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What is a computer?

VS

Differential Analyser
“Mathematica of the 1920s”

Admiralty Fire Control Table
British Navy ships (WW2)
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Church Thesis

Computability

discrete

Turing
machine

boolean circuitslogic

recursive
functions

lambda
calculus

quantum analog
continuous

Church Thesis
All reasonable models of computation are equivalent.
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Church Thesis

Complexity

discrete

Turing
machine

boolean circuitslogic

recursive
functions

lambda
calculus

quantum analog
continuous

>
?

?

Effective Church Thesis
All reasonable models of computation are equivalent for complexity.
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Polynomial Differential Equations

k k

+ u+vu
v

× uvu
v

∫ ∫
uu

General Purpose
Analog Computer Differential Analyzer

Reaction networks :
I chemical
I enzymatic

Newton mechanics polynomial differential
equations :{

y(0)= y0
y ′(t)= p(y(t))

I Rich class
I Stable (+,×,◦,/,ED)
I No closed-form solution
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Example of dynamical system

θ

`

m

g

×
∫ ∫

×
∫−g

`

××−1
∫

y1
y2

y3 y4

θ̈ + g
` sin(θ) = 0


y ′1 = y2
y ′2 = −g

l y3
y ′3 = y2y4
y ′4 = −y2y3

⇔


y1 = θ

y2 = θ̇
y3 = sin(θ)
y4 = cos(θ)
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Computing with differential equations

Generable functions{
y(0)= y0

y ′(x)= p(y(x))
x ∈ R

f (x) = y1(x)

x
y1(x)

Shannon’s notion

sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computable{
y(0)= q(x)
y ′(t)= p(y(t))

x ∈ R
t ∈ R+

f (x) = lim
t→∞

y1(t)

t

f (x)

x

y1(t)

Modern notion

sin, cos, exp, log, Γ, ζ, ...

Turing powerful
[Bournez et al., 2007]
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Highlights of some results

ANALOG-PTIME ANALOG-PR

`(t)

1

−1
poly(|w |)

w∈L

w /∈L

y1(t)

y1(t)

y1(t)ψ(w)

`(t)

f (x)

x

y1(t)

Theorem

I PTIME = ANALOG-PTIME

I f : [a,b]→ R computable in polynomial time⇔ f ∈ ANALOG-PR

I Analog complexity theory based on length
I Time of Turing machine⇔ length of the GPAC
I Purely continuous characterization of PTIME
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A word on computability for real functions

Classical computability (Turing machine) : compute on words,
integers, rationals, ...

Real computability :at least two different notions
I BSS (Blum-Shub-Smale) machine : register machine that can

store arbitrary real numbers and that can compute rational
functions over reals at unit cost. Comparisons between reals are
allowed.

I Computable Analysis : reals are represented as converging
Cauchy sequences, computations are carried out by rational
approximations using Turing machines. Comparisons between
reals is not decidable in general. Computable implies
continuous.
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Computable Analysis : differential equations

Let f : Rn → Rn continuous, consider

y(0) = x , y ′ = f (y) (1)

Question
When is y computable? What about its complexity?

x y(t) x y(t)
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Computable Analysis : differential equations

Let f : Rn → Rn continuous, consider

y(0) = x , y ′ = f (y) (1)

It can be very bad :

Theorem (Pour-El and Richards)

There exists a computable (hence continuous) f such that none of the
solutions to (1) is computable.

x y(t) x y(t)
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Computable Analysis : differential equations

Let f : Rn → Rn continuous, consider

y(0) = x , y ′ = f (y) (1)

Some good news :

Theorem (Ruohonen)

If f is computable and (1) has a unique solution, then it is computable.

But complexity can be unbounded

x y(t) x y(t)
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Computable Analysis : differential equations

Let f : Rn → Rn continuous, consider

y(0) = x , y ′ = f (y) (1)

Still things are bad :

Theorem (Buescu, Campagnolo and Graça)

Computing the maximum interval of life (or deciding if it is bounded) is
undecidable, even if f is a polynomial.

x y(t) x y(t)
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Computable Analysis : differential equations

Let f : Rn → Rn continuous, consider

y(0) = x , y ′ = f (y) (1)

A new hope :

Theorem
If y(t) exists, we can compute r ∈ Q such |r − y(t)| 6 2−n in time

poly (size of x and p,n, `(t))

where `(t) ≈ length of the curve y (between x and y(t))

x y(t) x y(t)
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Example : 2D robot

θ

`

Available actions :
I rotate arm
I change arm length

→ Switched linear system :

X ′ = AX
where A ∈ {Arot ,Aarm}.

State : X = (xθ, yθ, x , y) ∈ R4

Rotate arm (increase θ) :[
x
y

]′
=

[
0 −1
1 0

] [
x
y

]
[
xθ
yθ

]′
=

[
0 −1
1 0

] [
xθ
yθ

]
Change arm length (increase `) :[

x
y

]′
=

[
xθ
yθ

]
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Example : mass-spring-damper system

m

kb

u(t)

z

Model with external input u(t)

; Linear time invariant system :

X ′ = AX + Bu

with some constraints on u.

State : X = z ∈ R

Equation of motion :

mz ′′ = −kz − bz ′ + mg + u

→ Affine but not first order

State : X = (z, z ′,1) ∈ R3

Equation of motion :z
z ′

1

′ =

 z ′

− k
m z − b

m z ′ + g + 1
m u

0
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Linear dynamical systems

Discrete case

x(n + 1) = Ax(n)

+ Bu(n)

I biology,
I software verification,
I probabilistic model checking,
I combinatorics,
I ....

Continuous case

x ′(t) = Ax(t)

+ Bu(t)

I biology,
I physics,
I probabilistic model checking,
I electrical circuits,
I ....

Typical questions

I reachability : does the trajectory reach some states?
I safety : does it always avoid the bad(unsafe) states?

I controllability : can we control it to some state?
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Hybrid/Cyber-physical systems

x ′ = F1(x) x ′ = F2(x)
φ(x)

x ← R(x)

guard

discrete update

state continuous dynamics

I Fi(x) = 1 : timed automata
I Fi(x) = ci : rectangular hybrid automata
I Fi(x) = Aix : linear hybrid automata

Typical question

Verify some temporal specification :

G(P1 ⇒ (P2UP3))

“When the trajectory enters P1, it must remain within P2 until it reaches P3”
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Exact verification is unfeasible

x :=x0

x := M1x
x := M2x

. . .

x := Mkx

S

Theorem (Markov 1947 1)

There is a fixed set of 6× 6 integer matrices M1, . . . ,Mk such that the
reachability problem “y is reachable from x0 ?” is undecidable.

Theorem (Paterson 1970 1)

The mortality problem “ 0 is reachable from x0 with M1, . . . ,Mk ?” is
undecidable for 3× 3 matrices.

1. Original theorems about semigroups, reformulated with hybrid systems.
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Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition

20 / 22



Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition

20 / 22



Invariants : example result

affine program :
nondeterministic branching, no guards, affine assignments

1 2

3

x := 3x − 7y + 1
f2

f3

y :=
∗f5

Theorem
There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.

21 / 22
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Universal differential equations

Generable functions

x
y1(x)

subclass of analytic functions

Computable functions

t

f (x)

x

y1(t)

any computable function

x
y1(x)
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Universal differential algebraic equation (DAE)

x
y(x)

Theorem (Rubel, 1981)

For any continuous functions f and ε, there exists y : R→ R solution to

3y ′4y
′′
y
′′′′2 −4y ′4y

′′′2
y
′′′′

+ 6y ′3y
′′2

y
′′′

y
′′′′

+ 24y ′2y
′′4

y
′′′′

−12y ′3y
′′
y
′′′3 − 29y ′2y

′′3
y
′′′2

+ 12y
′′7

= 0

such that ∀t ∈ R,
|y(t)− f (t)| 6 ε(t).

Problem : this is «weak» result.
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Universal differential algebraic equation (DAE)
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y(x)

Theorem (Rubel, 1981)

There exists a fixed polynomial p and k ∈ N such that for any conti-
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The problem with Rubel’s DAE

The solution y is not unique, even with added initial conditions :

p(y , y ′, . . . , y (k)) = 0, y(0) = α0, y ′(0) = α1, . . . , y (k)(0) = αk

In fact, this is fundamental for Rubel’s proof to work !

I Rubel’s statement : this DAE is universal
I More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y ′ = p(y) ?
Note : explicit polynomial ODE⇒ unique solution
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Universal initial value problem (IVP)

x
y1(x)

Notes :
I system of ODEs,
I y is analytic,
I we need d ≈ 300.

Theorem
There exists a fixed (vector of) polynomial p such that for any
continuous functions f and ε, there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).

Remark : α is usually transcendental, but computable from f and ε

26 / 22



Universal initial value problem (IVP)

x
y1(x)

Notes :
I system of ODEs,
I y is analytic,
I we need d ≈ 300.

Theorem
There exists a fixed (vector of) polynomial p such that for any
continuous functions f and ε, there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).

Remark : α is usually transcendental, but computable from f and ε

26 / 22



Universal initial value problem (IVP)

x
y1(x)

Notes :
I system of ODEs,
I y is analytic,
I we need d ≈ 300.

Theorem
There exists a fixed (vector of) polynomial p such that for any
continuous functions f and ε, there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).

Remark : α is usually transcendental, but computable from f and ε
26 / 22



Rubel’s proof in one slide

I Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1− t2)2f
′′

(t) + 2tf ′(t) = 0.

I For any a,b, c ∈ R, y(t) = cf (at + b) satisfies
I Can glue together arbitrary many such pieces
I Can arrange so that

∫
f is solution : piecewise pseudo-linear

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0
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Translation and rescaling :

t
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Universal DAE revisited

x
y1(x)

Theorem
There exists a fixed polynomial p and k ∈ N such that for any
continuous functions f and ε, there exists α0, . . . , αk ∈ R such that

p(y , y ′, . . . , y (k)) = 0, y(0) = α0, y ′(0) = α1, . . . , y (k)(0) = αk

has a unique analytic solution and this solution satisfies such that

|y(t)− f (t)| 6 ε(t).
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Characterization of polynomial time

Definition : L ∈ ANALOG-PTIME⇔ ∃p polynomial, ∀ word w

y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2−i

`(t) = length of y

1

−1

y1(t)

ψ(w)
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`(t) = length of y
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−1

poly(|w |)

accept : w ∈ L

reject : w /∈ L

computing

forbiddeny1(t)
ψ(w)

satisfies
3. if `(t) > poly(|w |) then |y1(t)| > 1
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y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
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`(t) = length of y

1

−1

poly(|w |)

accept : w ∈ L

reject : w /∈ L

computing

forbidden

y1(t)

y1(t)

y1(t)
ψ(w)

Theorem
PTIME = ANALOG-PTIME

29 / 22



Characterization of real polynomial time

Definition : f : [a,b]→ R in ANALOG-PR ⇔ ∃p polynomial, ∀x ∈ [a,b]

y(0) = (x ,0, . . . ,0) y ′ = p(y)

satisfies :
1. |y1(t)− f (x)| 6 2−`(t)

«greater length⇒ greater precision»
2. `(t) > t

«length increases with time»

`(t)

f (x)

x

y1(t)

Theorem
f : [a,b]→ R computable in polynomial time⇔ f ∈ ANALOG-PR.
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Inductive invariants : example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3
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