim y_1(x) = x^2$
 $y_2(0) = 0,$ $y'_2 = 1 \sim y_2(x) = x$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

- ▶ $d \in \mathbb{N}$: dimension
- $ightharpoonup \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- \triangleright $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$

Example:
$$f(x) = x^n$$
 \triangleright n^{th} power

 $y_1(0) = 0, \quad y'_1 = ny_2 \quad \rightsquigarrow \quad y_1(x) = x^n$
 $y_2(0) = 0, \quad y'_2 = (n-1)y_3 \quad \rightsquigarrow \quad y_2(x) = x^{n-1}$
...
 $y_n(0) = 0, \quad y_n = 1 \quad \rightsquigarrow \quad y_n(x) = x$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

- ▶ $d \in \mathbb{N}$: dimension
- $ightharpoonup \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- $\mathbf{y}_0 \in \mathbb{K}^d, \mathbf{y} : \mathbb{R} \to \mathbb{R}^d$

Example:
$$f(x) = \exp(x)$$
 \blacktriangleright exponential $y(0) = 1$, $y' = y \rightsquigarrow y(x) = \exp(x)$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Example:
$$f(x) = \sin(x)$$
 or $f(x) = \cos(x)$ \triangleright sine/cosine

$$y_1(0) = 0, \quad y'_1 = y_2 \quad \leadsto \quad y_1(x) = \sin(x)$$

$$y_2(0) = 1, \quad y_2' = -y_1 \quad \rightsquigarrow \quad y_2(x) = \cos(x)$$

- \triangleright $d \in \mathbb{N}$: dimension
- $ightharpoonup \mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field
- $ightharpoonup p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- \triangleright $v_0 \in \mathbb{K}^d, v : \mathbb{R} \to \mathbb{R}^d$

$$y_1(x) = \sin(x)$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

- \triangleright $d \in \mathbb{N}$: dimension
- $ightharpoonup \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $ightharpoonup p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- \triangleright $v_0 \in \mathbb{K}^d, v : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f(x) = \tanh(x)$$
 hyperbolic tangent

$$y(0)=0,$$
 $y'=1-y^2 \rightarrow y(x)=\tanh(x)$

$$\tanh(x)$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

- ▶ $d \in \mathbb{N}$: dimension
- $ightharpoonup \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- \triangleright $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$

Example:
$$f(x) = \frac{1}{1+x^2}$$
 rational function
$$f'(x) = \frac{-2x}{(1+x^2)^2} = -2xf(x)^2$$

$$y_1(0) = 1, \quad y_1' = -2y_2y_1^2 \quad \rightsquigarrow \quad y_1(x) = \frac{1}{1+x^2}$$

$$y_2(0) = 0, \quad y_2' = 1 \quad \rightsquigarrow \quad y_2(x) = x$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies
$$f(x) = y_1(x)$$
 for all $x \in \mathbb{R}$.

Types

- \triangleright $d \in \mathbb{N}$: dimension
- $ightharpoonup \mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field
- $ightharpoonup p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- \triangleright $v_0 \in \mathbb{K}^d, v : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f = g \pm h$$
 \triangleright sum/difference

$$(g \pm h)' = g' \pm h'$$

assume:

$$z(0)=z_0,$$

 $w(0)=w_0,$

$$z'=p(z)$$

 $w'=q(w)$

$$\sim z_1 = g$$

$$\rightsquigarrow w_1 = h$$

$$y(0)=z_{0,1}+w_{0,1}, \quad y'=p_1(z)\pm q_1(w) \sim y=z_1\pm w_1$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies
$$f(x) = y_1(x)$$
 for all $x \in \mathbb{R}$.

Types

- \triangleright $d \in \mathbb{N}$: dimension
- $ightharpoonup \mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field
- $ightharpoonup p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- \triangleright $v_0 \in \mathbb{K}^d, v : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f = gh$$
 product

$$(gh)'=g'h+gh'$$

assume:

$$z(0)=z_0$$

$$z'=p(z)$$

$$w(0) = w_0,$$

$$z = \rho(z)$$

 $w' = q(w)$

$$\sim z_1 = g$$

$$\sim w_1 = h$$

$$y(0)=z_{0,1}w_{0,1},$$

$$y' = p_1(z)w_1 + z_1q_1(w) \sim y = z_1w_1$$

$$_{1}(w)$$
 $^{\sim}$

$$y=z_1$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- \triangleright $d \in \mathbb{N}$: dimension
- $ightharpoonup \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $\triangleright p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- \triangleright $v_0 \in \mathbb{K}^d, v : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f = \frac{1}{g}$$
 inverse

$$f' = \frac{-g'}{g^2} = -g'f^2$$

assume:

$$z(0)=z_0, \qquad z'=p(z) \qquad \sim z_1=g$$

$$\sim z_1 = g$$

$$y(0) = \frac{1}{z_{0,1}}, \quad y' = -p_1(z)y^2 \quad \leadsto \quad y = \frac{1}{z_1}$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- \triangleright $d \in \mathbb{N}$: dimension
- $ightharpoonup \mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field
- $ightharpoonup p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- \triangleright $v_0 \in \mathbb{K}^d, v : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f = \int g$$
 integral

assume:

$$z(0)=z_0, \quad z'=p(z) \sim z_1=g$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies
$$f(x) = y_1(x)$$
 for all $x \in \mathbb{R}$.

Types

- \triangleright $d \in \mathbb{N}$: dimension
- $ightharpoonup \mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field
- $\triangleright p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- \triangleright $v_0 \in \mathbb{K}^d, v : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f = g'$$
 be derivative

$$f'=g''=(p_1(z))'=\nabla p_1(z)\cdot z'$$

assume:

$$z(0)=z_0$$

$$z'=p(z)$$

$$\sim z_1 = g$$

$$y(0) = p_1(z_0), \quad y' = \nabla p_1(z) \cdot p(z) \quad \rightsquigarrow \quad y = z_1''$$

$$\rightsquigarrow$$
 $y=z_1''$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- \triangleright $d \in \mathbb{N}$: dimension
- $ightharpoonup \mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field
- $ightharpoonup p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- $\mathbf{v}_0 \in \mathbb{K}^d$, $\mathbf{v}: \mathbb{R} \to \mathbb{R}^d$

Example :
$$f = g \circ h$$
 \triangleright composition

$$(z \circ h)' = (z' \circ h)h' = p(z \circ h)h'$$

assume:

$$z(0)=z_0,$$
 $z'=p(z)$ \Rightarrow $z_1=g$
 $w(0)=w_0,$ $w'=q(w)$ \Rightarrow $w_1=h$

$$y(0)=z(w_0), \quad y'=p(y)z_1 \quad \rightsquigarrow \quad y=z\circ h$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- \triangleright $d \in \mathbb{N}$: dimension
- $ightharpoonup \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $ightharpoonup p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- $\mathbf{v}_0 \in \mathbb{K}^d$, $\mathbf{v}: \mathbb{R} \to \mathbb{R}^d$

Example :
$$f = g \circ h$$
 \triangleright composition

$$(z \circ h)' = (z' \circ h)h' = p(z \circ h)h'$$

assume:

$$z(0)=z_0,$$
 $z'=p(z)$ \Rightarrow $z_1=g$
 $w(0)=w_0,$ $w'=q(w)$ \Rightarrow $w_1=h$

then:

$$y(0) = z(w_0), \quad y' = p(y)z_1 \quad \rightsquigarrow \quad y = z \circ h$$

Is this coefficient in \mathbb{K} ?

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- \triangleright $d \in \mathbb{N}$: dimension
- $ightharpoonup \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $ightharpoonup p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- $\mathbf{v}_0 \in \mathbb{K}^d$, $\mathbf{v}: \mathbb{R} \to \mathbb{R}^d$

Example :
$$f = g \circ h$$
 \triangleright composition

$$(z \circ h)' = (z' \circ h)h' = p(z \circ h)h'$$

assume:

$$z(0)=z_0,$$
 $z'=p(z)$ \Rightarrow $z_1=g$
 $w(0)=w_0,$ $w'=q(w)$ \Rightarrow $w_1=h$

then:

$$y(0) = z(w_0), \quad y' = \rho(y)z_1 \quad \rightsquigarrow \quad y = z \circ h$$

Is this coefficient in \mathbb{K} ? Fields with this property are called generable.

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

- ▶ $d \in \mathbb{N}$: dimension
- $ightharpoonup \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- \triangleright $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f' = \tanh \circ f$$
 Non-polynomial differential equation
$$f'' = (\tanh' \circ f)f' = (1 - (\tanh \circ f)^2)f'$$

$$y_1(0) = f(0),$$
 $y'_1 = y_2$ \rightsquigarrow $y_1(x) = f(x)$
 $y_2(0) = \tanh(f(0)),$ $y'_2 = (1 - y_2^2)y_2$ \rightsquigarrow $y_2(x) = \tanh(f(x))$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- ▶ $d \in \mathbb{N}$: dimension
- $ightharpoonup \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- \triangleright $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f(0) = f_0, f' = g \circ f$$
 Initial Value Problem (IVP)

$$f' = g'' = (p_1(z))' = \nabla p_1(z) \cdot z'$$

assume:

$$z(0)=z_0,$$
 $z'=p(z)$

$$\sim z_1 = g$$

$$y(0) = p_1(z_0), \quad y' = \nabla p_1(z) \cdot p(z) \quad \leadsto \quad y = z_1''$$

Generable functions: a first summary

Nice theory for the class of total and univariate generable functions:

- analytic
- contains polynomials, sin, cos, tanh, exp
- ▶ stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- lacktriangle technicality on the field $\mathbb K$ of coefficients for stability under \circ
- solutions to polynomial ODEs form a very large class

Generable functions: a first summary

Nice theory for the class of total and univariate generable functions:

- analytic
- contains polynomials, sin, cos, tanh, exp
- ▶ stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- lacktriangle technicality on the field $\mathbb K$ of coefficients for stability under \circ
- solutions to polynomial ODEs form a very large class

Limitations:

- total functions
- univariate

Definition

 $f:X\subseteq\mathbb{R}^n\to\mathbb{R}$ is generable if X is open **connected** and $\exists d,p,x_0,y_0,y$ such that

$$y(x_0) = y_0,$$
 $J_y(x) = p(y(x))$

and $f(x) = y_1(x)$ for all $x \in X$.

 $J_y(x) =$ Jacobian matrix of y at x

Types

- ▶ $n \in \mathbb{N}$: input dimension
- ▶ $d \in \mathbb{N}$: dimension
- ▶ $p \in \mathbb{K}^{d \times d}[\mathbb{R}^d]$: polynomial matrix
- $\mathbf{x}_0 \in \mathbb{K}^n$
- \triangleright $y_0 \in \mathbb{K}^d, y : X \to \mathbb{R}^d$

Notes:

- Partial differential equation!
- Unicity of solution y...
- ... but not existence (ie you have to show it exists)

Definition

 $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open **connected** and $\exists d, p, x_0, y_0, y$ such that

$$y(x_0) = y_0,$$
 $J_y(x) = p(y(x))$

and $f(x) = y_1(x)$ for all $x \in X$.

 $J_{\nu}(x) = \text{Jacobian matrix of } y \text{ at } x$

Example:
$$f(x_1, x_2) = x_1 x_2^2$$
 $(n = 2, d = 3)$

$$y(0,0) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad J_y = \begin{pmatrix} y_3^2 & 3y_2y_3 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \rightsquigarrow \quad y(x) = \begin{pmatrix} x_1x_2^2 \\ x_1 \\ x_2 \end{pmatrix}$$

- $n \in \mathbb{N}$: input dimension
- $ightharpoonup d \in \mathbb{N}$: dimension
- $\triangleright p \in \mathbb{K}^{d \times d}[\mathbb{R}^d]$: polynomial matrix
- $\rightarrow x_0 \in \mathbb{K}^n$
- $\mathbf{v}_0 \in \mathbb{K}^d, \mathbf{v}: \mathbf{X} \to \mathbb{R}^d$
 - monomial

$$\rightarrow y(x) = \begin{pmatrix} x_1 x_2^2 \\ x_1 \\ x_2 \end{pmatrix}$$

Definition

 $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open **connected** and $\exists d, p, x_0, y_0, y$ such that

$$y(x_0) = y_0,$$
 $J_y(x) = p(y(x))$

and $f(x) = y_1(x)$ for all $x \in X$.

 $J_{v}(x) = \text{Jacobian matrix of } y \text{ at } x$

Types

- ▶ $n \in \mathbb{N}$: input dimension
- ▶ $d \in \mathbb{N}$: dimension
- ▶ $p \in \mathbb{K}^{d \times d}[\mathbb{R}^d]$: polynomial matrix
- $\mathbf{x}_0 \in \mathbb{K}^n$
- \triangleright $y_0 \in \mathbb{K}^d, y : X \to \mathbb{R}^d$

Example:
$$f(x_1, x_2) = x_1 x_2^2$$
 \blacktriangleright monomial

$$y_1(0,0) = 0,$$
 $\partial_{x_1} y_1 = y_3^2,$ $\partial_{x_2} y_1 = 3y_2 y_3$ \longrightarrow $y_1(x) = x_1 x_2^2$
 $y_2(0,0) = 0,$ $\partial_{x_1} y_2 = 1,$ $\partial_{x_2} y_2 = 0$ \longrightarrow $y_2(x) = x_1$
 $y_3(0,0) = 0,$ $\partial_{x_1} y_3 = 0,$ $\partial_{x_2} y_3 = 1$ \longrightarrow $y_3(x) = x_2$

This is tedious!

Definition

 $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open **connected** and $\exists d, p, x_0, y_0, y$ such that

$$y(x_0) = y_0,$$
 $J_y(x) = p(y(x))$

and $f(x) = y_1(x)$ for all $x \in X$.

$$J_{\nu}(x) = \text{Jacobian matrix of } y \text{ at } x$$

Last example :
$$f(x) = \frac{1}{x}$$
 for $x \in (0, \infty)$

$$y(1)=1,$$
 $\partial_x y=-y^2 \sim y(x)=\frac{1}{x}$

Types

- $n \in \mathbb{N}$: input dimension
- $ightharpoonup d \in \mathbb{N}$: dimension
- $\triangleright p \in \mathbb{K}^{d \times d}[\mathbb{R}^d]$: polynomial matrix
- $\rightarrow x_0 \in \mathbb{K}^n$
- \triangleright $v_0 \in \mathbb{K}^d, v : X \to \mathbb{R}^d$

inverse function

$$\rightarrow y(x) = \frac{1}{x}$$

Generable functions: summary

Nice theory for the class of multivariate generable functions (over connected domains):

- analytic
- contains polynomials, sin, cos, tanh, exp, ...
- ▶ stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- lacktriangle technicality on the field $\mathbb K$ of coefficients for stability under \circ
- requires partial differential equations

Generable functions: summary

Nice theory for the class of multivariate generable functions (over connected domains):

- analytic
- contains polynomials, sin, cos, tanh, exp, ...
- ▶ stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- lacktriangle technicality on the field $\mathbb K$ of coefficients for stability under \circ
- requires partial differential equations

Exercice: are all analytic functions generable?

Generable functions: summary

Nice theory for the class of multivariate generable functions (over connected domains):

- analytic
- contains polynomials, sin, cos, tanh, exp, ...
- ▶ stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- lacktriangle technicality on the field $\mathbb K$ of coefficients for stability under \circ
- requires partial differential equations

Exercice : are all analytic functions generable? No Riemann Γ and ζ are not generable.

Why is this useful?

Writing polynomial ODEs by hand is hard.

Why is this useful?

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated **multivariate partial functions** using other operations, and we know they are solutions to polynomial ODEs **by construction**.

Why is this useful?

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated **multivariate partial functions** using other operations, and we know they are solutions to polynomial ODEs **by construction**.

Example (almost rounding function)

There exists a generable function round such that for any $n \in \mathbb{Z}$, $x \in \mathbb{R}$, $\lambda > 2$ and $\mu \geqslant 0$:

- if $x \in [n-\frac{1}{2}, n+\frac{1}{2}]$ then $|\operatorname{round}(x, \mu, \lambda) n| \leqslant \frac{1}{2}$,
- ▶ if $x \in \left[n \frac{1}{2} + \frac{1}{\lambda}, n + \frac{1}{2} \frac{1}{\lambda}\right]$ then $|\operatorname{round}(x, \mu, \lambda) n| \leqslant e^{-\mu}$.

Reminder of the result

Main result (reminder)

There exists a **fixed** (vector of) polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_+^*)$, there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha,$$
 $y'(t) = p(y(t))$

has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t)-f(t)|\leqslant \varepsilon(t).$$

A less simplified proof

binary stream generator : digits of $\alpha \in \mathbb{R}$

$$f(\alpha,\mu,\lambda,t) = \frac{1}{2} + \frac{1}{2} \tanh(\mu \sin(2\alpha\pi 4^{\operatorname{round}(t-1/4,\lambda)} + 4\pi/3))$$

It's horrible, but generable

A less simplified proof

dyadic stream generator :
$$d_i = m_i 2^{-d_i}$$
, $a_i = 9i + \sum_{j < i} d_j$

$$f(\alpha, \gamma, t) = \sin(2\alpha \pi 2^{\operatorname{round}(t-1/4, \gamma)}))$$

This copy operation is the "non-trivial" part.

We can do almost piecewise constant functions...

We can do almost piecewise constant functions...

- ...that are bounded by 1...
- ...and have super slow changing frequency.

We can do almost piecewise constant functions...

- ► ...that are bounded by 1...
- ...and have super slow changing frequency.

How do we go to arbitrarily large and growing functions? Can a polynomial ODE even have arbitrary growth?

Building a fast-growing ODE, that exists over ℝ:

$$y_1' = y_1 \qquad \qquad \rightsquigarrow \qquad y_1(t) = \exp(t)$$

Building a fast-growing ODE, that exists over \mathbb{R} :

$$y'_1 = y_1$$
 \rightsquigarrow $y_1(t) = \exp(t)$
 $y'_2 = y_1 y_2$ \rightsquigarrow $y_1(t) = \exp(\exp(t))$

Building a fast-growing ODE, that exists over \mathbb{R} :

```
y_1' = y_1 \sim y_1(t) = \exp(t)

y_2' = y_1 y_2 \sim y_1(t) = \exp(\exp(t))

... y_n' = y_1 \cdots y_n \sim y_n(t) = \exp(\cdots \exp(t) \cdots) := e_n(t)
```

Building a fast-growing ODE, that exists over \mathbb{R} :

$$y'_1 = y_1$$
 \rightarrow $y_1(t) = \exp(t)$
 $y'_2 = y_1 y_2$ \rightarrow $y_1(t) = \exp(\exp(t))$
 \cdots \cdots
 $y'_n = y_1 \cdots y_n$ \rightarrow $y_n(t) = \exp(\cdots \exp(t) \cdots) := e_n(t)$

Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

$$e_n(t) = \exp(\cdots \exp(t) \cdots)$$
 (*n* compositions)

Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)

$$e_n(t) = \exp(\cdots \exp(t) \cdots)$$
 (*n* compositions)

Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)

$$e_n(t) = \exp(\cdots \exp(t) \cdots)$$
 (*n* compositions)

Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)

$$\frac{1}{2-\cos(t)-\cos(\alpha t)}$$

Theorem (In the paper)

There exists a polynomial $p: \mathbb{R}^d \to \mathbb{R}^d$ such that for any continuous function $f: \mathbb{R}_+ \to \mathbb{R}$, we can find $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha,$$
 $y'(t) = p(y(t))$

$$y_1(t) \geqslant f(t), \quad \forall t \geqslant 0.$$

$$e_n(t) = \exp(\cdots \exp(t) \cdots)$$
 (*n* compositions)

Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)

$$\frac{1}{2-\cos(t)-\cos(\alpha t)}$$

Theorem (In the paper)

There exists a polynomial $p : \mathbb{R}^d \to \mathbb{R}^d$ such that for any continuous function $f : \mathbb{R}_+ \to \mathbb{R}$, we can find $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha, \qquad y'(t) = p(y(t))$$

$$y_1(t) \geqslant f(t), \quad \forall t \geqslant 0.$$

Note: both results require α to be **transcendental**. Conjecture still open for **rational** (or algebraic) coefficients.

Main result, remark and end

Main result (reminder)

There exists a **fixed** (vector of) polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_+^*)$, there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha,$$
 $y'(t) = p(y(t))$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t)-f(t)| \leq \varepsilon(t).$$

Futhermore, α is computable from f and ε .

Remarks:

- if f and ε are computable then α is computable
- ▶ if f or ε is **not computable** then α is **not computable**
- lacktriangle in all cases lpha is a horrible transcendental number