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Analog computers : the come back !

2030?

2000

1930

analog computers :
I hard to program
I highly specialized

I obsolete?

digital computers :
I « easy » to program
I general purpose

I analog?
I digital ?

I both!
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Analog computers

Differential Analyser
“Mathematica of 1920”

Admiralty Fire Control Table
British Navy (WW2)
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Church Thesis

Computability

discrete

Turing
machine

boolean circuitslogic

recursive
functions

lambda
calculus

quantum analog
continuous

Church Thesis
All reasonable models of computation are equivalent.
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Church Thesis

Complexity

discrete

Turing
machine

boolean circuitslogic

recursive
functions

lambda
calculus

quantum analog
continuous

>
?

?

Effective Church Thesis
All reasonable models of computation are equivalent for complexity.
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From machines to models

Differential analyzer

k k

+ u+vu
v

× uvu
v

∫ ∫
uu

General Purpose Analog
Computer, Shannon 1936

y(0) = y0, y ′(t) = p(y(t))

Polynomial Differential
Equation, Graça 2004

t
y1(t)
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Example of dynamical system

θ

`

m

g

×
∫ ∫

×
∫−g

`

××−1
∫

y1
y2

y3 y4

θ̈ + g
` sin(θ) = 0


y ′1 = y2
y ′2 = −g

l y3
y ′3 = y2y4
y ′4 = −y2y3

⇔


y1 = θ

y2 = θ̇
y3 = sin(θ)
y4 = cos(θ)

Historical remark : the word “analog”

The pendulum and the circuit have the same equation. One can study
one using the other by analogy.
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Does a balance scale compute a function?

Inputs : x , y ∈ [0,+∞)

x y

x y
x

y x

y

x = yx > y x < y

Output : sign(x − y) ?
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Computing with differential equations

Generable functions{
y(0)= y0

y ′(x)= p(y(x))
x ∈ R

f (x) = y1(x)

x
y1(x)

Shannon’s notion

sin, cos, exp, log, ...

Considered "weak" : not Γ and ζ
Only analytic functions

Computable{
y(0)= q(x)
y ′(t)= p(y(t))

x ∈ R
t ∈ R+

f (x) = lim
t→∞

y1(t)

t

f (x)

x

y1(t)

Modern notion

sin, cos, exp, log, Γ, ζ, ...

Turing powerful
[Bournez et al., 2007]
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More formally

t

1

−1

Yes

No

y1(t)

y1(t)

y1(t)
x

Theorem (Bournez et al, 2010)

This is equivalent to a Turing machine.

I analog computability theory
I purely continuous characterization of classical computability
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How does one prove such a result ?

By computing/programming with differential equations ! Two levels :

Generable functions :
I « simple » basic blocks
I lots of way to combine them
I very low level

Computable functions :
I more comprehensible
I harder to combine
I higher level

10 / 41



The theory of generable functions
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Generable functions (total, univariate)

Definition
f : R→ R is generable if there exists
d ,p and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types

I d ∈ N : dimension
I p ∈ Rd [Rn] : polynomial

vector
I y0 ∈ Rd , y : R→ Rd

x
y1(x)

Note : existence and unicity of y by Cauchy-Lipschitz theorem.
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d ,p and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types

I d ∈ N : dimension
I p ∈ Rd [Rn] : polynomial

vector
I y0 ∈ Rd , y : R→ Rd

Example : f (x) = x I identity

y(0) = 0, y ′ = 1 ; y(x) = x
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f : R→ R is generable if there exists
d ,p and y0 such that the solution y to
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satisfies f (x) = y1(x) for all x ∈ R.

Types

I d ∈ N : dimension
I p ∈ Rd [Rn] : polynomial

vector
I y0 ∈ Rd , y : R→ Rd

Example : f (x) = x2 I squaring

y1(0)= 0, y ′1= 2y2 ; y1(x)= x2

y2(0)= 0, y ′2= 1 ; y2(x)= x
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Generable functions (total, univariate)

Definition
f : R→ R is generable if there exists
d ,p and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types

I d ∈ N : dimension
I p ∈ Rd [Rn] : polynomial

vector
I y0 ∈ Rd , y : R→ Rd

Example : f (x) = xn I nth power

y1(0)= 0, y ′1= ny2 ; y1(x)= xn

y2(0)= 0, y ′2= (n − 1)y3 ; y2(x)= xn−1

. . . . . . . . .
yn(0)= 0, yn= 1 ; yn(x)= x
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Generable functions (total, univariate)

Definition
f : R→ R is generable if there exists
d ,p and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types

I d ∈ N : dimension
I p ∈ Rd [Rn] : polynomial

vector
I y0 ∈ Rd , y : R→ Rd

Example : f (x) = exp(x) I exponential

y(0)= 1, y ′= y ; y(x)= exp(x)
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Generable functions (total, univariate)

Definition
f : R→ R is generable if there exists
d ,p and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types

I d ∈ N : dimension
I p ∈ Rd [Rn] : polynomial

vector
I y0 ∈ Rd , y : R→ Rd

Example : f (x) = sin(x) or f (x) = cos(x) I sine/cosine

y1(0)= 0, y ′1= y2 ; y1(x)= sin(x)
y2(0)= 1, y ′2= −y1 ; y2(x)= cos(x)
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Generable functions (total, univariate)

Definition
f : R→ R is generable if there exists
d ,p and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types

I d ∈ N : dimension
I p ∈ Rd [Rn] : polynomial

vector
I y0 ∈ Rd , y : R→ Rd

Example : f (x) = tanh(x) I hyperbolic tangent

y(0)= 0, y ′= 1− y2 ; y(x)= tanh(x)

x
tanh(x)
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Generable functions (total, univariate)

Definition
f : R→ R is generable if there exists
d ,p and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types

I d ∈ N : dimension
I p ∈ Rd [Rn] : polynomial

vector
I y0 ∈ Rd , y : R→ Rd

Example : f (x) = 1
1+x2 I rational function

f ′(x) = −2x
(1+x2)2 = −2xf (x)2

y1(0)= 1, y ′1= −2y2y2
1 ; y1(x)= 1

1+x2

y2(0)= 0, y ′2= 1 ; y2(x)= x
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Generable functions (total, univariate)

Definition
f : R→ R is generable if there exists
d ,p and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types

I d ∈ N : dimension
I p ∈ Rd [Rn] : polynomial

vector
I y0 ∈ Rd , y : R→ Rd

Example : f = g ± h I sum/difference

(f ± g)′ = f ′ ± g′
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Generable functions (total, univariate)

Definition
f : R→ R is generable if there exists
d ,p and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types

I d ∈ N : dimension
I p ∈ Rd [Rn] : polynomial

vector
I y0 ∈ Rd , y : R→ Rd

Example : f = gh I product

(gh)′ = g′h + gh′
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Generable functions (total, univariate)

Definition
f : R→ R is generable if there exists
d ,p and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types

I d ∈ N : dimension
I p ∈ Rd [Rn] : polynomial

vector
I y0 ∈ Rd , y : R→ Rd

Example : f = 1
g I inverse

f ′ = −g′

g2 = −g′f 2
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Generable functions (total, univariate)

Definition
f : R→ R is generable if there exists
d ,p and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types

I d ∈ N : dimension
I p ∈ Rd [Rn] : polynomial

vector
I y0 ∈ Rd , y : R→ Rd

Example : f =
∫

g I integral

f ′ = g
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Generable functions (total, univariate)

Definition
f : R→ R is generable if there exists
d ,p and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types

I d ∈ N : dimension
I p ∈ Rd [Rn] : polynomial

vector
I y0 ∈ Rd , y : R→ Rd

Example : f = g′ I derivative

f ′ = g′′ = (p1(z))′ = ∇p1(z) · z ′
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Generable functions (total, univariate)

Definition
f : R→ R is generable if there exists
d ,p and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types

I d ∈ N : dimension
I p ∈ Rd [Rn] : polynomial

vector
I y0 ∈ Rd , y : R→ Rd

Example : f = g ◦ h I composition

(z ◦ h)′ = (z ′ ◦ h)h′ = p(z ◦ h)h′
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Generable functions (total, univariate)

Definition
f : R→ R is generable if there exists
d ,p and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types

I d ∈ N : dimension
I p ∈ Rd [Rn] : polynomial

vector
I y0 ∈ Rd , y : R→ Rd

Example : f ′ = tanh ◦f I Non-polynomial differential equation

f ′′ = (tanh′ ◦f )f ′ = (1− (tanh ◦f )2)f ′
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Generable functions (total, univariate)

Definition
f : R→ R is generable if there exists
d ,p and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types

I d ∈ N : dimension
I p ∈ Rd [Rn] : polynomial

vector
I y0 ∈ Rd , y : R→ Rd

Example : f (0) = f0, f ′ = g ◦ f I Initial Value Problem (IVP)

f ′ = g′′ = (p(z))′ = ∇p(z) · z ′

12 / 41



Generable functions : a first summary

Nice theory for the class of total and univariate generable functions :
I analytic
I contains polynomials, sin, cos, tanh, exp

I stable under ±,×, /, ◦ and Initial Value Problems (IVP)
I technicality on the field K of coefficients for stability under ◦

Limitations :
I total functions
I univariate

13 / 41



Generable functions : a first summary

Nice theory for the class of total and univariate generable functions :
I analytic
I contains polynomials, sin, cos, tanh, exp

I stable under ±,×, /, ◦ and Initial Value Problems (IVP)
I technicality on the field K of coefficients for stability under ◦

Limitations :
I total functions
I univariate

13 / 41



Generable functions (generalization)

Definition
f : X ⊆ Rn → R is generable if X is open
connected and ∃d ,p, x0, y0, y such that

y(x0) = y0, Jy (x) = p(y(x))

and f (x) = y1(x) for all x ∈ X .

Jy (x) = Jacobian matrix of y at x

Types

I n ∈ N : input dimension
I d ∈ N : dimension
I p ∈ Kd×d [Rd ] :

polynomial matrix
I x0 ∈ Kn

I y0 ∈ Kd , y : X → Rd

Notes :
I Partial differential equation !
I Unicity of solution y ...
I ... but not existence (ie you have to show it exists)
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Generable functions (generalization)

Definition
f : X ⊆ Rn → R is generable if X is open
connected and ∃d ,p, x0, y0, y such that

y(x0) = y0, Jy (x) = p(y(x))

and f (x) = y1(x) for all x ∈ X .

Jy (x) = Jacobian matrix of y at x

Types

I n ∈ N : input dimension
I d ∈ N : dimension
I p ∈ Kd×d [Rd ] :

polynomial matrix
I x0 ∈ Kn

I y0 ∈ Kd , y : X → Rd

Example : f (x1, x2) = x1x2
2 (n = 2,d = 3) I monomial

y(0,0) =

0
0
0

 , Jy =

y2
3 3y2y3
1 0
0 1

 ; y(x) =

x1x2
2

x1
x2


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Generable functions (generalization)

Definition
f : X ⊆ Rn → R is generable if X is open
connected and ∃d ,p, x0, y0, y such that

y(x0) = y0, Jy (x) = p(y(x))

and f (x) = y1(x) for all x ∈ X .

Jy (x) = Jacobian matrix of y at x

Types

I n ∈ N : input dimension
I d ∈ N : dimension
I p ∈ Kd×d [Rd ] :

polynomial matrix
I x0 ∈ Kn

I y0 ∈ Kd , y : X → Rd

Example : f (x1, x2) = x1x2
2 I monomial

y1(0,0)= 0, ∂x1y1= y2
3 , ∂x2y1= 3y2y3 ; y1(x) = x1x2

2
y2(0,0)= 0, ∂x1y2= 1, ∂x2y2= 0 ; y2(x) = x1
y3(0,0)= 0, ∂x1y3= 0, ∂x2y3= 1 ; y3(x) = x2

This is tedious !
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Generable functions (generalization)

Definition
f : X ⊆ Rn → R is generable if X is open
connected and ∃d ,p, x0, y0, y such that

y(x0) = y0, Jy (x) = p(y(x))

and f (x) = y1(x) for all x ∈ X .

Jy (x) = Jacobian matrix of y at x

Types

I n ∈ N : input dimension
I d ∈ N : dimension
I p ∈ Kd×d [Rd ] :

polynomial matrix
I x0 ∈ Kn

I y0 ∈ Kd , y : X → Rd

Last example : f (x) = 1
x for x ∈ (0,∞) I inverse function

y(1)= 1, ∂xy= −y2 ; y(x) = 1
x

14 / 41



Generable functions : summary

Nice theory for the class of multivariate generable functions (over
connected domains) :
I analytic
I contains polynomials, sin, cos, tanh, exp

I stable under ±,×, /, ◦ and Initial Value Problems (IVP)
I technicality on the field K of coefficients for stability under ◦

Natural questions :
I analytic→ isn’t that very limited?
I can we generate all analytic functions?

Riemann Γ and ζ are not generable.
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I stable under ±,×, /, ◦ and Initial Value Problems (IVP)
I technicality on the field K of coefficients for stability under ◦

Natural questions :
I analytic→ isn’t that very limited?
I can we generate all analytic functions? No

Riemann Γ and ζ are not generable.
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Why is this useful ?

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated multivariate
partial functions using other operations, and we know they are
solutions to polynomial ODEs by construction.

Example : almost rounding function

There exists a generable function round such that for any n ∈ Z, x ∈ R,
λ > 2 and µ > 0 :
I if x ∈

[
n − 1

2 ,n + 1
2

]
then | round(x , µ, λ)− n| 6 1

2 ,
I if x ∈

[
n − 1

2 + 1
λ ,n + 1

2 −
1
λ

]
then | round(x , µ, λ)− n| 6 e−µ.

16 / 41



Why is this useful ?

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated multivariate
partial functions using other operations, and we know they are
solutions to polynomial ODEs by construction.

Example : almost rounding function

There exists a generable function round such that for any n ∈ Z, x ∈ R,
λ > 2 and µ > 0 :
I if x ∈

[
n − 1

2 ,n + 1
2

]
then | round(x , µ, λ)− n| 6 1

2 ,
I if x ∈

[
n − 1

2 + 1
λ ,n + 1

2 −
1
λ

]
then | round(x , µ, λ)− n| 6 e−µ.

16 / 41



Why is this useful ?

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated multivariate
partial functions using other operations, and we know they are
solutions to polynomial ODEs by construction.

Example : almost rounding function

There exists a generable function round such that for any n ∈ Z, x ∈ R,
λ > 2 and µ > 0 :
I if x ∈

[
n − 1

2 ,n + 1
2

]
then | round(x , µ, λ)− n| 6 1

2 ,
I if x ∈

[
n − 1

2 + 1
λ ,n + 1

2 −
1
λ

]
then | round(x , µ, λ)− n| 6 e−µ.

16 / 41



The theory of computable functions
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Computable function{
y(0)= q(x)
y ′(t)= p(y(t))

x ∈ R
t ∈ R+

f (x) = lim
t→∞

y1(t) t

f (x)

x

y1(t)

x y

x y
x

y x

y

x = yx > y x < y

Inputs : x , y ∈ [0,+∞) Output : sign(x − y) ?
18 / 41



The theory of computable functions

Important fact :
I contains generable functions
I continuous functions

I stable under ±,×, /
I stable under ◦
I stable under limits
I stable under iteration (with conditions)

Enough to simulate a Turing machine !

Proof are too complicated but essentially this is all error management.
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Proof gem : iteration with differential equations

Assume f is generable, can we iterate f with an ODE?
That is, build a generable y such that y(x ,n) ≈ f [n](x) for all n ∈ N

t
x

f (x)

f [2](x)

0 1
2

1 3
2

2y ′≈0

z′≈f (y)−z

y ′≈z−y

z′≈0
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Recap

t

1

−1

Yes

No

y1(t)

y1(t)

y1(t)
x

Theorem (Bournez et al, 2010)

This is equivalent to a Turing machine.

I analog computability theory
I purely continuous characterization of classical computability

21 / 41



The complexity theory of computable functions

22 / 41



Complexity of analog systems

I Turing machines : T (x) = number of steps to compute on x

I GPAC :

time contraction problem→ open problem

Tentative definition

y(0) = (x ,0, . . . ,0) y ′ = p(y)

t

f (x)

x

y1(t)
;

z(t) = y(et )

t

f (x)

x

z1(t)

Something is wrong...

All functions have constant
time complexity.

w(t) = y(eet
)

t

f (x)

x

w1(t)
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Time-space correlation of the GPAC

y(0) = q(x) y ′ = p(y)

t

f (x)

q(x)

y1(t)
;

z(t) = y(et )

t

f (x)

q̃(x)

z1(t)

Observation
Time scaling costs “space”.

;

Time complexity for the GPAC
must involve time and space !

extra component : w(t) = et

t

w(t)
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Complexity in the analog world

Complexity measure : length of the curve

x y(10)

=

x y(1)

Time acceleration : same curve = same complexity !

x y(1)

�
x y(1)

Same time, different curves : different complexity !
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Characterization of polynomial time

Definition : L ∈ ANALOG-PTIME⇔ ∃p polynomial, ∀ word w

y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2−i

`(t) = length of y

1

−1

y1(t)

ψ(w)
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y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2−i

`(t) = length of y

1

−1

accept : w ∈ L

computing

y1(t)

ψ(w)

satisfies
1. if y1(t) > 1 then w ∈ L
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|w |∑
i=1

wi2−i

`(t) = length of y

1

−1

poly(|w |)

accept : w ∈ L

reject : w /∈ L

computing

forbiddeny1(t)
ψ(w)

satisfies
3. if `(t) > poly(|w |) then |y1(t)| > 1
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Characterization of polynomial time

Definition : L ∈ ANALOG-PTIME⇔ ∃p polynomial, ∀ word w

y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2−i

`(t) = length of y

1

−1

poly(|w |)

accept : w ∈ L

reject : w /∈ L

computing

forbidden

y1(t)

y1(t)

y1(t)
ψ(w)

Theorem
PTIME = ANALOG-PTIME
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Summary

ANALOG-PTIME ANALOG-PR

`(t)

1

−1
poly(|w |)

w∈L

w /∈L

y1(t)

y1(t)

y1(t)ψ(w)

`(t)

f (x)

x

y1(t)

Theorem

I L ∈ PTIME of and only if L ∈ ANALOG-PTIME

I f : [a,b]→ R computable in polynomial time⇔ f ∈ ANALOG-PR

I Analog complexity theory based on length
I Time of Turing machine⇔ length of the GPAC
I Purely continuous characterization of PTIME

I Only rational coefficients needed
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Chemical Reaction Networks
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Chemical Reaction Networks

Definition : a reaction system is a finite set of
I molecular species y1, . . . , yn

I reactions of the form
∑

i aiyi
f−→
∑

i biyi (ai ,bi ∈ N, f = rate)

Example (any resemblance to chemistry is purely coincidental) :

2H + O → H2O
C + O2 → CO2

Assumption : law of mass action∑
i

aiyi
k−→
∑

i

biyi ; f (y) = k
∏

i

yai
i

Semantics :
I discrete
I differential
I stochastic
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Chemical Reaction Networks (CRNs)
I CRNs with differential semantics and mass action law =

polynomial ODEs
I polynomial ODEs are Turing complete

CRNs are Turing complete? Two “slight” problems :
I concentrations cannot be negative (yi < 0)
I arbitrary reactions are not realistic

Definition : a reaction is elementary if it has at most two reactants
⇒ can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

ay + bz k−→ · · · ; f (y , z) = kyazb

Theorem (Folklore)

Every polynomial ODE can be rewritten as a quadratic ODE.
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Chemical Reaction Networks (CRNs)

Definition : a reaction is elementary if it has at most two reactants
⇒ can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

ay + bz k−→ · · · ; f (y , z) = kyazb

Theorem (Work with François Fages, Guillaume Le Guludec)

Elementary mass-action-law reaction system on finite universes of
molecules are Turing-complete under the differential semantics.

Notes :
I proof preserves polynomial length
I in fact the following elementary reactions suffice :

∅ k−→ x x k−→ x + z x + y k−→ x + y + z x + y k−→ ∅
30 / 41



Universal differential equation
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Universal differential equations

Generable functions

x
y1(x)

subclass of analytic functions

Computable functions

t

f (x)

x

y1(t)

any computable function

x
y1(x)
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Universal differential algebraic equation (DAE)

x
y(x)

Theorem (Rubel, 1981)

For any continuous functions f and ε, there exists y : R→ R solution to

3y ′4y
′′
y
′′′′2 −4y ′4y

′′′2
y
′′′′

+ 6y ′3y
′′2

y
′′′

y
′′′′

+ 24y ′2y
′′4

y
′′′′

−12y ′3y
′′
y
′′′3 − 29y ′2y

′′3
y
′′′2

+ 12y
′′7

= 0

such that ∀t ∈ R,
|y(t)− f (t)| 6 ε(t).

Problem : this is «weak» result.
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The problem with Rubel’s DAE

The solution y is not unique, even with added initial conditions :

p(y , y ′, . . . , y (k)) = 0, y(0) = α0, y ′(0) = α1, . . . , y (k)(0) = αk

In fact, this is fundamental for Rubel’s proof to work !

I Rubel’s statement : this DAE is universal
I More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y ′ = p(y) ?
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Rubel’s proof in one slide

I Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1− t2)2f
′′

(t) + 2tf ′(t) = 0.

I For any a,b, c ∈ R, y(t) = cf (at + b) satisfies
I Can glue together arbitrary many such pieces
I Can arrange so that

∫
f is solution : piecewise pseudo-linear

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0
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f is solution : piecewise pseudo-linear

Translation and rescaling :

t
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Universal initial value problem (IVP)

x
y1(x)

Notes :
I system of ODEs,
I y is analytic,
I we need d ≈ 300.

Theorem
There exists a fixed (vector of) polynomial p such that for any
continuous functions f and ε, there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).

Remark : α is usually transcendental, but computable from f and ε
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A simplified proof

α ∈ R ODE t
0 1 1 0 1 0 1 0 0 1 1 1 . . .

digits of α
binary stream

generator

This is the ideal curve, the real
one is an approximation of it.

N
O

TE
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α ∈ R ODE t
0 1 1 0 1 0 1 0 0 1 1 1 . . .

digits of α
binary stream

generator

ODEt

“Digital” to Analog
Converter (fixed frequency)

Approximate Lipschitz and bounded
functions with fixed precision.

N
O

TE

That’s the trickiest part.
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digits of α
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ODEt

“Digital” to Analog
Converter (fixed frequency)
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We need something more :
a fast-growing ODE.
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A simplified proof

α ∈ R ODE t
0 1 1 0 1 0 1 0 0 1 1 1 . . .

digits of α
binary stream

generator

ODEt

“Digital” to Analog
Converter (fixed frequency)

ODE?

t

We need something more :
an arbitrarily fast-growing ODE.

N
O
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A less simplified proof
binary stream generator : digits of α ∈ R

t

1
0

1
0

1
0

1
0

f (α, µ, λ, t) = 1
2 + 1

2 tanh(µ sin(2απ4round(t−1/4,λ) + 4π/3))

It’s horrible, but generable

round is the mysterious rounding function... 38 / 41
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1
0
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d1
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d2

a2

d3

a3

dyadic stream generator : di = mi2−di , ai = 9i +
∑

j<i dj

f (α, γ, t) = sin(2απ2round(t−1/4,γ)))

round is the mysterious rounding function... 38 / 41
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A less simplified proof

t

1
0

1
0

1
0

1
0

t

d0

a0

d1

a1

d2

a2

d3

a3

copy signal copy signal copy signal copy signal

This copy operation is the “non-trivial” part.
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A less simplified proof

t

We can do almost piecewise constant functions...
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A less simplified proof

t

We can do almost piecewise constant functions...
I ...that are bounded by 1...
I ...and have super slow changing frequency.
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A less simplified proof

t

We can do almost piecewise constant functions...
I ...that are bounded by 1...
I ...and have super slow changing frequency.

How do we go to arbitrarily large and growing functions? Can a
polynomial ODE even have arbitrary growth?

38 / 41



An old question on growth

Building a fast-growing ODE, that exists over R :

y ′1 = y1 ; y1(t) = exp(t)

y ′2 = y1y2 ; y1(t) = exp(exp(t))
. . . . . .
y ′n = y1 · · · yn ; yn(t) = exp(· · · exp(t) · · · ) := en(t)

Conjecture (Emil Borel, 1899)

With n variables, cannot do better than Ot (en(Atk )).
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An old question on growth

Counter-example (Vijayaraghavan, 1932)

1
2− cos(t)− cos(αt)

t

Sequence of arbitrarily
growing spikes.
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Counter-example (Vijayaraghavan, 1932)

1
2− cos(t)− cos(αt)

t

Sequence of arbitrarily
growing spikes. But not
good enough for us.
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An old question on growth

Theorem
There exists a polynomial p : Rd → Rd such that for any continuous
function f : R+ → R, we can find α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))
satisfies

y1(t) > f (t), ∀t > 0.

Note : both results require α to be transcendental. Conjecture still
open for rational (or algebraic) coefficients.
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Universal initial value problem (IVP)

x
y1(x)

Notes :
I system of ODEs,
I y is analytic,
I we need d ≈ 300.

Theorem
There exists a fixed (vector of) polynomial p such that for any
continuous functions f and ε, there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).

Remark : α is usually transcendental, but computable from f and ε
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Future work

Reaction networks :
I chemical
I enzymatic

y ′ = p(y)

y ′ = p(y) + e(t)

?

I Finer time complexity (linear)
I Nondeterminism
I Robustness
I « Space» complexity
I Other models
I Stochastic

41 / 41



Backup slides
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Complexity of solving polynomial ODEs

y(0) = x y ′(t) = p(y(t))

Theorem
If y(t) exists, one can compute p,q such that

∣∣∣pq − y(t)
∣∣∣ 6 2−n in time

poly (size of x and p,n, `(t))

where `(t) ≈ length of the curve (between x and y(t))

x y(t) x y(t)

length of the curve = complexity = ressource
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Universal DAE revisited

x
y1(x)

Theorem
There exists a fixed polynomial p and k ∈ N such that for any
continuous functions f and ε, there exists α0, . . . , αk ∈ R such that

p(y , y ′, . . . , y (k)) = 0, y(0) = α0, y ′(0) = α1, . . . , y (k)(0) = αk

has a unique analytic solution and this solution satisfies such that

|y(t)− f (t)| 6 ε(t).
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