
Continuous models of computation: computability,
complexity, universality

Amaury Pouly

Joint work with Olivier Bournez and Daniel Graça

21 january 2019

1 / 21

What is a computer?

VS

2 / 21

What is a computer?

VS

2 / 21

What is a computer?

VS

2 / 21

Church Thesis

Computability

discrete

Turing
machine

boolean circuitslogic

recursive
functions

lambda
calculus

quantum analog
continuous

Church Thesis
All reasonable models of computation are equivalent.

3 / 21

Church Thesis

Complexity

discrete

Turing
machine

boolean circuitslogic

recursive
functions

lambda
calculus

quantum analog
continuous

>
?

?

Effective Church Thesis
All reasonable models of computation are equivalent for complexity.

3 / 21

Polynomial Differential Equations

k k

+ u+vu
v

× uvu
v

∫ ∫
uu

General Purpose
Analog Computer Differential Analyzer

Reaction networks :
I chemical
I enzymatic

Newton mechanics polynomial differential
equations :{

y(0)= y0
y ′(t)= p(y(t))

I Rich class
I Stable (+,×,◦,/,ED)
I No closed-form solution

4 / 21

Example of dynamical system

θ

`

m

g

×
∫ ∫

×
∫−g

`

××−1
∫

y1
y2

y3 y4

θ̈ + g
` sin(θ) = 0

y ′1 = y2
y ′2 = −g

l y3
y ′3 = y2y4
y ′4 = −y2y3

⇔

y1 = θ

y2 = θ̇
y3 = sin(θ)
y4 = cos(θ)

Historical remark : the word “analog”

The pendulum and the circuit have the same equation. One can study
one using the other by analogy.

5 / 21

Example of dynamical system

θ

`

m

g

×
∫ ∫

×
∫−g

`

××−1
∫

y1
y2

y3 y4

θ̈ + g
` sin(θ) = 0

y ′1 = y2
y ′2 = −g

l y3
y ′3 = y2y4
y ′4 = −y2y3

⇔

y1 = θ

y2 = θ̇
y3 = sin(θ)
y4 = cos(θ)

Historical remark : the word “analog”

The pendulum and the circuit have the same equation. One can study
one using the other by analogy.

5 / 21

Example of dynamical system

θ

`

m

g

×
∫ ∫

×
∫−g

`

××−1
∫

y1
y2

y3 y4

θ̈ + g
` sin(θ) = 0

y ′1 = y2
y ′2 = −g

l y3
y ′3 = y2y4
y ′4 = −y2y3

⇔

y1 = θ

y2 = θ̇
y3 = sin(θ)
y4 = cos(θ)

Historical remark : the word “analog”

The pendulum and the circuit have the same equation. One can study
one using the other by analogy.

5 / 21

Example of dynamical system

θ

`

m

g

×
∫ ∫

×
∫−g

`

××−1
∫

y1
y2

y3 y4

θ̈ + g
` sin(θ) = 0

y ′1 = y2
y ′2 = −g

l y3
y ′3 = y2y4
y ′4 = −y2y3

⇔

y1 = θ

y2 = θ̇
y3 = sin(θ)
y4 = cos(θ)

Historical remark : the word “analog”

The pendulum and the circuit have the same equation. One can study
one using the other by analogy.

5 / 21

Computing with differential equations

Generable functions{
y(0)= y0

y ′(x)= p(y(x))
x ∈ R

f (x) = y1(x)

x
y1(x)

Shannon’s notion

sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computable{
y(0)= q(x)
y ′(t)= p(y(t))

x ∈ R
t ∈ R+

f (x) = lim
t→∞

y1(t)

t

f (x)

x

y1(t)

Modern notion

sin, cos, exp, log, Γ, ζ, ...

Turing powerful
[Bournez et al., 2007]

6 / 21

Computing with differential equations

Generable functions{
y(0)= y0

y ′(x)= p(y(x))
x ∈ R

f (x) = y1(x)

x
y1(x)

Shannon’s notion

sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computable{
y(0)= q(x)
y ′(t)= p(y(t))

x ∈ R
t ∈ R+

f (x) = lim
t→∞

y1(t)

t

f (x)

x

y1(t)

Modern notion

sin, cos, exp, log, Γ, ζ, ...

Turing powerful
[Bournez et al., 2007]

6 / 21

Computing with differential equations

Generable functions{
y(0)= y0

y ′(x)= p(y(x))
x ∈ R

f (x) = y1(x)

x
y1(x)

Shannon’s notion

sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computable{
y(0)= q(x)
y ′(t)= p(y(t))

x ∈ R
t ∈ R+

f (x) = lim
t→∞

y1(t)

t

f (x)

x

y1(t)

Modern notion

sin, cos, exp, log, Γ, ζ, ...

Turing powerful
[Bournez et al., 2007]

6 / 21

Computing with differential equations

Generable functions{
y(0)= y0

y ′(x)= p(y(x))
x ∈ R

f (x) = y1(x)

x
y1(x)

Shannon’s notion

sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computable{
y(0)= q(x)
y ′(t)= p(y(t))

x ∈ R
t ∈ R+

f (x) = lim
t→∞

y1(t)

t

f (x)

x

y1(t)

Modern notion

sin, cos, exp, log, Γ, ζ, ...

Turing powerful
[Bournez et al., 2007]

6 / 21

Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if ∃p polynomial such that ∀x ∈ [a,b]

y(0) = (x ,0, . . . ,0) y ′(t) = p(y(t))

satisfies |f (x)− y1(t)| 6 y2(t) et y2(t) −−−→
t→∞

0.

t

f (x)

x

y1(t) y1(t) −−−→
t→∞

f (x)

y2(t) = error bound

Theorem (Bournez et al, 2007)

f : [a,b]→ R computable 1 ⇔ f computable by GPAC

1. In Computable Analysis, a standard model over reals built from Turing machines.

7 / 21

Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if ∃p polynomial such that ∀x ∈ [a,b]

y(0) = (x ,0, . . . ,0) y ′(t) = p(y(t))

satisfies |f (x)− y1(t)| 6 y2(t) et y2(t) −−−→
t→∞

0.

t

f (x)

x

y1(t) y1(t) −−−→
t→∞

f (x)

y2(t) = error bound

Theorem (Bournez et al, 2007)

f : [a,b]→ R computable 1 ⇔ f computable by GPAC

1. In Computable Analysis, a standard model over reals built from Turing machines.

7 / 21

Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if ∃p polynomial such that ∀x ∈ [a,b]

y(0) = (x ,0, . . . ,0) y ′(t) = p(y(t))

satisfies |f (x)− y1(t)| 6 y2(t) et y2(t) −−−→
t→∞

0.

t

f (x)

x

y1(t) y1(t) −−−→
t→∞

f (x)

y2(t) = error bound

Theorem (Bournez et al, 2007)

f : [a,b]→ R computable 1 ⇔ f computable by GPAC

1. In Computable Analysis, a standard model over reals built from Turing machines.
7 / 21

Complexity of analog systems

I Turing machines : T (x) = number of steps to compute on x

I GPAC :

time contraction problem→ open problem

Tentative definition

y(0) = (x ,0, . . . ,0) y ′ = p(y)

t

f (x)

x

y1(t)
;

z(t) = y(et)

t

f (x)

x

z1(t)

Something is wrong...

All functions have constant
time complexity.

w(t) = y(eet
)

t

f (x)

x

w1(t)

8 / 21

Complexity of analog systems

I Turing machines : T (x) = number of steps to compute on x
I GPAC :

time contraction problem→ open problem

Tentative definition
T (x) = ??

y(0) = (x ,0, . . . ,0) y ′ = p(y)

t

f (x)

x

y1(t)

;

z(t) = y(et)

t

f (x)

x

z1(t)

Something is wrong...

All functions have constant
time complexity.

w(t) = y(eet
)

t

f (x)

x

w1(t)

8 / 21

Complexity of analog systems

I Turing machines : T (x) = number of steps to compute on x
I GPAC :

time contraction problem→ open problem

Tentative definition
T (x , µ) =

first time t so that |y1(t)− f (x)| 6 e−µ

y(0) = (x ,0, . . . ,0) y ′ = p(y)

t

f (x)

x

y1(t)

;

z(t) = y(et)

t

f (x)

x

z1(t)

Something is wrong...

All functions have constant
time complexity.

w(t) = y(eet
)

t

f (x)

x

w1(t)

8 / 21

Complexity of analog systems

I Turing machines : T (x) = number of steps to compute on x
I GPAC :

time contraction problem→ open problem

Tentative definition
T (x , µ) = first time t so that |y1(t)− f (x)| 6 e−µ

y(0) = (x ,0, . . . ,0) y ′ = p(y)

t

f (x)

x

y1(t)

;

z(t) = y(et)

t

f (x)

x

z1(t)

Something is wrong...

All functions have constant
time complexity.

w(t) = y(eet
)

t

f (x)

x

w1(t)

8 / 21

Complexity of analog systems

I Turing machines : T (x) = number of steps to compute on x
I GPAC :

time contraction problem→ open problem

Tentative definition
T (x , µ) = first time t so that |y1(t)− f (x)| 6 e−µ

y(0) = (x ,0, . . . ,0) y ′ = p(y)

t

f (x)

x

y1(t)
;

z(t) = y(et)

t

f (x)

x

z1(t)

Something is wrong...

All functions have constant
time complexity.

w(t) = y(eet
)

t

f (x)

x

w1(t)

8 / 21

Complexity of analog systems

I Turing machines : T (x) = number of steps to compute on x
I GPAC :

time contraction problem→ open problem

Tentative definition
T (x , µ) = first time t so that |y1(t)− f (x)| 6 e−µ

y(0) = (x ,0, . . . ,0) y ′ = p(y)

t

f (x)

x

y1(t)
;

z(t) = y(et)

t

f (x)

x

z1(t)

Something is wrong...

All functions have constant
time complexity.

w(t) = y(eet
)

t

f (x)

x

w1(t)

8 / 21

Complexity of analog systems

I Turing machines : T (x) = number of steps to compute on x
I GPAC : time contraction problem→ open problem

Tentative definition
T (x , µ) = first time t so that |y1(t)− f (x)| 6 e−µ

y(0) = (x ,0, . . . ,0) y ′ = p(y)

t

f (x)

x

y1(t)
;

z(t) = y(et)

t

f (x)

x

z1(t)

Something is wrong...

All functions have constant
time complexity.

w(t) = y(eet
)

t

f (x)

x

w1(t)

8 / 21

Time-space correlation of the GPAC

y(0) = q(x) y ′ = p(y)

t

f (x)

q(x)

y1(t)
;

z(t) = y(et)

t

f (x)

q̃(x)

z1(t)

Observation
Time scaling costs “space”.

;

Time complexity for the GPAC
must involve time and space !

extra component : w(t) = et

t

w(t)

9 / 21

Time-space correlation of the GPAC

y(0) = q(x) y ′ = p(y)

t

f (x)

q(x)

y1(t)
;

z(t) = y(et)

t

f (x)

q̃(x)

z1(t)

Observation
Time scaling costs “space”.

;

Time complexity for the GPAC
must involve time and space !

extra component : w(t) = et

t

w(t)

9 / 21

Time-space correlation of the GPAC

y(0) = q(x) y ′ = p(y)

t

f (x)

q(x)

y1(t)
;

z(t) = y(et)

t

f (x)

q̃(x)

z1(t)

Observation
Time scaling costs “space”.

;

Time complexity for the GPAC
must involve time and space !

extra component : w(t) = et

t

w(t)

9 / 21

Characterization of polynomial time

Definition : L ∈ ANALOG-PTIME⇔ ∃p polynomial, ∀ word w

y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2−i

`(t) = length of y

1

−1

y1(t)

ψ(w)

10 / 21

Characterization of polynomial time

Definition : L ∈ ANALOG-PTIME⇔ ∃p polynomial, ∀ word w

y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2−i

`(t) = length of y

1

−1

accept : w ∈ L

computing

y1(t)

ψ(w)

satisfies
1. if y1(t) > 1 then w ∈ L

10 / 21

Characterization of polynomial time

Definition : L ∈ ANALOG-PTIME⇔ ∃p polynomial, ∀ word w

y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2−i

`(t) = length of y

1

−1

accept : w ∈ L

reject : w /∈ L

computing

y1(t)

ψ(w)

satisfies
2. if y1(t) 6 −1 then w /∈ L

10 / 21

Characterization of polynomial time

Definition : L ∈ ANALOG-PTIME⇔ ∃p polynomial, ∀ word w

y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2−i

`(t) = length of y

1

−1

poly(|w |)

accept : w ∈ L

reject : w /∈ L

computing

forbiddeny1(t)
ψ(w)

satisfies
3. if `(t) > poly(|w |) then |y1(t)| > 1

10 / 21

Characterization of polynomial time

Definition : L ∈ ANALOG-PTIME⇔ ∃p polynomial, ∀ word w

y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2−i

`(t) = length of y

1

−1

poly(|w |)

accept : w ∈ L

reject : w /∈ L

computing

forbidden

y1(t)

y1(t)

y1(t)
ψ(w)

Theorem
PTIME = ANALOG-PTIME

10 / 21

Summary

ANALOG-PTIME ANALOG-PR

`(t)

1

−1
poly(|w |)

w∈L

w /∈L

y1(t)

y1(t)

y1(t)ψ(w)

`(t)

f (x)

x

y1(t)

Theorem

I L ∈ PTIME of and only if L ∈ ANALOG-PTIME

I f : [a,b]→ R computable in polynomial time⇔ f ∈ ANALOG-PR

I Analog complexity theory based on length
I Time of Turing machine⇔ length of the GPAC
I Purely continuous characterization of PTIME

I Only rational coefficients needed

11 / 21

Summary

ANALOG-PTIME ANALOG-PR

`(t)

1

−1
poly(|w |)

w∈L

w /∈L

y1(t)

y1(t)

y1(t)ψ(w)

`(t)

f (x)

x

y1(t)

Theorem

I L ∈ PTIME of and only if L ∈ ANALOG-PTIME

I f : [a,b]→ R computable in polynomial time⇔ f ∈ ANALOG-PR

I Analog complexity theory based on length
I Time of Turing machine⇔ length of the GPAC
I Purely continuous characterization of PTIME
I Only rational coefficients needed

11 / 21

In the remaining time...

Two applications of the techniques we have developed :

; Chemical Reaction Networks

Universal differential equation

12 / 21

Chemical Reaction Networks

Definition : a reaction system is a finite set of
I molecular species y1, . . . , yn

I reactions of the form
∑

i aiyi
f−→
∑

i biyi (ai ,bi ∈ N, f = rate)

Example :
2H + O → H2O

C + O2 → CO2

Assumption : law of mass action∑
i

aiyi
k−→
∑

i

biyi ; f (y) = k
∏

i

yai
i

Semantics :
I discrete
I differential
I stochastic

13 / 21

Chemical Reaction Networks

Definition : a reaction system is a finite set of
I molecular species y1, . . . , yn

I reactions of the form
∑

i aiyi
f−→
∑

i biyi (ai ,bi ∈ N, f = rate)

Example :
2H + O → H2O

C + O2 → CO2

Assumption : law of mass action∑
i

aiyi
k−→
∑

i

biyi ; f (y) = k
∏

i

yai
i

Semantics :
I discrete
I differential
I stochastic

13 / 21

Chemical Reaction Networks

Definition : a reaction system is a finite set of
I molecular species y1, . . . , yn

I reactions of the form
∑

i aiyi
f−→
∑

i biyi (ai ,bi ∈ N, f = rate)

Example :
2H + O → H2O

C + O2 → CO2

Assumption : law of mass action∑
i

aiyi
k−→
∑

i

biyi ; f (y) = k
∏

i

yai
i

Semantics :
I discrete
I differential
I stochastic

13 / 21

Chemical Reaction Networks

Definition : a reaction system is a finite set of
I molecular species y1, . . . , yn

I reactions of the form
∑

i aiyi
f−→
∑

i biyi (ai ,bi ∈ N, f = rate)

Example :
2H + O → H2O

C + O2 → CO2

Assumption : law of mass action∑
i

aiyi
k−→
∑

i

biyi ; f (y) = k
∏

i

yai
i

Semantics :
I discrete
I differential→
I stochastic

y ′i =
∑

reaction R

(bR
i − aR

i)f R(y)

13 / 21

Chemical Reaction Networks

Definition : a reaction system is a finite set of
I molecular species y1, . . . , yn

I reactions of the form
∑

i aiyi
f−→
∑

i biyi (ai ,bi ∈ N, f = rate)

Example :
2H + O → H2O

C + O2 → CO2

Assumption : law of mass action∑
i

aiyi
k−→
∑

i

biyi ; f (y) = k
∏

i

yai
i

Semantics :
I discrete
I differential→
I stochastic

y ′i =
∑

reaction R

(bR
i − aR

i)kR
∏

j

yaj
j

13 / 21

Chemical Reaction Networks (CRNs)
I CRNs with differential semantics and mass action law =

polynomial ODEs
I polynomial ODEs are Turing complete

CRNs are Turing complete? Two “slight” problems :
I concentrations cannot be negative (yi < 0)
I arbitrary reactions are not realistic

Definition : a reaction is elementary if it has at most two reactants
⇒ can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

ay + bz k−→ · · · ; f (y , z) = kyazb

Theorem (Folklore)

Every polynomial ODE can be rewritten as a quadratic ODE.

14 / 21

Chemical Reaction Networks (CRNs)
I CRNs with differential semantics and mass action law =

polynomial ODEs
I polynomial ODEs are Turing complete

CRNs are Turing complete?

Two “slight” problems :
I concentrations cannot be negative (yi < 0)
I arbitrary reactions are not realistic

Definition : a reaction is elementary if it has at most two reactants
⇒ can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

ay + bz k−→ · · · ; f (y , z) = kyazb

Theorem (Folklore)

Every polynomial ODE can be rewritten as a quadratic ODE.

14 / 21

Chemical Reaction Networks (CRNs)

CRNs are Turing complete? Two “slight” problems :
I concentrations cannot be negative (yi < 0)
I arbitrary reactions are not realistic

Definition : a reaction is elementary if it has at most two reactants
⇒ can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

ay + bz k−→ · · · ; f (y , z) = kyazb

Theorem (Folklore)

Every polynomial ODE can be rewritten as a quadratic ODE.

14 / 21

Chemical Reaction Networks (CRNs)

CRNs are Turing complete? Two “slight” problems :
I concentrations cannot be negative (yi < 0) I easy to solve
I arbitrary reactions are not realistic I what is realistic?

Definition : a reaction is elementary if it has at most two reactants
⇒ can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

ay + bz k−→ · · · ; f (y , z) = kyazb

Theorem (Folklore)

Every polynomial ODE can be rewritten as a quadratic ODE.

14 / 21

Chemical Reaction Networks (CRNs)

CRNs are Turing complete? Two “slight” problems :
I concentrations cannot be negative (yi < 0) I easy to solve
I arbitrary reactions are not realistic I what is realistic?

Definition : a reaction is elementary if it has at most two reactants
⇒ can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

ay + bz k−→ · · · ; f (y , z) = kyazb

Theorem (Folklore)

Every polynomial ODE can be rewritten as a quadratic ODE.

14 / 21

Chemical Reaction Networks (CRNs)

CRNs are Turing complete? Two “slight” problems :
I concentrations cannot be negative (yi < 0) I easy to solve
I arbitrary reactions are not realistic I what is realistic?

Definition : a reaction is elementary if it has at most two reactants
⇒ can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

ay + bz k−→ · · · ; f (y , z) = kyazb

Theorem (Folklore)

Every polynomial ODE can be rewritten as a quadratic ODE.

14 / 21

Chemical Reaction Networks (CRNs)

CRNs are Turing complete? Two “slight” problems :
I concentrations cannot be negative (yi < 0) I easy to solve
I arbitrary reactions are not realistic I what is realistic?

Definition : a reaction is elementary if it has at most two reactants
⇒ can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

ay + bz k−→ · · · ; f (y , z) = kyazb

Theorem (Folklore)

Every polynomial ODE can be rewritten as a quadratic ODE.

14 / 21

Chemical Reaction Networks (CRNs)

Definition : a reaction is elementary if it has at most two reactants
⇒ can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

ay + bz k−→ · · · ; f (y , z) = kyazb

Theorem (Work with François Fages, Guillaume Le Guludec)

Elementary mass-action-law reaction system on finite universes of
molecules are Turing-complete under the differential semantics.

Notes :
I proof preserves polynomial length
I in fact the following elementary reactions suffice :

∅ k−→ x x k−→ x + z x + y k−→ x + y + z x + y k−→ ∅
14 / 21

In the remaining time...

Two applications of the techniques we have developed :

Chemical Reaction Networks

; Universal differential equation

15 / 21

Universal differential equations

Generable functions

x
y1(x)

subclass of analytic functions

Computable functions

t

f (x)

x

y1(t)

any computable function

x
y1(x)

16 / 21

Universal differential equations

Generable functions

x
y1(x)

subclass of analytic functions

Computable functions

t

f (x)

x

y1(t)

any computable function

x
y1(x)

16 / 21

Universal differential algebraic equation (DAE)

x
y(x)

Theorem (Rubel, 1981)

For any continuous functions f and ε, there exists y : R→ R solution to

3y ′4y
′′
y
′′′′2 −4y ′4y

′′′2
y
′′′′

+ 6y ′3y
′′2

y
′′′

y
′′′′

+ 24y ′2y
′′4

y
′′′′

−12y ′3y
′′
y
′′′3 − 29y ′2y

′′3
y
′′′2

+ 12y
′′7

= 0

such that ∀t ∈ R,
|y(t)− f (t)| 6 ε(t).

Problem : this is «weak» result.

17 / 21

Universal differential algebraic equation (DAE)

x
y(x)

Theorem (Rubel, 1981)

There exists a fixed polynomial p and k ∈ N such that for any conti-
nuous functions f and ε, there exists a solution y : R→ R to

p(y , y ′, . . . , y (k)) = 0

such that ∀t ∈ R,
|y(t)− f (t)| 6 ε(t).

Problem : this is «weak» result.

17 / 21

Universal differential algebraic equation (DAE)

x
y(x)

Theorem (Rubel, 1981)

There exists a fixed polynomial p and k ∈ N such that for any conti-
nuous functions f and ε, there exists a solution y : R→ R to

p(y , y ′, . . . , y (k)) = 0

such that ∀t ∈ R,
|y(t)− f (t)| 6 ε(t).

Problem : this is «weak» result.
17 / 21

The problem with Rubel’s DAE

The solution y is not unique, even with added initial conditions :

p(y , y ′, . . . , y (k)) = 0, y(0) = α0, y ′(0) = α1, . . . , y (k)(0) = αk

In fact, this is fundamental for Rubel’s proof to work !

I Rubel’s statement : this DAE is universal
I More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y ′ = p(y) ?
Note : explicit polynomial ODE⇒ unique solution

18 / 21

The problem with Rubel’s DAE

The solution y is not unique, even with added initial conditions :

p(y , y ′, . . . , y (k)) = 0, y(0) = α0, y ′(0) = α1, . . . , y (k)(0) = αk

In fact, this is fundamental for Rubel’s proof to work !

I Rubel’s statement : this DAE is universal
I More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y ′ = p(y) ?
Note : explicit polynomial ODE⇒ unique solution

18 / 21

Rubel’s proof in one slide

I Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1− t2)2f
′′

(t) + 2tf ′(t) = 0.

I For any a,b, c ∈ R, y(t) = cf (at + b) satisfies
I Can glue together arbitrary many such pieces
I Can arrange so that

∫
f is solution : piecewise pseudo-linear

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0

19 / 21

Rubel’s proof in one slide

I Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1− t2)2f
′′

(t) + 2tf ′(t) = 0.
I For any a,b, c ∈ R, y(t) = cf (at + b) satisfies

3y ′4y ′′y ′′′′2 −4y ′4y ′′2y ′′′′ + 6y ′3y ′′2y ′′′y ′′′′ + 24y ′2y ′′4y ′′′′

−12y ′3y ′′y ′′′3 − 29y ′2y ′′3y ′′′2 + 12y ′′7 = 0

I Can glue together arbitrary many such pieces
I Can arrange so that

∫
f is solution : piecewise pseudo-linear

Translation and rescaling :

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0

19 / 21

Rubel’s proof in one slide

I Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1− t2)2f
′′

(t) + 2tf ′(t) = 0.
I For any a,b, c ∈ R, y(t) = cf (at + b) satisfies

3y′4y′′y′′′′2−4y′4y′′2y′′′′+6y′3y′′2y′′′y′′′′+24y′2y′′4y′′′′−12y′3y′′y′′′3−29y′2y′′3y′′′2+12y′′7=0

I Can glue together arbitrary many such pieces

I Can arrange so that
∫

f is solution : piecewise pseudo-linear

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0

19 / 21

Rubel’s proof in one slide

I Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1− t2)2f
′′

(t) + 2tf ′(t) = 0.
I For any a,b, c ∈ R, y(t) = cf (at + b) satisfies

3y′4y′′y′′′′2−4y′4y′′2y′′′′+6y′3y′′2y′′′y′′′′+24y′2y′′4y′′′′−12y′3y′′y′′′3−29y′2y′′3y′′′2+12y′′7=0

I Can glue together arbitrary many such pieces
I Can arrange so that

∫
f is solution : piecewise pseudo-linear

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0

19 / 21

Rubel’s proof in one slide

I Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1− t2)2f
′′

(t) + 2tf ′(t) = 0.
I For any a,b, c ∈ R, y(t) = cf (at + b) satisfies

3y′4y′′y′′′′2−4y′4y′′2y′′′′+6y′3y′′2y′′′y′′′′+24y′2y′′4y′′′′−12y′3y′′y′′′3−29y′2y′′3y′′′2+12y′′7=0

I Can glue together arbitrary many such pieces
I Can arrange so that

∫
f is solution : piecewise pseudo-linear

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0

19 / 21

Universal initial value problem (IVP)

x
y1(x)

Notes :
I system of ODEs,
I y is analytic,
I we need d ≈ 300.

Theorem
There exists a fixed (vector of) polynomial p such that for any
continuous functions f and ε, there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).

Remark : α is usually transcendental, but computable from f and ε

20 / 21

Universal initial value problem (IVP)

x
y1(x)

Notes :
I system of ODEs,
I y is analytic,
I we need d ≈ 300.

Theorem
There exists a fixed (vector of) polynomial p such that for any
continuous functions f and ε, there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).

Remark : α is usually transcendental, but computable from f and ε

20 / 21

Universal initial value problem (IVP)

x
y1(x)

Notes :
I system of ODEs,
I y is analytic,
I we need d ≈ 300.

Theorem
There exists a fixed (vector of) polynomial p such that for any
continuous functions f and ε, there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).

Remark : α is usually transcendental, but computable from f and ε
20 / 21

Future work

Reaction networks :
I chemical
I enzymatic

y ′ = p(y)

y ′ = p(y) + e(t)

?

I Finer time complexity (linear)
I Nondeterminism
I Robustness
I « Space» complexity
I Other models
I Stochastic

21 / 21

Backup slides

22 / 21

Complexity of solving polynomial ODEs

y(0) = x y ′(t) = p(y(t))

Theorem
If y(t) exists, one can compute p,q such that

∣∣∣pq − y(t)
∣∣∣ 6 2−n in time

poly (size of x and p,n, `(t))

where `(t) ≈ length of the curve (between x and y(t))

x y(t) x y(t)

length of the curve = complexity = ressource

23 / 21

Complexity of solving polynomial ODEs

y(0) = x y ′(t) = p(y(t))

Theorem
If y(t) exists, one can compute p,q such that

∣∣∣pq − y(t)
∣∣∣ 6 2−n in time

poly (size of x and p,n, `(t))

where `(t) ≈ length of the curve (between x and y(t))

x y(t) x y(t)

length of the curve = complexity = ressource

23 / 21

Characterization of real polynomial time

Definition : f : [a,b]→ R in ANALOG-PR ⇔ ∃p polynomial, ∀x ∈ [a,b]

y(0) = (x ,0, . . . ,0) y ′ = p(y)

satisfies :
1. |y1(t)− f (x)| 6 2−`(t)

«greater length⇒ greater precision»
2. `(t) > t

«length increases with time»

`(t)

f (x)

x

y1(t)

Theorem
f : [a,b]→ R computable in polynomial time⇔ f ∈ ANALOG-PR.

24 / 21

Characterization of real polynomial time

Definition : f : [a,b]→ R in ANALOG-PR ⇔ ∃p polynomial, ∀x ∈ [a,b]

y(0) = (x ,0, . . . ,0) y ′ = p(y)
satisfies :

1. |y1(t)− f (x)| 6 2−`(t)

«greater length⇒ greater precision»
2. `(t) > t

«length increases with time»

`(t)

f (x)

x

y1(t)

Theorem
f : [a,b]→ R computable in polynomial time⇔ f ∈ ANALOG-PR.

24 / 21

Characterization of real polynomial time

Definition : f : [a,b]→ R in ANALOG-PR ⇔ ∃p polynomial, ∀x ∈ [a,b]

y(0) = (x ,0, . . . ,0) y ′ = p(y)
satisfies :

1. |y1(t)− f (x)| 6 2−`(t)

«greater length⇒ greater precision»
2. `(t) > t

«length increases with time»

`(t)

f (x)

x

y1(t)

Theorem
f : [a,b]→ R computable in polynomial time⇔ f ∈ ANALOG-PR.

24 / 21

Universal DAE revisited

x
y1(x)

Theorem
There exists a fixed polynomial p and k ∈ N such that for any
continuous functions f and ε, there exists α0, . . . , αk ∈ R such that

p(y , y ′, . . . , y (k)) = 0, y(0) = α0, y ′(0) = α1, . . . , y (k)(0) = αk

has a unique analytic solution and this solution satisfies such that

|y(t)− f (t)| 6 ε(t).

25 / 21

