Dynamical Systems: Computability, Verification, Analysis

Amaury Pouly

Journée des nouveaux arrivants, IRIF

15 october 2018

THE THESIS REPULSOR FIELD

The resulting potential well of wasted potential acts as grad students follow the gradient in the perceived direction of least work:

In reality, TRF is not an actual force, but rather a distortion of the mindspace continuum, in which grad students are simply responding to the curvature of their own neuroses.

*Graduate space-time is just like real space-time, but with added imaginary dimensions.

The Thesis Repulsor Field (TRF) is a generalized model of the forces experienced by an individual in the final stages of graduate space-time*.

It is characterized by an attractor vector field directed towards completion of the thesis but with an intense repulsive singularity at its origin.

> Several trajectories are possible due to this vector field:

WWW. PHDCOMICS. COM

- 2011 Master : ENS Lyon
- 2015 PhD : LIX, Polytechnique and University of Algarve, Portugal Olivier Bournez and Daniel S. Graça
- 2016 Postdoc : Oxford Joel Ouaknine and James Worrell
- 2017 Postdoc : Max Planck Institute for Software Systems Joel Ouaknine

- 2011 Master : ENS Lyon
- 2015 PhD : LIX, Polytechnique and University of Algarve, Portugal Olivier Bournez and Daniel S. Graça
- 2016 Postdoc : Oxford Joel Ouaknine and James Worrell
- 2017 Postdoc : Max Planck Institute for Software Systems Joel Ouaknine
- 2018 Attracted to IRIF : starting 1st January

What is a computer?

What is a computer?

What is a computer?

Differential Analyser "Mathematica of the 1920s"

Admiralty Fire Control Table British Navy ships (WW2)

Computability

Church Thesis

All reasonable models of computation are equivalent.

Complexity

Effective Church Thesis

All reasonable models of computation are equivalent for complexity.

Polynomial Differential Equations

No closed-form solution

Example of dynamical system

$$\ddot{\theta} + rac{g}{\ell}\sin(\theta) = 0$$

Example of dynamical system

Example of dynamical system

$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{l} y_3 \\ y_3' = y_2 y_4 \\ y_4' = -y_2 y_3 \end{cases} \Leftrightarrow \begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases}$$

Generable functions

Shannon's notion

Generable functions

Shannon's notion

 $\sin,\cos,\exp,\log,\ldots$

Strictly weaker than Turing machines [Shannon, 1941]

Generable functions

Shannon's notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \dots$

Strictly weaker than Turing machines [Shannon, 1941]

Computable

$$\left\{ egin{array}{ll} y(0) = q(x) & x \in \mathbb{R} \ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{array}
ight.$$

Modern notion

Generable functions

Shannon's notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \dots$

Strictly weaker than Turing machines [Shannon, 1941]

Computable

$$egin{cases} y(0) = q(x) & x \in \mathbb{R} \ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{cases}$$

Modern notion

 $\sin,\cos,\exp,\log,\Gamma,\zeta,\ldots$

Turing powerful [Bournez et al., 2007]

Highlights of some results

Theorem

PTIME = ANALOG-PTIME

▶ $f : [a, b] \rightarrow \mathbb{R}$ computable in polynomial time $\Leftrightarrow f \in \mathsf{ANALOG-P}_{\mathbb{R}}$

Analog complexity theory based on length

- ► Time of Turing machine ⇔ length of the GPAC
- Purely continuous characterization of PTIME

A word on computability for real functions

Classical computability (Turing machine) : compute on words, integers, rationals, ...

A word on computability for real functions

Classical computability (Turing machine) : compute on words, integers, rationals, ...

Real computability :

Classical computability (Turing machine) : compute on words, integers, rationals, ...

Real computability :at least two different notions

BSS (Blum-Shub-Smale) machine : register machine that can store arbitrary real numbers and that can compute rational functions over reals at unit cost. Comparisons between reals are allowed. **Classical computability (Turing machine)** : compute on words, integers, rationals, ...

Real computability :at least two different notions

- BSS (Blum-Shub-Smale) machine : register machine that can store arbitrary real numbers and that can compute rational functions over reals at unit cost. Comparisons between reals are allowed.
- Computable Analysis : reals are represented as converging Cauchy sequences, computations are carried out by rational approximations using Turing machines. Comparisons between reals is not decidable in general. Computable implies continuous.

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ continuous, consider

$$y(0) = x, \qquad y' = f(y)$$
 (1)

Question

When is y computable? What about its complexity?

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ continuous, consider

$$y(0) = x, \qquad y' = f(y)$$
 (1)

It can be very bad :

Theorem (Pour-El and Richards)

There exists a computable (hence continuous) f such that **none of the solutions** to (1) is computable.

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ continuous, consider

$$y(0) = x, \qquad y' = f(y)$$
 (1)

Some good news :

Theorem (Ruohonen)

If f is computable and (1) has a unique solution, then it is computable.

But complexity can be unbounded

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ continuous, consider

$$y(0) = x, \qquad y' = f(y)$$
 (1)

Still things are bad :

Theorem (Buescu, Campagnolo and Graça)

Computing the maximum interval of life (or deciding if it is bounded) is undecidable, even if f is a polynomial.

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ continuous, consider

$$y(0) = x, \qquad y' = f(y)$$
 (1)

A new hope :

Theorem

If y(t) exists, we can compute $r \in \mathbb{Q}$ such $|r - y(t)| \leq 2^{-n}$ in time poly (size of x and p, n, $\ell(t)$)

where $\ell(t) \approx$ length of the curve y (between x and y(t))

$$x$$
 $y(t)$ $y(t)$

Available actions :

- rotate arm
- change arm length

State :
$$X = (x_{\theta}, y_{\theta}, x, y) \in \mathbb{R}^4$$

Available actions :

- rotate arm
- change arm length

Available actions :

- rotate arm
- change arm length

State :
$$X = (x_{ heta}, y_{ heta}, x, y) \in \mathbb{R}^4$$

Rotate arm (increase θ) :

 $\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ $\begin{bmatrix} x_{\theta} \\ y_{\theta} \end{bmatrix}' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_{\theta} \\ y_{\theta} \end{bmatrix}$

Available actions :

- rotate arm
- change arm length

State :
$$X = (x_{ heta}, y_{ heta}, x, y) \in \mathbb{R}^4$$

Rotate arm (increase θ) :

$$\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$\begin{bmatrix} x_{\theta} \\ y_{\theta} \end{bmatrix}' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_{\theta} \\ y_{\theta} \end{bmatrix}$$

Change arm length (increase $\ell)$:

$$\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} x_{\theta} \\ y_{\theta} \end{bmatrix}$$

Available actions :

- rotate arm
- change arm length
- \rightarrow Switched linear system :

X' = AXwhere $A \in \{A_{rot}, A_{arm}\}$.

State :
$$X = (x_{ heta}, y_{ heta}, x, y) \in \mathbb{R}^4$$

Rotate arm (increase θ) :

$$\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$\begin{bmatrix} x_{\theta} \\ y_{\theta} \end{bmatrix}' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_{\theta} \\ y_{\theta} \end{bmatrix}$$

Change arm length (increase $\ell)$:

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}' = \begin{bmatrix} \mathbf{x}_{\theta} \\ \mathbf{y}_{\theta} \end{bmatrix}$$

State : $X = z \in \mathbb{R}$

Equation of motion :

$$mz'' = -kz - bz' + mg + u$$

Model with external input u(t)

State : $X = z \in \mathbb{R}$

Equation of motion :

$$mz'' = -kz - bz' + mg + u$$

Model with external input u(t)

State : $X = z \in \mathbb{R}$

Equation of motion :

$$mz'' = -kz - bz' + mg + u$$

 \rightarrow Affine but not first order

Model with external input u(t)

Model with external input u(t)

State : $X = z \in \mathbb{R}$

Equation of motion :

$$mz'' = -kz - bz' + mg + u$$

 \rightarrow Affine but not first order

State :
$$X = (z, z', 1) \in \mathbb{R}^3$$

Equation of motion :

$$\begin{bmatrix} z \\ z' \\ 1 \end{bmatrix}' = \begin{bmatrix} z' \\ -\frac{k}{m}z - \frac{b}{m}z' + g + \frac{1}{m}u \\ 0 \end{bmatrix}$$

Model with external input u(t)

 \sim Linear time invariant system : X' = AX + Bu

with some constraints on *u*.

State : $X = z \in \mathbb{R}$

Equation of motion :

$$mz'' = -kz - bz' + mg + u$$

 \rightarrow Affine but not first order

State :
$$X = (z, z', 1) \in \mathbb{R}^3$$

Equation of motion :

$$\begin{bmatrix} z \\ z' \\ 1 \end{bmatrix}' = \begin{bmatrix} z' \\ -\frac{k}{m}z - \frac{b}{m}z' + g + \frac{1}{m}u \\ 0 \end{bmatrix}$$

Linear dynamical systems

Discrete case

$$x(n+1) = Ax(n)$$

- biology,
- software verification,
- probabilistic model checking,
- combinatorics,

Continuous case

$$x'(t) = Ax(t)$$

- biology,
- physics,
- probabilistic model checking,
- electrical circuits,

Typical questions

- reachability : does the trajectory reach some states ?
- safety : does it always avoid the bad(unsafe) states ?

Linear dynamical systems

Discrete case

$$x(n+1) = Ax(n) + \frac{Bu(n)}{2}$$

- biology,
- software verification,
- probabilistic model checking,
- combinatorics,

Continuous case

$$x'(t) = Ax(t) + \frac{Bu(t)}{Bu(t)}$$

- biology,
- physics,
- probabilistic model checking,
- electrical circuits,

Typical questions

- reachability : does the trajectory reach some states ?
- safety : does it always avoid the bad(unsafe) states ?
- controllability : can we control it to some state?

Hybrid/Cyber-physical systems

Hybrid/Cyber-physical systems

- F_i(x) = 1 : timed automata
- F_i(x) = c_i : rectangular hybrid automata
- F_i(x) = $A_i x$: linear hybrid automata

Hybrid/Cyber-physical systems

 \blacktriangleright $F_i(x) = 1$: timed automata

F_i
$$(x) = c_i$$
: rectangular hybrid automata

F_i(x) =
$$A_i x$$
 : linear hybrid automata

Typical question

Verify some temporal specification :

$$G(P_1 \Rightarrow (P_2 \cup P_3))$$

"When the trajectory enters P_1 , it must remain within P_2 until it reaches P_3 "

Exact verification is unfeasible

Exact verification is unfeasible

Theorem (Markov 1947¹)

There is a fixed set of 6×6 integer matrices M_1, \ldots, M_k such that the reachability problem "y is reachable from x_0 ?" is undecidable.

^{1.} Original theorems about semigroups, reformulated with hybrid systems.

Exact verification is unfeasible

Theorem (Markov 1947¹)

There is a fixed set of 6×6 integer matrices M_1, \ldots, M_k such that the reachability problem "y is reachable from x_0 ?" is undecidable.

Theorem (Paterson 1970¹)

The mortality problem "0 is reachable from x_0 with M_1, \ldots, M_k ?" is undecidable for 3×3 matrices.

^{1.} Original theorems about semigroups, reformulated with hybrid systems.

invariant = overapproximation of the reachable states

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

affine program :

nondeterministic branching, no guards, affine assignments

Theorem

There is an algorithm which computes, for any given affine program over \mathbb{Q} , its strongest polynomial inductive invariant.

Universal differential equations

Generable functions

Computable functions

$x \xrightarrow{y_1(t)} f(x)$

subclass of analytic functions

any computable function

Universal differential equations

Generable functions

Computable functions

subclass of analytic functions

any computable function

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

For any continuous functions f and ε , there exists $y : \mathbb{R} \to \mathbb{R}$ solution to

$$3y'^{4}y''y''''^{2} -4y'^{4}y'''^{2}y'''' + 6y'^{3}y''^{2}y'''y'''' + 24y'^{2}y''^{4}y'''' -12y'^{3}y''y'''^{3} - 29y'^{2}y''^{3}y'''^{2} + 12y''^{7} = 0$$

such that $\forall t \in \mathbb{R}$,

 $|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y, y', \ldots, y^{(k)}) = 0$$

such that $\forall t \in \mathbb{R}$,

$$|\mathbf{y}(t) - f(t)| \leq \varepsilon(t).$$

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y, y', \ldots, y^{(k)}) = 0$$

such that $\forall t \in \mathbb{R}$,

$$|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$$

Problem : this is «weak» result.

The solution y is not unique, even with added initial conditions :

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel's proof to work!

The solution y is not unique, even with added initial conditions :

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel's proof to work !

- Rubel's statement : this DAE is universal
- More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y' = p(y)? Note : explicit polynomial ODE \Rightarrow unique solution

Universal initial value problem (IVP)

Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t)-f(t)|\leqslant \varepsilon(t).$

Universal initial value problem (IVP)

Notes :

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t) - f(t)| \leq \varepsilon(t).$

Universal initial value problem (IVP)

Notes :

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|\mathbf{y}_1(t) - f(t)| \leq \varepsilon(t).$

Remark : α is usually transcendental, but computable from *f* and ε

Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise.
It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0$.

Take f(t) = e^{-1/(1-t^2)}/(1-t^2) for -1 < t < 1 and f(t) = 0 otherwise. It satisfies (1 - t²)² f''(t) + 2tf'(t) = 0.
For any a, b, c ∈ ℝ, y(t) = cf(at + b) satisfies

$$3y'^{4}y''y''''^{2} -4y'^{4}y''^{2}y'''' + 6y'^{3}y''^{2}y'''' y'''' + 24y'^{2}y'''^{4}y'''' -12y'^{3}y''y'''^{3} - 29y'^{2}y''^{3}y'''^{2} + 12y''^{7} = 0$$

 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

Can glue together arbitrary many such pieces

• Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise.

It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$

For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

- Can glue together arbitrary many such pieces
- Can arrange so that \(\int f\) is solution : piecewise pseudo-linear

• Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise.

It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$

For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

- Can glue together arbitrary many such pieces
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear

Conclusion : Rubel's equation allows any piecewise pseudo-linear functions, and those are **dense in** C^0

Universal DAE revisited

Theorem

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists $\alpha_0, \ldots, \alpha_k \in \mathbb{R}$ such that

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

has a unique analytic solution and this solution satisfies such that

 $|\mathbf{y}(t) - f(t)| \leq \varepsilon(t).$

Definition : $\mathcal{L} \in \mathsf{ANALOG-PTIME} \Leftrightarrow \exists p \text{ polynomial}, \forall \text{ word } w$

Definition : $\mathcal{L} \in \mathsf{ANALOG-PTIME} \Leftrightarrow \exists p \text{ polynomial}, \forall \text{ word } w$

satisfies

1. if
$$y_1(t) \ge 1$$
 then $w \in \mathcal{L}$

Definition : $\mathcal{L} \in \mathsf{ANALOG-PTIME} \Leftrightarrow \exists p \text{ polynomial}, \forall \text{ word } w$

satisfies

2. if
$$y_1(t) \leq -1$$
 then $w \notin \mathcal{L}$
Definition : $\mathcal{L} \in \mathsf{ANALOG-PTIME} \Leftrightarrow \exists p \text{ polynomial}, \forall \text{ word } w$

satisfies

3. if $\ell(t) \ge \operatorname{poly}(|w|)$ then $|y_1(t)| \ge 1$

Definition : $\mathcal{L} \in \mathsf{ANALOG-PTIME} \Leftrightarrow \exists p \text{ polynomial}, \forall \text{ word } w$

Theorem

$\mathsf{PTIME} = \mathsf{ANALOG}\mathsf{-}\mathsf{PTIME}$

Characterization of real polynomial time

Definition : $f : [a, b] \rightarrow \mathbb{R}$ in ANALOG-P_R $\Leftrightarrow \exists p$ polynomial, $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

Characterization of real polynomial time

Definition : $f : [a, b] \rightarrow \mathbb{R}$ in ANALOG-P_R $\Leftrightarrow \exists p$ polynomial, $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

satisfies :

1.
$$|y_1(t) - f(x)| \leq 2^{-\ell(t)}$$

«greater length \Rightarrow greater precision»

2. $\ell(t) \ge t$

«length increases with time»

Characterization of real polynomial time

Definition : $f : [a, b] \rightarrow \mathbb{R}$ in ANALOG-P_R $\Leftrightarrow \exists p$ polynomial, $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

satisfies :

1.
$$|y_1(t) - f(x)| \leq 2^{-\ell(t)}$$

«greater length \Rightarrow greater precision»

2. $\ell(t) \ge t$

«length increases with time»

Theorem

 $f : [a, b] \to \mathbb{R}$ computable in polynomial time $\Leftrightarrow f \in \mathsf{ANALOG-P}_{\mathbb{R}}$.

$$f_i: \mathbb{R}^3 \to \mathbb{R}^3$$

x, y, z range over \mathbb{Q}

$$f_i: \mathbb{R}^3 \to \mathbb{R}^3$$

 S_1, S_2, S_3 is an invariant

x, y, z range over \mathbb{Q}

$$f_i: \mathbb{R}^3 \to \mathbb{R}^3$$

 S_1, S_2, S_3 is an inductive invariant

x, y, z range over \mathbb{Q}

$$f_i: \mathbb{R}^3 \to \mathbb{R}^3$$

 I_1, I_2, I_3 is an invariant

x, y, z range over \mathbb{Q}

$$f_i: \mathbb{R}^3 \to \mathbb{R}^3$$

 l_1, l_2, l_3 is **NOT** an inductive invariant

x, y, z range over \mathbb{Q}

$$f_i: \mathbb{R}^3 \to \mathbb{R}^3$$

 I_1, I_2, I_3 is an inductive invariant