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Effective Church Thesis
All reasonable models of computation are equivalent for complexity.
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Polynomial Differential Equations
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General Purpose
Analog Computer Differential Analyzer

Reaction networks :
I chemical
I enzymatic

Newton mechanics polynomial differential
equations :{

y(0)= y0
y ′(t)= p(y(t))

I Rich class
I Stable (+,×,◦,/,ED)
I No closed-form solution
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Example of dynamical system

θ

`

m

g

×
∫ ∫

×
∫−g

`

××−1
∫

y1
y2

y3 y4

θ̈ + g
` sin(θ) = 0


y ′1 = y2
y ′2 = −g

l y3
y ′3 = y2y4
y ′4 = −y2y3

⇔


y1 = θ

y2 = θ̇
y3 = sin(θ)
y4 = cos(θ)

Historical remark : the word “analog”

The pendulum and the circuit have the same equation. One can study
one using the other by analogy.
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Computing with differential equations

Generable functions{
y(0)= y0

y ′(x)= p(y(x))
x ∈ R

f (x) = y1(x)

x
y1(x)

Shannon’s notion

sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computable{
y(0)= q(x)
y ′(t)= p(y(t))

x ∈ R
t ∈ R+

f (x) = lim
t→∞

y1(t)

t

f (x)

x

y1(t)

Modern notion

sin, cos, exp, log, Γ, ζ, ...

Turing powerful
[Bournez et al., 2007]
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Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if ∃p polynomial such that ∀x ∈ [a,b]

y(0) = (x ,0, . . . ,0) y ′(t) = p(y(t))

satisfies |f (x)− y1(t)| 6 y2(t) et y2(t) −−−→
t→∞

0.

t

f (x)

x

y1(t) y1(t) −−−→
t→∞

f (x)

y2(t) = error bound

Theorem (Bournez et al, 2007)

f : [a,b]→ R computable 1 ⇔ f computable by GPAC

1. In Computable Analysis, a standard model over reals built from Turing machines.
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Universal differential equations

Generable functions

x
y1(x)

subclass of analytic functions

Computable functions

t

f (x)

x

y1(t)

any computable function

x
y1(x)

8 / 25



Universal differential equations

Generable functions

x
y1(x)

subclass of analytic functions

Computable functions

t

f (x)

x

y1(t)

any computable function

x
y1(x)

8 / 25



Universal differential algebraic equation (DAE)

x
y(x)

Theorem (Rubel, 1981)

For any continuous functions f and ε, there exists y : R→ R solution to

3y ′4y
′′
y
′′′′2 −4y ′4y

′′′2
y
′′′′

+ 6y ′3y
′′2

y
′′′

y
′′′′

+ 24y ′2y
′′4

y
′′′′

−12y ′3y
′′
y
′′′3 − 29y ′2y

′′3
y
′′′2

+ 12y
′′7

= 0

such that ∀t ∈ R,
|y(t)− f (t)| 6 ε(t).

Problem : this is «weak» result.
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Universal differential algebraic equation (DAE)

x
y(x)

Theorem (Rubel, 1981)

There exists a fixed polynomial p and k ∈ N such that for any conti-
nuous functions f and ε, there exists a solution y : R→ R to

p(y , y ′, . . . , y (k)) = 0

such that ∀t ∈ R,
|y(t)− f (t)| 6 ε(t).

Problem : this is «weak» result.
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The problem with Rubel’s DAE

The solution y is not unique, even with added initial conditions :

p(y , y ′, . . . , y (k)) = 0, y(0) = α0, y ′(0) = α1, . . . , y (k)(0) = αk

In fact, this is fundamental for Rubel’s proof to work !

I Rubel’s statement : this DAE is universal
I More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y ′ = p(y) ?
Note : explicit polynomial ODE⇒ unique solution
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Universal initial value problem (IVP)

x
y1(x)

Notes :
I system of ODEs,
I y is analytic,
I we need d ≈ 300.

Theorem
There exists a fixed (vector of) polynomial p such that for any
continuous functions f and ε, there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).

Remark : α is usually transcendental, but computable from f and ε
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Rubel’s proof in one slide

I Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1− t2)2f
′′

(t) + 2tf ′(t) = 0.

I For any a,b, c ∈ R, y(t) = cf (at + b) satisfies
I Can glue together arbitrary many such pieces
I Can arrange so that

∫
f is solution : piecewise pseudo-linear

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0
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I For any a,b, c ∈ R, y(t) = cf (at + b) satisfies

3y ′4y ′′y ′′′′2 −4y ′4y ′′2y ′′′′ + 6y ′3y ′′2y ′′′y ′′′′ + 24y ′2y ′′4y ′′′′

−12y ′3y ′′y ′′′3 − 29y ′2y ′′3y ′′′2 + 12y ′′7 = 0

I Can glue together arbitrary many such pieces
I Can arrange so that

∫
f is solution : piecewise pseudo-linear

Translation and rescaling :

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0
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Universal DAE revisited

x
y1(x)

Theorem
There exists a fixed polynomial p and k ∈ N such that for any
continuous functions f and ε, there exists α0, . . . , αk ∈ R such that

p(y , y ′, . . . , y (k)) = 0, y(0) = α0, y ′(0) = α1, . . . , y (k)(0) = αk

has a unique analytic solution and this solution satisfies such that

|y(t)− f (t)| 6 ε(t).
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A brief stop

Before I can explain the proof, you need to know more of polynomial
ODEs and what I mean by programming with ODEs.
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
I d ∈ N : dimension
I Q ⊆ K ⊆ R : field
I p ∈ Kd [Rn] : polynomial

vector (coef. in K)
I y0 ∈ Kd , y : R→ Rd

x
y1(x)

Note : existence and unicity of y by Cauchy-Lipschitz theorem.
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Generable functions (total, univariate)
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Types
I d ∈ N : dimension
I Q ⊆ K ⊆ R : field
I p ∈ Kd [Rn] : polynomial

vector (coef. in K)
I y0 ∈ Kd , y : R→ Rd

Example : f (x) = x I identity

y(0) = 0, y ′ = 1 ; y(x) = x
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to
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Types
I d ∈ N : dimension
I Q ⊆ K ⊆ R : field
I p ∈ Kd [Rn] : polynomial

vector (coef. in K)
I y0 ∈ Kd , y : R→ Rd

Example : f (x) = x2 I squaring

y1(0)= 0, y ′1= 2y2 ; y1(x)= x2

y2(0)= 0, y ′2= 1 ; y2(x)= x
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
I d ∈ N : dimension
I Q ⊆ K ⊆ R : field
I p ∈ Kd [Rn] : polynomial

vector (coef. in K)
I y0 ∈ Kd , y : R→ Rd

Example : f (x) = xn I nth power

y1(0)= 0, y ′1= ny2 ; y1(x)= xn

y2(0)= 0, y ′2= (n − 1)y3 ; y2(x)= xn−1

. . . . . . . . .
yn(0)= 0, yn= 1 ; yn(x)= x
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Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
I d ∈ N : dimension
I Q ⊆ K ⊆ R : field
I p ∈ Kd [Rn] : polynomial

vector (coef. in K)
I y0 ∈ Kd , y : R→ Rd

Example : f (x) = exp(x) I exponential

y(0)= 1, y ′= y ; y(x)= exp(x)
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
I d ∈ N : dimension
I Q ⊆ K ⊆ R : field
I p ∈ Kd [Rn] : polynomial

vector (coef. in K)
I y0 ∈ Kd , y : R→ Rd

Example : f (x) = sin(x) or f (x) = cos(x) I sine/cosine

y1(0)= 0, y ′1= y2 ; y1(x)= sin(x)
y2(0)= 1, y ′2= −y1 ; y2(x)= cos(x)
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
I d ∈ N : dimension
I Q ⊆ K ⊆ R : field
I p ∈ Kd [Rn] : polynomial

vector (coef. in K)
I y0 ∈ Kd , y : R→ Rd

Example : f (x) = tanh(x) I hyperbolic tangent

y(0)= 0, y ′= 1− y2 ; y(x)= tanh(x)

x
tanh(x)
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
I d ∈ N : dimension
I Q ⊆ K ⊆ R : field
I p ∈ Kd [Rn] : polynomial

vector (coef. in K)
I y0 ∈ Kd , y : R→ Rd

Example : f (x) = 1
1+x2 I rational function

f ′(x) = −2x
(1+x2)2 = −2xf (x)2

y1(0)= 1, y ′1= −2y2y2
1 ; y1(x)= 1

1+x2

y2(0)= 0, y ′2= 1 ; y2(x)= x
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
I d ∈ N : dimension
I Q ⊆ K ⊆ R : field
I p ∈ Kd [Rn] : polynomial

vector (coef. in K)
I y0 ∈ Kd , y : R→ Rd

Example : f = g ± h I sum/difference

(g ± h)′ = g′ ± h′

assume :
z(0)= z0, z ′= p(z) ; z1= g
w(0)= w0, w ′= q(w) ; w1= h

then :
y(0)= z0,1 + w0,1, y ′= p1(z)± q1(w) ; y= z1 ± w1
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
I d ∈ N : dimension
I Q ⊆ K ⊆ R : field
I p ∈ Kd [Rn] : polynomial

vector (coef. in K)
I y0 ∈ Kd , y : R→ Rd

Example : f = gh I product

(gh)′ = g′h + gh′

assume :
z(0)= z0, z ′= p(z) ; z1= g
w(0)= w0, w ′= q(w) ; w1= h

then :
y(0)= z0,1w0,1, y ′= p1(z)w1 + z1q1(w) ; y= z1w1
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
I d ∈ N : dimension
I Q ⊆ K ⊆ R : field
I p ∈ Kd [Rn] : polynomial

vector (coef. in K)
I y0 ∈ Kd , y : R→ Rd

Example : f = 1
g I inverse

f ′ = −g′

g2 = −g′f 2

assume :
z(0)= z0, z ′= p(z) ; z1= g

then :

y(0)= 1
z0,1

, y ′= −p1(z)y2 ; y= 1
z1
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Generable functions (total, univariate)
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then :
y(0)= 0, y ′= z1 ; y=

∫
z1
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))
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Types
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I p ∈ Kd [Rn] : polynomial

vector (coef. in K)
I y0 ∈ Kd , y : R→ Rd

Example : f ′ = tanh ◦f I Non-polynomial differential equation
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2 )y2 ; y2(x)= tanh(f (x))
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I Q ⊆ K ⊆ R : field
I p ∈ Kd [Rn] : polynomial

vector (coef. in K)
I y0 ∈ Kd , y : R→ Rd

Example : f (0) = f0, f ′ = g ◦ f I Initial Value Problem (IVP)

f ′ = g′′ = (p1(z))′ = ∇p1(z) · z ′

assume :
z(0)= z0, z ′= p(z) ; z1= g

then :
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Generable functions : a first summary

Nice theory for the class of total and univariate generable functions :
I analytic
I contains polynomials, sin, cos, tanh, exp

I stable under ±,×, /, ◦ and Initial Value Problems (IVP)
I technicality on the field K of coefficients for stability under ◦
I solutions to polynomial ODEs form a very large class

Limitations :
I total functions
I univariate
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Generable functions (generalization)

Definition
f : X ⊆ Rn → R is generable if X is open
connected and ∃d ,p, x0, y0, y such that

y(x0) = y0, Jy (x) = p(y(x))

and f (x) = y1(x) for all x ∈ X .

Jy (x) = Jacobian matrix of y at x

Types
I n ∈ N : input dimension
I d ∈ N : dimension
I p ∈ Kd×d [Rd ] :

polynomial matrix
I x0 ∈ Kn

I y0 ∈ Kd , y : X → Rd

Notes :
I Partial differential equation !
I Unicity of solution y ...
I ... but not existence (ie you have to show it exists)
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I d ∈ N : dimension
I p ∈ Kd×d [Rd ] :

polynomial matrix
I x0 ∈ Kn

I y0 ∈ Kd , y : X → Rd

Example : f (x1, x2) = x1x2
2 (n = 2,d = 3) I monomial

y(0,0) =

0
0
0

 , Jy =

y2
3 3y2y3
1 0
0 1

 ; y(x) =

x1x2
2

x1
x2


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connected and ∃d ,p, x0, y0, y such that

y(x0) = y0, Jy (x) = p(y(x))

and f (x) = y1(x) for all x ∈ X .

Jy (x) = Jacobian matrix of y at x

Types
I n ∈ N : input dimension
I d ∈ N : dimension
I p ∈ Kd×d [Rd ] :

polynomial matrix
I x0 ∈ Kn

I y0 ∈ Kd , y : X → Rd

Example : f (x1, x2) = x1x2
2 I monomial

y1(0,0)= 0, ∂x1y1= y2
3 , ∂x2y1= 3y2y3 ; y1(x) = x1x2

2
y2(0,0)= 0, ∂x1y2= 1, ∂x2y2= 0 ; y2(x) = x1
y3(0,0)= 0, ∂x1y3= 0, ∂x2y3= 1 ; y3(x) = x2

This is tedious !
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Generable functions (generalization)

Definition
f : X ⊆ Rn → R is generable if X is open
connected and ∃d ,p, x0, y0, y such that

y(x0) = y0, Jy (x) = p(y(x))

and f (x) = y1(x) for all x ∈ X .

Jy (x) = Jacobian matrix of y at x

Types
I n ∈ N : input dimension
I d ∈ N : dimension
I p ∈ Kd×d [Rd ] :

polynomial matrix
I x0 ∈ Kn

I y0 ∈ Kd , y : X → Rd

Last example : f (x) = 1
x for x ∈ (0,∞) I inverse function

y(1)= 1, ∂xy= −y2 ; y(x) = 1
x
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Generable functions : summary

Nice theory for the class of multivariate generable functions (over
connected domains) :
I analytic
I contains polynomials, sin, cos, tanh, exp, ...
I stable under ±,×, /, ◦ and Initial Value Problems (IVP)
I technicality on the field K of coefficients for stability under ◦
I requires partial differential equations

Exercice : are all analytic functions generable?
Riemann Γ and ζ are not generable.
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Nice theory for the class of multivariate generable functions (over
connected domains) :
I analytic
I contains polynomials, sin, cos, tanh, exp, ...
I stable under ±,×, /, ◦ and Initial Value Problems (IVP)
I technicality on the field K of coefficients for stability under ◦
I requires partial differential equations

Exercice : are all analytic functions generable? No
Riemann Γ and ζ are not generable.
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Why is this useful ?

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated multivariate
partial functions using other operations, and we know they are
solutions to polynomial ODEs by construction.

Example (almost rounding function)

There exists a generable function round such that for any n ∈ Z, x ∈ R,
λ > 2 and µ > 0 :
I if x ∈

[
n − 1

2 ,n + 1
2

]
then | round(x , µ, λ)− n| 6 1

2 ,
I if x ∈

[
n − 1

2 + 1
λ ,n + 1

2 −
1
λ

]
then | round(x , µ, λ)− n| 6 e−µ.
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Reminder of the result

Main result (reminder)

There exists a fixed (vector of) polynomial p such that for any f ∈ C0(R)
and ε ∈ C0(R,R∗+), there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).

20 / 25



A simplified proof

α ∈ R ODE t
0 1 1 0 1 0 1 0 0 1 1 1 . . .

digits of α
binary stream

generator

This is the ideal curve, the real
one is an approximation of it.

N
O

TE
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α ∈ R ODE t
0 1 1 0 1 0 1 0 0 1 1 1 . . .

digits of α
binary stream

generator

ODEt

“Digital” to Analog
Converter (fixed frequency)

Approximate Lipschitz and bounded
functions with fixed precision.

N
O

TE

That’s the trickiest part.
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Converter (fixed frequency)
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α ∈ R ODE t
0 1 1 0 1 0 1 0 0 1 1 1 . . .

digits of α
binary stream

generator

ODEt

“Digital” to Analog
Converter (fixed frequency)

ODE?

t

We need something more :
an arbitrarily fast-growing ODE.

N
O
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A less simplified proof
binary stream generator : digits of α ∈ R

t

1
0

1
0

1
0

1
0

f (α, µ, λ, t) = 1
2 + 1

2 tanh(µ sin(2απ4round(t−1/4,λ) + 4π/3))

It’s horrible, but generable

round is the mysterious rounding function... 22 / 25



A less simplified proof
binary stream generator : digits of α ∈ R

t

1
0

1
0

1
0

1
0

t

d0

a0

d1

a1

d2

a2

d3

a3

dyadic stream generator : di = mi2−di , ai = 9i +
∑

j<i dj

f (α, γ, t) = sin(2απ2round(t−1/4,γ)))

round is the mysterious rounding function... 22 / 25
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A less simplified proof

t

1
0

1
0

1
0

1
0

t

d0

a0

d1

a1

d2

a2

d3

a3

copy signal copy signal copy signal copy signal

This copy operation is the “non-trivial” part.

22 / 25



A less simplified proof

t

We can do almost piecewise constant functions...
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A less simplified proof

t

We can do almost piecewise constant functions...
I ...that are bounded by 1...
I ...and have super slow changing frequency.
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A less simplified proof

t

We can do almost piecewise constant functions...
I ...that are bounded by 1...
I ...and have super slow changing frequency.

How do we go to arbitrarily large and growing functions? Can a
polynomial ODE even have arbitrary growth?

22 / 25



An old question on growth

Building a fast-growing ODE, that exists over R :

y ′1 = y1 ; y1(t) = exp(t)

y ′2 = y1y2 ; y1(t) = exp(exp(t))
. . . . . .
y ′n = y1 · · · yn ; yn(t) = exp(· · · exp(t) · · · ) := en(t)

Conjecture (Emil Borel, 1899)

With n variables, cannot do better than Ot (en(Atk )).

Counter-example (Vijayaraghavan, 1932)

1
2− cos(t)− cos(αt)
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An old question on growth

en(t) = exp(· · · exp(t) · · · ) (n compositions)
Conjecture (Emil Borel, 1899)

With n variables, cannot do better than Ot (en(Atk )).

Counter-example (Vijayaraghavan, 1932)

1
2− cos(t)− cos(αt)

t

Sequence of arbitrarily
growing spikes.
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With n variables, cannot do better than Ot (en(Atk )).

Counter-example (Vijayaraghavan, 1932)

1
2− cos(t)− cos(αt)

t

Sequence of arbitrarily
growing spikes. But not
good enough for us.
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en(t) = exp(· · · exp(t) · · · ) (n compositions)
Conjecture (Emil Borel, 1899)

With n variables, cannot do better than Ot (en(Atk )).

Counter-example (Vijayaraghavan, 1932)

1
2− cos(t)− cos(αt)

Theorem (In the paper)

There exists a polynomial p : Rd → Rd such that for any continuous
function f : R+ → R, we can find α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))
satisfies

y1(t) > f (t), ∀t > 0.

Note : both results require α to be transcendental. Conjecture still
open for rational (or algebraic) coefficients.
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Proof gem : iteration with differential equations

Assume f is generable, can we iterate f with an ODE?
That is, build a generable y such that y(x ,n) ≈ f [n](x) for all n ∈ N

t
x

f (x)

f [2](x)

0 1
2

1 3
2

2y ′≈0

z′≈f (y)−z

y ′≈z−y

z′≈0
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Main result, remark and end

Main result (reminder)

There exists a fixed (vector of) polynomial p such that for any f ∈ C0(R)
and ε ∈ C0(R,R∗+), there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).

Futhermore, α is computable from f and ε.

Remarks :
I if f and ε are computable then α is computable
I if f or ε is not computable then α is not computable
I in all cases α is a horrible transcendental number
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