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‘The resulting potential well of wasted potential
acts as grad students follow the gradient in the
perceived direction of least work:

72

a real job

In reality, TRF is not an actual force, but rather a distortion

of the mindspace continuum, in which grad students are
simply responding to the curvature of their own neuroses.

*Graduate space-time is just like real space-time, but with added imaginary dimensions.

The Thesis Repulsor Field (TRF) is a generalized
maodel of the forces experienced by an individual
in the final stages of graduate space-time*.

It is characterized by an attractor vector field
directed towards completion of the thesis but
with an intense repulsive singularity at its origin.

Several trajectories are possible
due to this vector field:

Periodic Productivity Fomisi Rt
Workon

your thesis

Too high
initial velocity!

Infinite Orbit

— Circle your

thesis forever

JORGE CMAM £ 2010

WwWW.PHDCOMICS.COM
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What is a computer ?
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What is a computer ?

Differential Analyser Admiralty Fire Control Table
“Mathematica of the 1920s” British Navy ships (WW2)
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Church Thesis

Computability

N
e e A
-\

analog

discrete

continuous

Church Thesis

All reasonable models of computation are equivalent.
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Church Thesis

Complexity

< AN

" N

discrete

N
N

e s continuous
Effective Church Thesis

All reasonable models of computation are equivalent for complexity.
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Polynomial Differential Equations

General Purpose

Analog Computer Differential Analyzer

Newton mechanics polynomial differential
equations :
{y(0)= Yo
Reaction networks : ()= py(1)
» chemical .
> enzymatic » Rich class

» Stable (+,x,0,/,ED)
» No closed-form solution
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Example of dynamical system
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Example of dynamical system

1=y y1 =10
o=—%¥s _ Jye=10

- :
Y3 = YaYa y3 = sin(0)

V4= —Yo)3 Y4 = cos(0)
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Example of dynamical system

”T Yo E Yy

Y=Y y1 =90
o=—%¥s _ Jye=10
Vi = YoYa y3 = sin(0)

V4= —Yo)3 Y4 = cos(0)
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Computing with differential equations

Generable functions

y(0)= yo
{y'(x)z ply(x)) *EF
f(x) = y1(x)
Vi (x) / X

Shannon’s notion

9/22



Computing with differential equations

Generable functions

y(0)= yo
{y'(x)z ply(x)) *EF
f(x) = y1(x)
Vi (x) / X

Shannon’s notion
sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

9/22



Computing with differential equations

Generable functions

y(0)= yo
{y'(x)z ply(x)) *EF

f(x) = y1(x)

Vi (x)

Shannon’s notion
sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computable

{Y(O)Z q(x) xeR
y'()=p(y(t)) teRy

flx) = lim ys(t)

NN A 1)

U vV

Modern notion
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Computing with differential equations

Generable functions

y(0)= yo
{y'(x)z ply(x)) *EF

f(x) = y1(x)

Vi (x)

Shannon’s notion
sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computable

{Y(O)Z q(x) xeR
y'()=p(y(t)) teRy

flx) = lim ys(t)

NV )

U vV

Modern notion
sin, cos, exp, log, I, C, ...

Turing powerful
[Bournez et al., 2007]

9/22



Highlights of some results

ANALOG-PTIME ANALOG-Pr
wel L ——n(D)
w(Jv) NN yi(t) | /\ \/\/\ RO f(x
7 > £(1) \/ v
\/ \\J’MY(lwd) X4
-1 . (1)
Ngz y1()

» PTIME = ANALOG-PTIME
» f:[a, b] — R computable in polynomial time < f € ANALOG-Pg

» Analog complexity theory based on length
» Time of Turing machine < length of the GPAC
» Purely continuous characterization of PTIME
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A word on computability for real functions

Classical computability (Turing machine) : compute on words,
integers, rationals, ...
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store arbitrary real numbers and that can compute rational
functions over reals at unit cost. Comparisons between reals are
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A word on computability for real functions

Classical computability (Turing machine) : compute on words,
integers, rationals, ...

Real computability :at least two different notions

» BSS (Blum-Shub-Smale) machine : register machine that can
store arbitrary real numbers and that can compute rational
functions over reals at unit cost. Comparisons between reals are
allowed.

» Computable Analysis : reals are represented as converging
Cauchy sequences, computations are carried out by rational
approximations using Turing machines. Comparisons between
reals is not decidable in general. Computable implies
continuous.

12/22



Computable Analysis : differential equations

Let f : R" — R” continuous, consider
yO)=x, y =f(y) 1)

When is y computable ? What about its complexity ?

0/\0
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Computable Analysis : differential equations

Let f : R" — R" continuous, consider
yO)=x, y' =£y) (1)

It can be very bad :

Theorem (Pour-El and Richards)

There exists a computable (hence continuous) f such that none of the
solutions to (1) is computable.

0/_\0
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Computable Analysis : differential equations

Let f : R" — R" continuous, consider
yO)=x, y' =£y) (1)

Some good news :

Theorem (Ruohonen)

If f is computable and (1) has a unique solution, then it is computable.

But complexity can be unbounded

0/_\0
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Computable Analysis : differential equations

Let f : R" — R" continuous, consider
yO)=x, y' =£y) (1)

Still things are bad :

Theorem (Buescu, Campagnolo and Graga)

Computing the maximum interval of life (or deciding if it is bounded) is
undecidable, even if f is a polynomial.

0/_\0

13/22



Computable Analysis : differential equations

Let f : R" — R" continuous, consider
yO)=x, y' =£y) (1)

A new hope :

Theorem
If y(t) exists, we can compute r € Q such |r — y(t)| < 27" in time
poly (size of x and p, n, /(1))

where ((t) = length of the curve y (between x and y(t))

0/_\0
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Example : 2D robot

Available actions :
» rotate arm
» change arm length
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Available actions :
» rotate arm
» change arm length

State : X = (X, ¥o, X, y) € R*

Rotate arm (increase 0) :
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Example : 2D robot

) State : X = (xp, ys, X, y) € R*
14 Rotate arm (increase 6) :
(X97y9) ! T
x| |0 =1 |x
4 [y] a [1 0| M
516 I
Yo 1 0 ] Yo

Available actions :
> rotate arm Change arm length (increase /) :
» change arm length [x]' [x .

_ | Xe

y Yo |
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Example : 2D robot

Available actions :

> rotate arm

» change arm length
— Switched linear system :

X' =AX
Where A S {Arot, Aarm}.

State : X = (X, ¥o, X, y) € R*

Rotate arm (increase 0) :
x]" [0 —1] [x
yl [t 0]y

=0 )L

Change arm length (increase /) :

3 =[]

15/22



Example : mass-spring-damper system

//////////////////////////////////////

//////////////////////////////////////

YIIIIIIIII I 7777777777777777777

b K Equation of motion :

mz" = —kz — bz + mg +u

Iu(t)

Model with external input u(t)
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Example : mass-spring-damper system

State : X =zeR

zl b k Equation of motion :
mz" = —kz — bz + mg +u

m — Affine but not first order

Model with external input u(t)
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Example : mass-spring-damper system

State : X =zeR

zl b k Equation of motion :
mz" = —kz — bz + mg+ u
m — Affine but not first order
Tun
State : X = (z,2/,1) ¢ R®
Model with external input u(t) Equation of motion :
z ! z'
?| = |-kz- 22+ g+ by

1 0
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Example : mass-spring-damper system

State : X =zeR

zl b K Equation of motion :
mz" = —kz — bz +mg +u
m — Affine but not first order
Tun
State : X = (2,2/,1) € R3
Model with external input u(t) Equation of motion :
! /
~> Linear time invariant system : Z P 1
Z| = |-%z-2Z+g+—u
X/ = AX + Bu 1 m m 0 g m

with some constraints on u.
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Linear dynamical systems

Discrete case Continuous case
x(n+1) = Ax(n) X'(t) = Ax(t)
biology,
software verification,

> > biology,

> » physics,

» probabilistic model checking, » probabilistic model checking,
» combinatorics, » electrical circuits,

> >

Typical questions

» reachability : does the trajectory reach some states ?
» safety : does it always avoid the bad(unsafe) states ?
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Linear dynamical systems

Discrete case Continuous case
x(n+1) = Ax(n) + Bu(n) x'(t) = Ax(t) + Bu(t)
biology,
software verification,

> > biology,

> » physics,

» probabilistic model checking, » probabilistic model checking,
» combinatorics, » electrical circuits,

> >

Typical questions

» reachability : does the trajectory reach some states ?
» safety : does it always avoid the bad(unsafe) states ?
» controllability : can we control it to some state ?
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Hybrid/Cyber-physical systems
state guard continuous dynamics

i
¢(x)
x + R(x)

4

discrete update
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Hybrid/Cyber-physical systems

state guard continuous dynamics

i
¢(x)
x + R(x)

/l\

discrete update

> Fi(x) =1 :timed automata
» Fi(x) = ¢ : rectangular hybrid automata
> Fi(x) = Aix : linear hybrid automata

18/22



Hybrid/Cyber-physical systems
state guard continuous dynamics

i
¢(x)
x + R(x)

4

discrete update

> Fix) =1
» Fi(x) = ¢ : rectangular hybrid automata
> Fi(x) = Aix : linear hybrid automata

Typical question
Verify some temporal specification :
G(P1 = (P2UP3))
“When the trajectory enters Pj, it must remain within P, until it reaches Ps”

: timed automata

18/22



Exact verification is unfeasible

X = M;x
X = Mox S
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Exact verification is unfeasible

X = M;x

x = Mox S

X = Mx Lo —

Theorem (Markov 1947 1)

There is a fixed set of 6 x 6 integer matrices My, ..., My such that the
reachability problem “y is reachable from xy ?” is undecidable.

1. Original theorems about semigroups, reformulated with hybrid systems.
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Exact verification is unfeasible

X = Mix

x = Mox S

X = Mx Lo —

Theorem (Markov 1947 1)

There is a fixed set of 6 x 6 integer matrices My, ..., My such that the
reachability problem “y is reachable from xy ?” is undecidable.

Theorem (Paterson 1970 ")

The mortality problem “0 is reachable from xo with My, . .., My ?”is
undecidable for 3 x 3 matrices.

1. Original theorems about semigroups, reformulated with hybrid systems.

19/22



Invariants

invariant = overapproximation of the reachable states

20/22



Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition
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Invariants : example result

affine program :
nondeterministic branching, no guards, affine assignments

There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.
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Universal differential equations

Generable functions Computable functions
710 N A0 f(x)
IS TR
t

subclass of analytic functions any computable function
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Universal differential equations

Generable functions Computable functions
7100 VITAVAVINEES ()
X VARY
/ .
t
subclass of analytic functions any computable function

/

~

00 )

\
\/
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Universal differential algebraic equation (DAE)

Y

Theorem (Rubel, 1981)

For any continuous functions f and ¢, there exists y : R — R solution to

14 2

///2 "
3y"y"y Ay y

—4y"y
1 2y/3y//y///3

such that vVt € R,

+ 6y,3y//2y///y//// + 24y,2yu4y1///
—209y2y"%y"% 112y —0

() — f()] < e(b).
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Universal differential algebraic equation (DAE)

Y

Theorem (Rubel, 1981)

There exists a fixed polynomial p and k € N such that for any conti-
nuous functions f and e, there exists a solutiony : R — R to

p(y7yl7"'7y(k)):O

such thatVt e R,
ly(t) — f(B)] < (1)
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Universal differential algebraic equation (DAE)

Y

Theorem (Rubel, 1981)

There exists a fixed polynomial p and k € N such that for any conti-
nuous functions f and e, there exists a solutiony : R — R to

p(y7yl7"'7y(k)):O

such thatVt e R,
ly(t) — f(B)] < (1)

Problem : this is «weak» result.

24 /22



The problem with Rubel’s DAE

The solution y is not unique, even with added initial conditions :

p(y7y/7 cee 7y(k)) = Oa y(O) = a07y/(0) =1, .. ’y(k)(o) = Ok
In fact, this is fundamental for Rubel’s proof to work !
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The problem with Rubel’'s DAE

The solution y is not unique, even with added initial conditions :
p(y7y/7 s 7y(k)) =0, y(O) = Oéo,y/(O) = Q1. ’y(k)(o) = Ok
In fact, this is fundamental for Rubel’s proof to work !

» Rubel’s statement : this DAE is universal
» More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y’ = p(y)?
Note : explicit polynomial ODE =- unique solution

25/22



Universal initial value problem (IVP)

/

«x)\\ )

k
\/

Theorem

‘<

There exists a fixed (vector of) polynomial p such that for any
continuous functions f and e, there exists o € R? such that

y(0)=a,  y'(t)=p(y(1))
has a unique solution y : R — R? and Vt € R,

ya (1) = F()] < ().
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Universal initial value problem (IVP)

/ Notes :
\ J 1‘”\ . » system of ODEs,
\ // | / > y is analytic,
\/ > we need d = 300.

Theorem

There exists a fixed (vector of) polynomial p such that for any
continuous functions f and e, there exists o € R? such that

y(0)=a,  y'(t)=p(y(1))
has a unique solution y : R — R? and Vt € R,
lya(t) = F(1)] < e(2).

26/22



Universal initial value problem (IVP)

Notes :
\ / 1(x) . » system of ODEs,
\ | / > y is analytic,
\/ > we need d ~ 300.

Theorem

There exists a fixed (vector of) polynomial p such that for any
continuous functions f and e, there exists o € R? such that

y(0)=a,  y'(t)=p(y(1))
has a unique solution y : R — R? and Vt € R,

ya (1) = F()] < ().

Remark : « is usually transcendental, but computable from f and ¢
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Rubel’s proof in one slide

—1
> Take f(t) = e'-2 for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" () + 2tf'(t) = 0.
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Rubel’s proof in one slide

—1

> Take f(t) = e'-2 for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" () + 2tf'(t) = 0.

» Forany a,b,c € R, y(t) = cf(at + b) satisfies

3 y/4 y// y////2 4 y/4 y//2 y//// +6 y y//2 y/// y//// + 24 y y y////
1 2y/3y//y///3 29y/2y//3y///2 +1 2y//7 0

n4

Translation and rescaling :

T

27/22



Rubel’s proof in one slide

=1
> Take f(t) = e1-2 for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" (t) + 2tf'(t) = 0.
» Forany a,b,c € R, y(t) = cf(at + b) satisfies
14 1111012 14 112 111 13 112 111 1111 12 114 13 11,1113 12 113 1112 n7

3y Tyl YIS _ayt YISy IS Y I gyt S IR 4yl Sy IS gyt SIS IS 1y T g

» Can glue together arbitrary many such pieces

i

M
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Rubel’s proof in one slide

—1

> Take f(t) = e'-2 for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" (t) + 2tf'(t) = 0.

» Forany a,b,c € R, y(t) = cf(at + b) satisfies

4 2 4 112 3 12 2 4 3 3 2 113 12 7
3y Ay 12 g 1A 12 1 g 13 112 I 01 g 12 104 110 g0 1311 1113 _og 12 113 1112 | g, 11T g

» Can glue together arbitrary many such pieces
» Can arrange so that [ f is solution : piecewise pseudo-linear

— |
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Rubel’s proof in one slide

—1

> Take f(t) = e'-2 for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" (t) + 2tf'(t) = 0.

» Forany a,b,c € R, y(t) = cf(at + b) satisfies

4 2 4 112 3 12 2 4 3 3 2 113 12 7
3y Ay 12 g 1A 12 1 g 13 112 I 01 g 12 104 110 g0 1311 1113 _og 12 113 1112 | g, 11T g

» Can glue together arbitrary many such pieces
» Can arrange so that [ f is solution : piecewise pseudo-linear

— |

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C°

27/22



Universal DAE revisited

| /
"/ \

=

S
| =
-

|
WY

There exists a fixed polynomial p and k € N such that for any
continuous functions f and ¢, there exists ay, . . ., ax € R such that

P(%yla ° o0 7y(k)) = Oa y(O) = aan/(O) = 0q,... ’y(k)(o) = Ok
has a unique analytic solution and this solution satisfies such that
() = ()] < e(b).
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Characterization of polynomial time

Definition : £ € ANALOG-PTIME < dp polynomial, ¥ word w
[w|

y(O)=(¢(W),‘W|,O,...,O) y/=p(}/) ¢(W)=2Wi2_i
i=1

()

w(W)-V/\/\/\/V (t) = length of y
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Characterization of polynomial time

Definition : £ € ANALOG-PTIME < dp polynomial, ¥ word w
[w|

y(O)=(¢(W),‘W|,O,...,O) y’:p(y) ¢(W)=ZWI2_i
i=1

accept: we L R S (et
1 L= ]
\/\/\/\
P(w)1 /\\/\/ ((t) = length of y
\/ computing

satisfies
1. ify(t) =1thenwe L
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Characterization of polynomial time

Definition : £ € ANALOG-PTIME < dp polynomial, ¥ word w
[w|

y(O)=(¢(W),‘W|,O,...,O) y’:p(y) ¢(W)=ZWI2_i
i=1

accept: w e L

~
P(w)d [\ /\/\/\/ ((t) = length of y

VA computing L

reject : wi ¢ L e

satisfies
2. ifyy(t)y < —1thenw ¢ L
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Characterization of polynomial time

Definition : £ € ANALOG-PTIME < dp polynomial, ¥ word w

|wl

y(O)=(¢(W),‘W|,O,...,O) y’:p(y) ¢(W)=ZWI2_i
i=1

accept: we L
1
P(w)a N\ /\/\/\/\/\ y1(t) forbidden
\/ Y computing poly(wl)
-1
reject : w ¢ L
satisfies

3. if £(t) = poly(|w|) then |y;(t)| > 1

{(t) = length of y

29/22



Characterization of polynomial time

Definition : £ € ANALOG-PTIME < dp polynomial, ¥ word w

|w|

}/(0)=(¢(W)7\W|707---70) y’:p(y) ¢(W)=ZW/2_i
i=1

w(w)]

accept: we L S B— Y ¢
/\_/
A f\/\/\/\ yi(1) forbidden
/\\/ £(t) = length of y
\/ computing Lpaly(IWI)
reject : w ¢ L IR

Theorem

PTIME = ANALOG-PTIME

29/22



Characterization of real polynomial time

Definition : f : [a, b] — R in ANALOG-Pr < 3p polynomial, Vx € [a, b]

y(O):(X,O,...,O) y,:p(y)

70,
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Characterization of real polynomial time

Definition : f : [a, b] — R in ANALOG-Pr < 3p polynomial, Vx € [a, b]
satisfies :

1. Jys () — f)] < 2710
«greater length = greater precision»
2. () >t
«length increases with time»

NN A0 )

\/ \Y

70,
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Characterization of real polynomial time

Definition : f : [a, b] — R in ANALOG-Pr < 3p polynomial, Vx € [a, b]

satisfies :
1. Jys () — f)] < 2710
«greater length = greater precision»
2. () >t
«length increases with time»

NN A0 )

\/ \Y

70,

f: [a, b] — R computable in polynomial time < f € ANALOG-Pg.
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Inductive invariants : example

f3
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Inductive invariants : example

X,y,z range over Q fi: R® —» R3
S
S5 s
#
f
1 o 2 f
f3
f5 f,
S
&

51,5,,53 is an invariant
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Inductive invariants : example

X,y,z range over Q fi: R® —» R3
S
S.
e ke N
fi
1 A 2 f
f3
f5 f,
g
S/

S4,5,,53 is an inductive invariant
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Inductive invariants : example

X,y,z range over Q fi: R® —» R3
S
fi
1 o 2 f
f3
f5 f,

l1,l>,l3 is an invariant
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Inductive invariants : example

X,y,z range over Q fi: R® - RS

ls

l1,l,1; is NOT an inductive invariant
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Inductive invariants : example

X,y,z range over Q fi: R® - RS

ls

l1,b,l3 is an inductive invariant
31/22



