Continuous models of computation: computability, complexity, universality

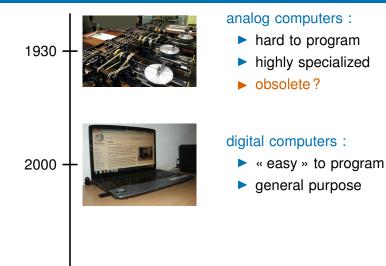
Amaury Pouly

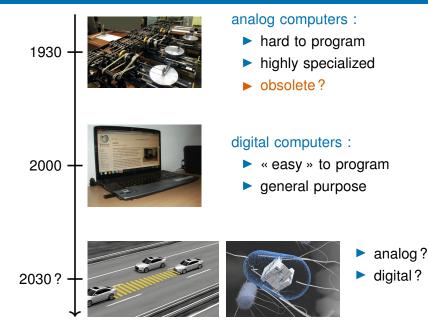
Université de Paris, IRIF, CNRS

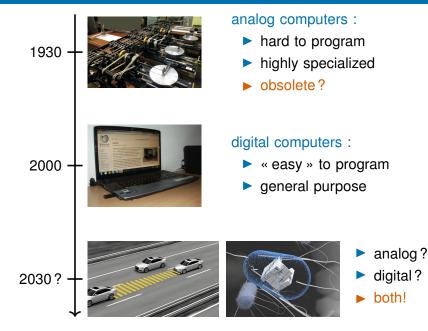
27 january 2020

analog computers :

- hard to program
- highly specialized





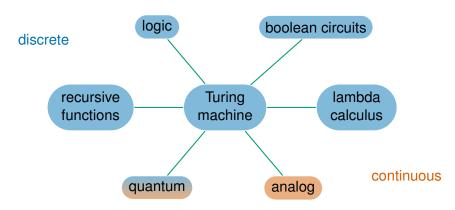


Analog computers

Differential Analyser "Mathematica of 1920"

Admiralty Fire Control Table British Navy (WW2)

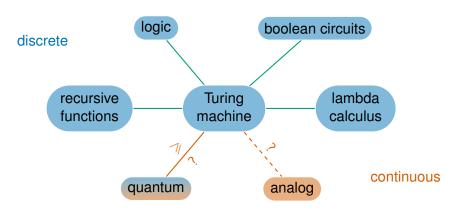
Computability



Church Thesis

All reasonable models of computation are equivalent.

Complexity



Effective Church Thesis

All reasonable models of computation are equivalent for complexity.

Differential analyzer

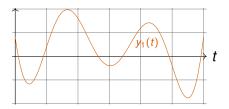
General Purpose Analog Computer, Shannon 1936

Differential analyzer

$$\begin{matrix} k \\ - k \end{matrix} \qquad \begin{matrix} u \\ v \end{matrix} = \begin{matrix} x \\ - uv \end{matrix}$$

General Purpose Analog Computer, Shannon 1936

Differential analyzer

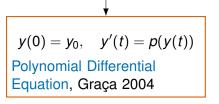


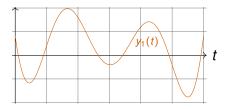
$$y(0) = y_0, \quad y'(t) = p(y(t))$$

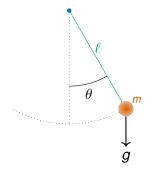
Polynomial Differential Equation, Graça 2004

General Purpose Analog Computer, Shannon 1936

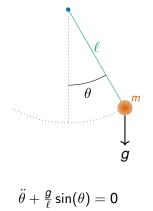
Differential analyzer



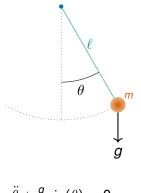


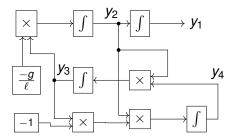


$$\ddot{\theta} + rac{g}{\ell}\sin(\theta) = 0$$



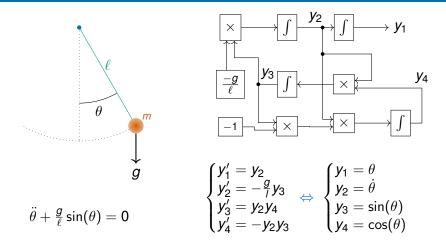
$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{l} y_3 \\ y_3' = y_2 y_4 \\ y_4' = -y_2 y_3 \end{cases} \Leftrightarrow \begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases}$$





$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{l} y_3 \\ y_3' = y_2 y_4 \\ y_4' = -y_2 y_3 \end{cases} \Leftrightarrow \begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases}$$

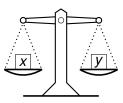
 $\ddot{\theta} + rac{g}{\ell}\sin(\theta) = 0$



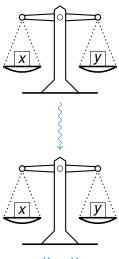
Historical remark : the word "analog"

The pendulum and the circuit have the same equation. One can study one using the other by analogy.

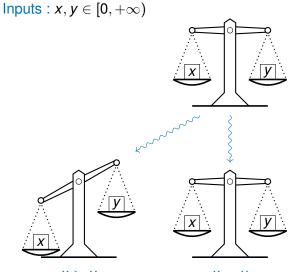
Inputs : $x, y \in [0, +\infty)$



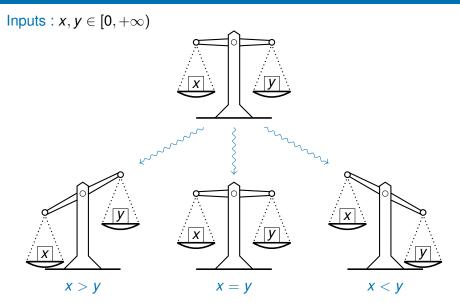
Inputs : $x, y \in [0, +\infty)$

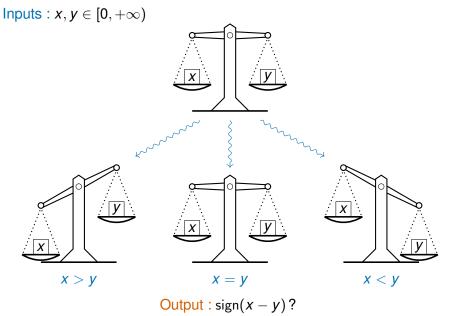


x = y

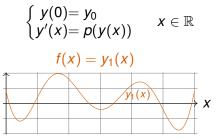


x = y





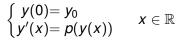
Generable functions

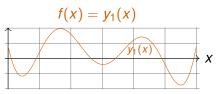


Shannon's notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \dots$

Generable functions



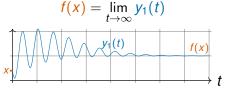


Shannon's notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \dots$

Computable

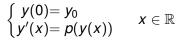
$$\left\{ egin{array}{ll} y(0) = q(x) & x \in \mathbb{R} \ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{array}
ight.$$

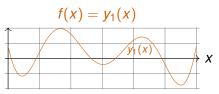


Modern notion

 $\sin,\cos,\exp,\log,\Gamma,\zeta,\dots$

Generable functions





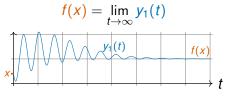
Shannon's notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \dots$

Considered "weak" : not Γ and ζ Only analytic functions

Computable

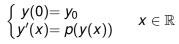
$$\left\{ egin{array}{ll} y(0) = q(x) & x \in \mathbb{R} \ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{array}
ight.$$

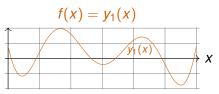


Modern notion

 $\sin,\cos,\exp,\log,\Gamma,\zeta,\dots$

Generable functions





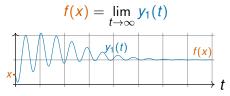
Shannon's notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \dots$

Considered "weak" : not Γ and ζ Only analytic functions

Computable

$$\left\{ egin{array}{ll} y(0) = q(x) & x \in \mathbb{R} \ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{array}
ight.$$

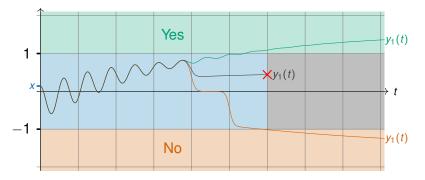


Modern notion

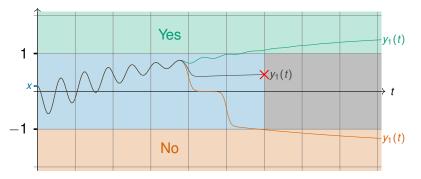
 $\sin,\cos,\exp,\log,\Gamma,\zeta,\ldots$

Turing powerful [Bournez et al., 2007]

More formally



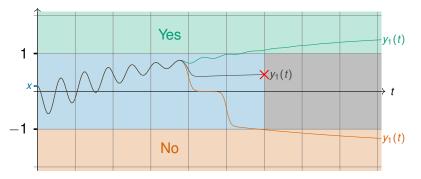
More formally



Theorem (Bournez et al, 2010)

This is equivalent to a Turing machine.

More formally



Theorem (Bournez et al, 2010)

This is equivalent to a Turing machine.

- analog computability theory
- purely continuous characterization of classical computability

By computing/programming with differential equations ! Two levels :

Generable functions :

- « simple » basic blocks
- lots of way to combine them
- very low level

Computable functions :

- more comprehensible
- harder to combine
- higher level

The theory of generable functions

Definition	Турез
$f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, \qquad y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	 <i>d</i> ∈ N : dimension <i>p</i> ∈ R^d[Rⁿ] : polynomial vector <i>y</i>₀ ∈ R^d, <i>y</i> : R → R^d

Note : existence and unicity of *y* by Cauchy-Lipschitz theorem.

Definition	Турез	
$f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, \qquad y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	 d ∈ N : dimension p ∈ R^d[Rⁿ] : polynomial vector y₀ ∈ R^d, y : R → R^d 	
Example : $f(x) = x$ $y(0) = 0$, $y' = 1 \rightarrow y(x) = x$		

Definition	Турез
$f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	 d ∈ N : dimension p ∈ R^d[Rⁿ] : polynomial vector y₀ ∈ R^d, y : R → R^d
Example : $f(x) = x^2$ > squaring $y_1(0) = 0, y'_1 = 2y_2 \land y_2(0) = 0, y'_2 = 1 \land$	$y_1(x) = x^2$ $y_2(x) = x$

Definition	Туреѕ
$f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	 <i>d</i> ∈ N : dimension <i>p</i> ∈ ℝ^d[ℝⁿ] : polynomial vector <i>y</i>₀ ∈ ℝ^d, <i>y</i> : ℝ → ℝ^d
Example : $f(x) = x^n$ $\blacktriangleright n^{th}$ power $y_1(0) = 0, y'_1 = ny_2$ $y_2(0) = 0, y'_2 = (n-1)y_3$ $y_n(0) = 0, y_n = 1$	

Definition	Types
$f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	 d ∈ N : dimension p ∈ R^d[Rⁿ] : polynomial vector y₀ ∈ R^d, y : R → R^d
Example : $f(x) = \exp(x)$ $y(0) = 1$, $y' = y \rightarrow y(x) = \exp(x)$	

Definition	Types
$f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	 <i>d</i> ∈ N : dimension <i>p</i> ∈ ℝ^d[ℝⁿ] : polynomial vector <i>y</i>₀ ∈ ℝ^d, <i>y</i> : ℝ → ℝ^d
Example : $f(x) = \sin(x)$ or $f(x) = \cos(x)$ $y_1(0) = 0, y'_1 = y_2 \rightsquigarrow$ $y_2(0) = 1, y'_2 = -y_1 \rightsquigarrow$	

Definition	Types
$f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	 <i>d</i> ∈ N : dimension <i>p</i> ∈ ℝ^d[ℝⁿ] : polynomial vector <i>y</i>₀ ∈ ℝ^d, <i>y</i> : ℝ → ℝ^d
Example : $f(x) = tanh(x)$ $y(0)=0, y'=1-y^2 \sim$	-
tanh	x) x

Definition	Types
$f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	 <i>d</i> ∈ N : dimension <i>p</i> ∈ ℝ^d[ℝⁿ] : polynomial vector <i>y</i>₀ ∈ ℝ^d, <i>y</i> : ℝ → ℝ^d
Example : $f(x) = \frac{1}{1+x^2}$ Frational function $f'(x) = \frac{-2x}{(1+x^2)^2} = -2xf(x)^2$ $y_1(0) = 1, y'_1 = -2y_2y_1^2 \rightsquigarrow y_1(x) = \frac{1}{1+x^2}$ $y_2(0) = 0, y'_2 = 1 \rightsquigarrow y_2(x) = x$	

Definition	Туреѕ
$f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	 <i>d</i> ∈ N : dimension <i>p</i> ∈ ℝ^d[ℝⁿ] : polynomial vector <i>y</i>₀ ∈ ℝ^d, <i>y</i> : ℝ → ℝ^d
Example : $f = g \pm h$ Sum/difference $(f \pm g)' = f' \pm g'$	

Definition	Types
$f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	 d ∈ N : dimension p ∈ R^d[Rⁿ] : polynomial vector y₀ ∈ R^d, y : R → R^d
Example : $f = gh$	
$(gh)^\prime = g^\prime h + gh^\prime$	

Definition	Types
$f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, \qquad y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	 <i>d</i> ∈ N : dimension <i>p</i> ∈ ℝ^d[ℝⁿ] : polynomial vector <i>y</i>₀ ∈ ℝ^d, <i>y</i> : ℝ → ℝ^d
Example : $f = \frac{1}{g}$ inverse $f' = \frac{-g'}{g^2} = -g'f^2$	

Definition	Турез
$f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, \qquad y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	 d ∈ N : dimension p ∈ R^d[Rⁿ] : polynomial vector y₀ ∈ R^d, y : R → R^d
Example : $f = \int g$ integral	
f'=g	

Definition	Types
$f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	 d ∈ N : dimension p ∈ R^d[Rⁿ] : polynomial vector y₀ ∈ R^d, y : R → R^d
Example : $f = g'$ $f' = g'' = (p_1(z))' = \nabla p_1(z) \cdot z'$	

Definition	Types
$f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	 d ∈ N : dimension p ∈ R^d[Rⁿ] : polynomial vector y₀ ∈ R^d, y : R → R^d
Example : $f = g \circ h$ $(z \circ h)' = (z' \circ h)h' = p(z \circ h)h'$	

Definition	Турез
$f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	 d ∈ N : dimension p ∈ R^d[Rⁿ] : polynomial vector y₀ ∈ R^d, y : R → R^d
Example : $f' = \tanh \circ f$ Non-polynomial differential equation $f'' = (\tanh' \circ f)f' = (1 - (\tanh \circ f)^2)f'$	

Definition	Types
$f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to $y(0) = y_0, y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.	 <i>d</i> ∈ N : dimension <i>p</i> ∈ ℝ^d[ℝⁿ] : polynomial vector <i>y</i>₀ ∈ ℝ^d, <i>y</i> : ℝ → ℝ^d
Example : $f(0) = f_0, f' = g \circ f$ Initial Value Problem (IVP) $f' = g'' = (p(z))' = \nabla p(z) \cdot z'$	

Nice theory for the class of total and univariate generable functions :

- analytic
- contains polynomials, sin, cos, tanh, exp
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- technicality on the field K of coefficients for stability under \circ

Nice theory for the class of total and univariate generable functions :

- analytic
- contains polynomials, sin, cos, tanh, exp
- ▶ stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- \blacktriangleright technicality on the field $\mathbb K$ of coefficients for stability under \circ

Limitations :

- total functions
- univariate

Definition

 $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open connected and $\exists d, p, x_0, y_0, y$ such that

$$y(x_0) = y_0,$$
 $J_y(x) = p(y(x))$
and $f(x) = y_1(x)$ for all $x \in X$.

 $J_y(x) =$ Jacobian matrix of y at x

Notes :

ar

- Partial differential equation !
- Unicity of solution y...
- ... but not existence (ie you have to show it exists)

Types

- ▶ $n \in \mathbb{N}$: input dimension
- ▶ $d \in \mathbb{N}$: dimension

•
$$p \in \mathbb{K}^{d \times d}[\mathbb{R}^d]$$
:
polynomial matrix

•
$$x_0 \in \mathbb{K}^n$$

►
$$y_0 \in \mathbb{K}^d, y : X \to \mathbb{R}^d$$

Definition

а

 $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open connected and $\exists d, p, x_0, y_0, y$ such that

$$y(x_0) = y_0,$$
 $J_y(x) = p(y(x))$
nd $f(x) = y_1(x)$ for all $x \in X$.

 $J_y(x) =$ Jacobian matrix of y at x

Example :
$$f(x_1, x_2) = x_1 x_2^2$$
 $(n = 2, d = 3)$
 $y(0, 0) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad J_y = \begin{pmatrix} y_3^2 & 3y_2 y_3 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$

Types

- ▶ $n \in \mathbb{N}$: input dimension
- ▶ $d \in \mathbb{N}$: dimension

•
$$p \in \mathbb{K}^{d \times d}[\mathbb{R}^d]$$
:
polynomial matrix

►
$$x_0 \in \mathbb{K}^n$$

•
$$y_0 \in \mathbb{K}^d, y : X \to \mathbb{R}^d$$

monomial

$$\ \, \rightarrow \quad y(x) = \begin{pmatrix} x_1 x_2^2 \\ x_1 \\ x_2 \end{pmatrix}$$

Definition

 $f: X \subset \mathbb{R}^n \to \mathbb{R}$ is generable if X is open **connected** and $\exists d, p, x_0, y_0, y$ such that

$$y(x_0) = y_0,$$
 $J_y(x) = p(y(x))$
and $f(x) = y_1(x)$ for all $x \in X$.

 $J_{v}(x) =$ Jacobian matrix of y at x

Types

- ▶ $n \in \mathbb{N}$: input dimension
- \blacktriangleright $d \in \mathbb{N}$: dimension

•
$$p \in \mathbb{K}^{d \times d}[\mathbb{R}^d]$$
:
polynomial matrix

•
$$x_0 \in \mathbb{K}^n$$

►
$$y_0 \in \mathbb{K}^d, y : X \to \mathbb{R}^d$$

Example : $f(x_1, x_2) = x_1 x_2^2$

monomial

This is tedious!

Definition

а

 $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open connected and $\exists d, p, x_0, y_0, y$ such that

$$y(x_0) = y_0,$$
 $J_y(x) = p(y(x))$
nd $f(x) = y_1(x)$ for all $x \in X$.

 $J_y(x) =$ Jacobian matrix of y at x

Types

- ▶ $n \in \mathbb{N}$: input dimension
- ▶ $d \in \mathbb{N}$: dimension

•
$$p \in \mathbb{K}^{d \times d}[\mathbb{R}^d]$$
:
polynomial matrix

►
$$x_0 \in \mathbb{K}^n$$

►
$$y_0 \in \mathbb{K}^d, y : X \to \mathbb{R}^d$$

Last example :
$$f(x) = \frac{1}{x}$$
 for $x \in (0, \infty)$
 $y(1) = 1, \quad \partial_x y = -y^2 \quad \rightsquigarrow \quad y(x) = \frac{1}{x}$

Nice theory for the class of multivariate generable functions (over connected domains) :

- analytic
- contains polynomials, sin, cos, tanh, exp
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- technicality on the field K of coefficients for stability under \circ

Nice theory for the class of multivariate generable functions (over connected domains) :

- analytic
- contains polynomials, sin, cos, tanh, exp
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- technicality on the field K of coefficients for stability under \circ

Natural questions :

- analytic \rightarrow isn't that very limited?
- can we generate all analytic functions?

Nice theory for the class of multivariate generable functions (over connected domains) :

- analytic
- contains polynomials, sin, cos, tanh, exp
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- technicality on the field K of coefficients for stability under \circ

Natural questions :

- analytic \rightarrow isn't that very limited?
- can we generate all analytic functions? No

Riemann Γ and ζ are not generable.

Why is this useful?

Writing polynomial ODEs by hand is hard.

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated **multivariate partial functions** using other operations, and we know they are solutions to polynomial ODEs **by construction**.

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated **multivariate partial functions** using other operations, and we know they are solutions to polynomial ODEs **by construction**.

Example : almost rounding function

There exists a generable function round such that for any $n \in \mathbb{Z}$, $x \in \mathbb{R}$, $\lambda > 2$ and $\mu \ge 0$:

- if $x \in [n \frac{1}{2}, n + \frac{1}{2}]$ then $|\operatorname{round}(x, \mu, \lambda) n| \leq \frac{1}{2}$,
- if $x \in \left[n \frac{1}{2} + \frac{1}{\lambda}, n + \frac{1}{2} \frac{1}{\lambda}\right]$ then $|\operatorname{round}(x, \mu, \lambda) n| \leq e^{-\mu}$.

Computable function

Inputs : $x, y \in [0, +\infty)$ Output : sign(x - y)?

- contains generable functions
- continuous functions

- contains generable functions
- continuous functions
- ▶ stable under $\pm, \times, /$

- contains generable functions
- continuous functions
- Stable under $\pm, \times, /$
- stable under o

- contains generable functions
- continuous functions
- Stable under $\pm, \times, /$
- stable under o
- stable under limits

- contains generable functions
- continuous functions
- Stable under $\pm, \times, /$
- stable under o
- stable under limits
- stable under iteration (with conditions)

Important fact :

- contains generable functions
- continuous functions
- Stable under $\pm, \times, /$
- stable under o
- stable under limits
- stable under iteration (with conditions)

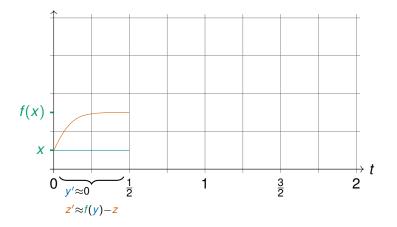
Enough to simulate a Turing machine !

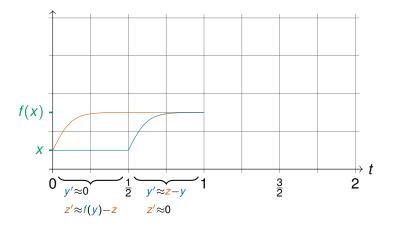
Important fact :

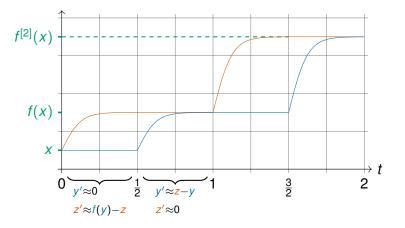
- contains generable functions
- continuous functions
- Stable under $\pm, \times, /$
- ► stable under ○
- stable under limits
- stable under iteration (with conditions)

Enough to simulate a Turing machine !

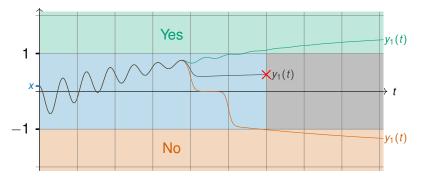
Proof are too complicated but essentially this is all error management.







Recap



Theorem (Bournez et al, 2010)

This is equivalent to a Turing machine.

- analog computability theory
- purely continuous characterization of classical computability

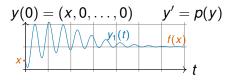
The complexity theory of computable functions

Turing machines : T(x) = number of steps to compute on x

Turing machines : T(x) = number of steps to compute on x
 GPAC :

Tentative definition

T(x) = ??



Turing machines : T(x) = number of steps to compute on x
 GPAC :

Tentative definition

 $T(x, \mu) =$

Turing machines : T(x) = number of steps to compute on x
 GPAC :

Tentative definition

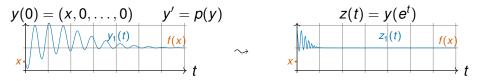
 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq e^{-\mu}$

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

Turing machines : T(x) = number of steps to compute on x
 GPAC :

Tentative definition

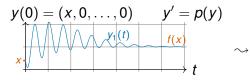
 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq e^{-\mu}$

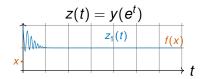


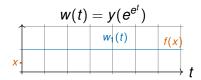
Turing machines : T(x) = number of steps to compute on x
 GPAC :

Tentative definition

 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq e^{-\mu}$



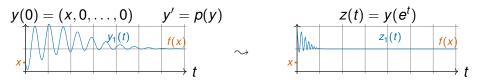




- Turing machines : T(x) = number of steps to compute on x
- ► GPAC : time contraction problem → open problem

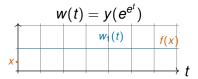
Tentative definition

 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq e^{-\mu}$



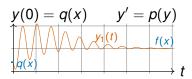
Something is wrong...

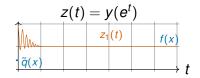
All functions have constant time complexity.



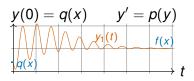
Time-space correlation of the GPAC

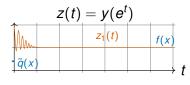
 \sim



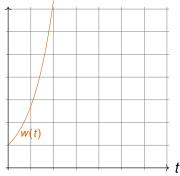


Time-space correlation of the GPAC

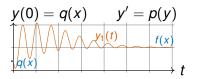




extra component : $w(t) = e^t$



Time-space correlation of the GPAC

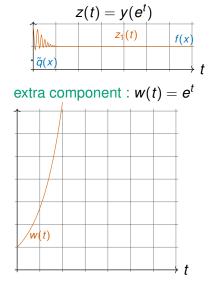


Observation

Time scaling costs "space".

 \sim

Time complexity for the GPAC must involve time and space !



Complexity in the analog world

Complexity measure : length of the curve



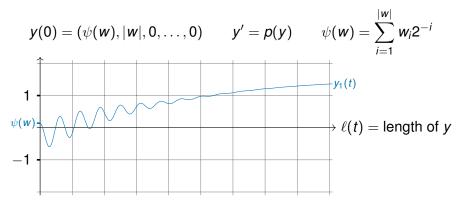
Time acceleration : same curve = same complexity !

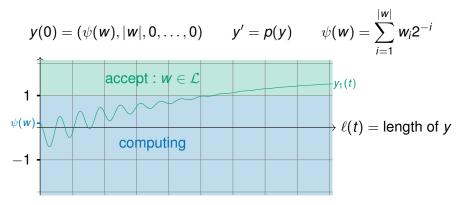
Complexity in the analog world

Complexity measure : length of the curve

Time acceleration : same curve = same complexity !

Same time, different curves : different complexity !





satisfies

1. if
$$y_1(t) \ge 1$$
 then $w \in \mathcal{L}$

satisfies

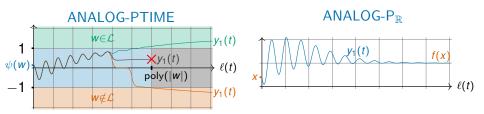
2. if
$$y_1(t) \leq -1$$
 then $w \notin \mathcal{L}$

satisfies

3. if $\ell(t) \ge \operatorname{poly}(|w|)$ then $|y_1(t)| \ge 1$

Theorem

$\mathsf{PTIME} = \mathsf{ANALOG}\mathsf{-}\mathsf{PTIME}$

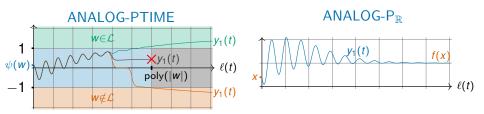


Theorem

• $\mathcal{L} \in \mathsf{PTIME}$ of and only if $\mathcal{L} \in \mathsf{ANALOG}\operatorname{-PTIME}$

▶ $f : [a, b] \rightarrow \mathbb{R}$ computable in polynomial time $\Leftrightarrow f \in \mathsf{ANALOG-P}_{\mathbb{R}}$

- Analog complexity theory based on length
- ► Time of Turing machine ⇔ length of the GPAC
- Purely continuous characterization of PTIME



Theorem

• $\mathcal{L} \in \mathsf{PTIME}$ of and only if $\mathcal{L} \in \mathsf{ANALOG}\operatorname{-PTIME}$

▶ $f : [a, b] \rightarrow \mathbb{R}$ computable in polynomial time $\Leftrightarrow f \in \mathsf{ANALOG-P}_{\mathbb{R}}$

- Analog complexity theory based on length
- ► Time of Turing machine ⇔ length of the GPAC
- Purely continuous characterization of PTIME
- Only rational coefficients needed

Definition : a reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example (any resemblance to chemistry is purely coincidental) :

Definition : a reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example (any resemblance to chemistry is purely coincidental) :

Assumption : law of mass action

$$\sum_{i} a_{i} y_{i} \xrightarrow{k} \sum_{i} b_{i} y_{i} \rightsquigarrow f(y) = k \prod_{i} y_{i}^{a_{i}}$$

Definition : a reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example (any resemblance to chemistry is purely coincidental) :

Assumption : law of mass action

$$\sum_{i} a_{i} y_{i} \xrightarrow{k} \sum_{i} b_{i} y_{i} \rightsquigarrow f(y) = k \prod_{i} y_{i}^{a_{i}}$$

Semantics :

- discrete
- differential
- stochastic

Definition : a reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example (any resemblance to chemistry is purely coincidental) :

Assumption : law of mass action

$$\sum_{i} a_{i} y_{i} \xrightarrow{k} \sum_{i} b_{i} y_{i} \rightsquigarrow f(y) = k \prod_{i} y_{i}^{a_{i}}$$

Semantics :

- discrete
- $\blacktriangleright \text{ differential} \rightarrow$
- stochastic

$$y'_i = \sum_{\text{reaction } R} (b^R_i - a^R_i) f^R(y)$$

Definition : a reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example (any resemblance to chemistry is purely coincidental) :

Assumption : law of mass action

$$\sum_{i} a_{i} y_{i} \xrightarrow{k} \sum_{i} b_{i} y_{i} \rightsquigarrow f(y) = k \prod_{i} y_{i}^{a_{i}}$$

Semantics :

- discrete
- $\blacktriangleright \text{ differential} \rightarrow$

stochastic

$$y'_i = \sum_{\text{reaction } R} (b^R_i - a^R_i) k^R \prod_j y^{a_j}_j$$

- CRNs with differential semantics and mass action law = polynomial ODEs
- polynomial ODEs are Turing complete

- CRNs with differential semantics and mass action law = polynomial ODEs
- polynomial ODEs are Turing complete

CRNs are Turing complete?

CRNs are Turing complete ? Two "slight" problems :

- concentrations cannot be negative ($y_i < 0$)
- arbitrary reactions are not realistic

CRNs are Turing complete? Two "slight" problems :

- concentrations cannot be negative ($y_i < 0$)
- arbitrary reactions are not realistic

easy to solvewhat is realistic?

CRNs are Turing complete? Two "slight" problems :

- concentrations cannot be negative $(y_i < 0)$
- arbitrary reactions are not realistic

easy to solvewhat is realistic?

Definition : a reaction is **elementary** if it has at most two reactants \Rightarrow can be implemented with DNA, RNA or proteins

CRNs are Turing complete? Two "slight" problems :

- concentrations cannot be negative ($y_i < 0$)
- arbitrary reactions are not realistic

easy to solvewhat is realistic?

Definition : a reaction is **elementary** if it has at most two reactants \Rightarrow can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

$$ay + bz \xrightarrow{k} \cdots \qquad \rightsquigarrow \qquad f(y, z) = ky^a z^b$$

CRNs are Turing complete? Two "slight" problems :

- concentrations cannot be negative $(y_i < 0)$
- arbitrary reactions are not realistic

easy to solvewhat is realistic?

Definition : a reaction is **elementary** if it has at most two reactants \Rightarrow can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

$$ay + bz \xrightarrow{k} \cdots \qquad \rightsquigarrow \qquad f(y, z) = ky^a z^b$$

Theorem (Folklore)

Every polynomial ODE can be rewritten as a quadratic ODE.

Definition : a reaction is **elementary** if it has at most two reactants \Rightarrow can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

$$ay + bz \xrightarrow{k} \cdots \qquad \rightsquigarrow \qquad f(y, z) = ky^a z^b$$

Theorem (Work with François Fages, Guillaume Le Guludec)

Elementary mass-action-law reaction system on finite universes of molecules are Turing-complete under the differential semantics.

Notes :

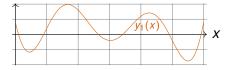
- proof preserves polynomial length
- in fact the following elementary reactions suffice :

Universal differential equation

Universal differential equations

Generable functions

Computable functions



$x \xrightarrow{y_1(t)} f(x)$

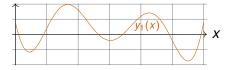
subclass of analytic functions

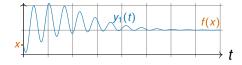
any computable function

Universal differential equations

Generable functions

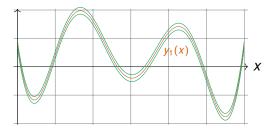
Computable functions



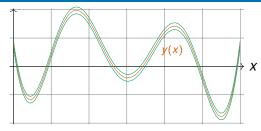


subclass of analytic functions

any computable function



Universal differential algebraic equation (DAE)



Theorem (Rubel, 1981)

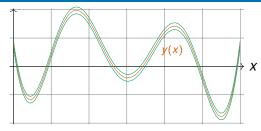
For any continuous functions f and ε , there exists $y : \mathbb{R} \to \mathbb{R}$ solution to

$$3y'^{4}y''y''''^{2} -4y'^{4}y'''^{2}y'''' + 6y'^{3}y''^{2}y'''y'''' + 24y'^{2}y''^{4}y'''' -12y'^{3}y''y'''^{3} - 29y'^{2}y''^{3}y'''^{2} + 12y''^{7} = 0$$

such that $\forall t \in \mathbb{R}$,

 $|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$

Universal differential algebraic equation (DAE)



Theorem (Rubel, 1981)

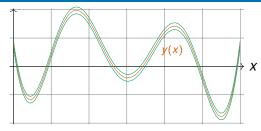
There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y, y', \ldots, y^{(k)}) = 0$$

such that $\forall t \in \mathbb{R}$,

 $|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$

Universal differential algebraic equation (DAE)



Theorem (Rubel, 1981)

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y, y', \ldots, y^{(k)}) = 0$$

such that $\forall t \in \mathbb{R}$,

$$|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$$

Problem : this is «weak» result.

The solution y is not unique, even with added initial conditions : $p(y, y', ..., y^{(k)}) = 0$, $y(0) = \alpha_0$, $y'(0) = \alpha_1$, ..., $y^{(k)}(0) = \alpha_k$

In fact, this is fundamental for Rubel's proof to work!

The solution y is not unique, even with added initial conditions : $p(y, y', ..., y^{(k)}) = 0$, $y(0) = \alpha_0$, $y'(0) = \alpha_1$, ..., $y^{(k)}(0) = \alpha_k$

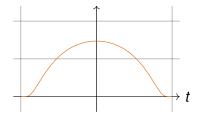
In fact, this is fundamental for Rubel's proof to work !

- Rubel's statement : this DAE is universal
- More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

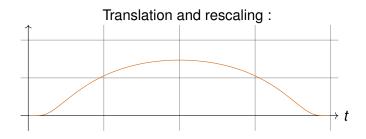
Is there a universal ODE y' = p(y)? Note : explicit polynomial ODE \Rightarrow unique solution

► Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise.
It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0$.



Take f(t) = e^{-1/(1-t^2)}/(1-t^2) for -1 < t < 1 and f(t) = 0 otherwise. It satisfies (1 - t²)² f''(t) + 2tf'(t) = 0.
For any a, b, c ∈ ℝ, y(t) = cf(at + b) satisfies

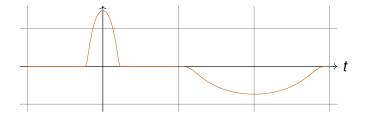
$$3y'^{4}y''y''''^{2} -4y'^{4}y''^{2}y'''' + 6y'^{3}y''^{2}y''''y'''' + 24y'^{2}y''^{4}y'''' -12y'^{3}y''y'''^{3} - 29y'^{2}y''^{3}y'''^{2} + 12y''^{7} = 0$$



- ► Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise. It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0$.
- For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

Can glue together arbitrary many such pieces



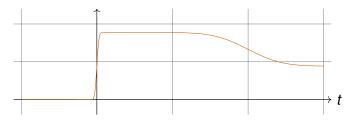
• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$

For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

- Can glue together arbitrary many such pieces
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear



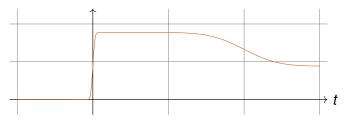
• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$

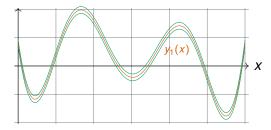
For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

- Can glue together arbitrary many such pieces
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear



Conclusion : Rubel's equation allows any piecewise pseudo-linear functions, and those are **dense in** C^0



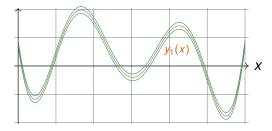
Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t)-f(t)|\leqslant \varepsilon(t).$



Notes :

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

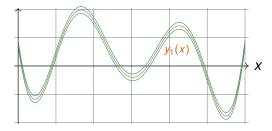
Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha, \qquad y'(t) = p(y(t))$$

has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t) - f(t)| \leq \varepsilon(t).$



Notes :

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

Theorem

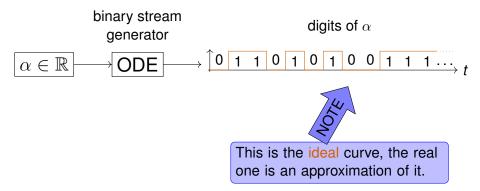
There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

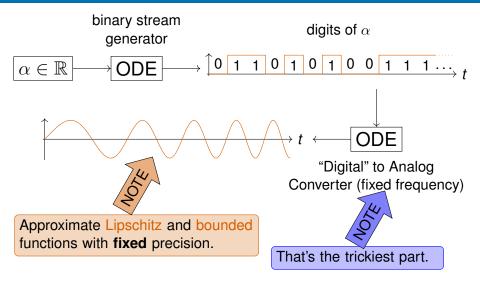
$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

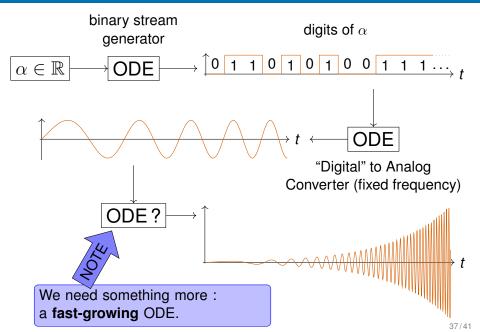
has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

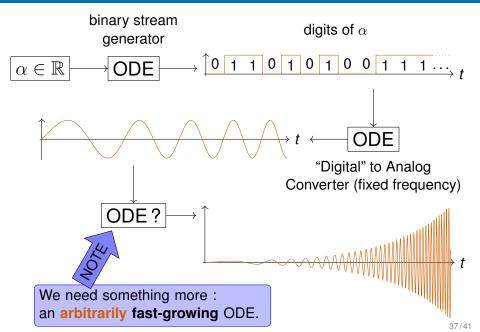
 $|y_1(t) - f(t)| \leq \varepsilon(t).$

Remark : α is usually transcendental, but computable from *f* and ε









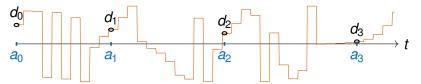
binary stream generator : digits of $\alpha \in \mathbb{R}$ $1 \qquad 0 \qquad 1 \qquad 0 \qquad 1 \qquad 0 \qquad t$

 $f(\alpha, \mu, \lambda, t) = \frac{1}{2} + \frac{1}{2} \tanh(\mu \sin(2\alpha \pi 4^{\operatorname{round}(t-1/4,\lambda)} + 4\pi/3))$

It's horrible, but generable

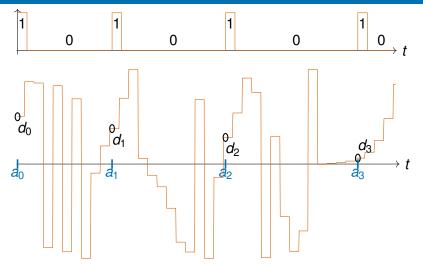
round is the mysterious rounding function...

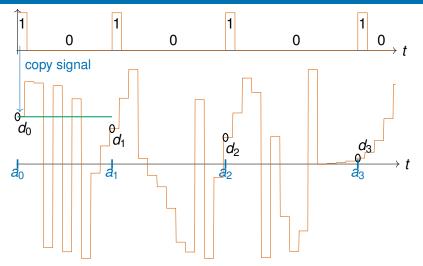
binary stream generator : digits of $\alpha \in \mathbb{R}$

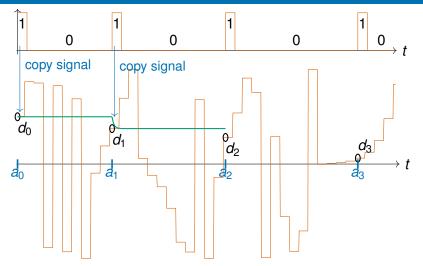


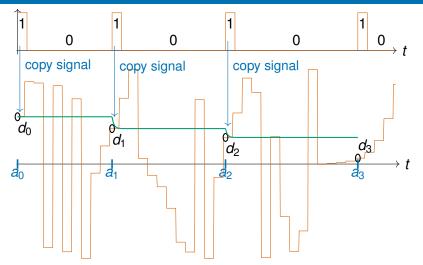
dyadic stream generator : $d_i = m_i 2^{-d_i}$, $a_i = 9i + \sum_{j < i} d_j$ $f(\alpha, \gamma, t) = \sin(2\alpha \pi 2^{\operatorname{round}(t-1/4,\gamma)}))$

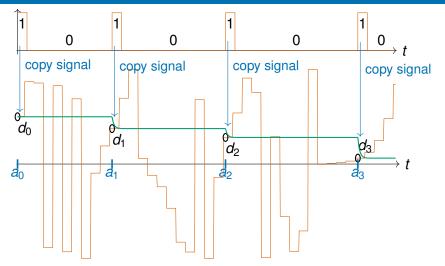
round is the mysterious rounding function...

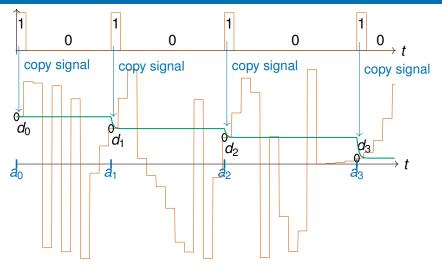












This copy operation is the "non-trivial" part.

We can do almost piecewise constant functions...

We can do almost piecewise constant functions...

- ...that are bounded by 1...
- …and have super slow changing frequency.

We can do almost piecewise constant functions...

- …that are bounded by 1…
- …and have super slow changing frequency.

How do we go to arbitrarily large and growing functions? Can a polynomial ODE even have arbitrary growth?

Building a fast-growing ODE, that exists over ${\mathbb R}$:

$$y'_1 = y_1 \qquad \qquad \rightsquigarrow \qquad y_1(t) = \exp(t)$$

Building a fast-growing ODE, that exists over $\ensuremath{\mathbb{R}}$:

$$y'_1 = y_1 \qquad \rightsquigarrow \qquad y_1(t) = \exp(t)$$

 $y'_2 = y_1 y_2 \qquad \rightsquigarrow \qquad y_1(t) = \exp(\exp(t))$

Building a fast-growing ODE, that exists over $\ensuremath{\mathbb{R}}$:

$$y'_{1} = y_{1} \qquad \rightsquigarrow \qquad y_{1}(t) = \exp(t)$$

$$y'_{2} = y_{1}y_{2} \qquad \rightsquigarrow \qquad y_{1}(t) = \exp(\exp(t))$$

$$\cdots \qquad \cdots \qquad \cdots$$

$$y'_{n} = y_{1} \cdots y_{n} \qquad \rightsquigarrow \qquad y_{n}(t) = \exp(\cdots \exp(t) \cdots) := e_{n}(t)$$

Building a fast-growing ODE, that exists over $\mathbb R$:

$$y'_{1} = y_{1} \qquad \rightsquigarrow \qquad y_{1}(t) = \exp(t)$$

$$y'_{2} = y_{1}y_{2} \qquad \rightsquigarrow \qquad y_{1}(t) = \exp(\exp(t))$$

$$\cdots \qquad \cdots$$

$$y'_{n} = y_{1} \cdots y_{n} \qquad \rightsquigarrow \qquad y_{n}(t) = \exp(\cdots \exp(t) \cdots) := e_{n}(t)$$

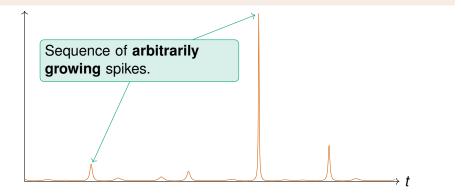
Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

An old question on growth

Counter-example (Vijayaraghavan, 1932)

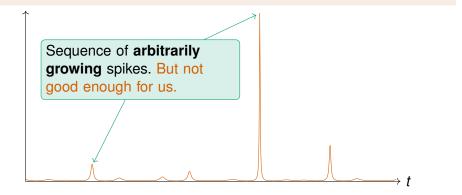
$$\frac{1}{2-\cos(t)-\cos(\alpha t)}$$



An old question on growth

Counter-example (Vijayaraghavan, 1932)

$$\frac{1}{2-\cos(t)-\cos(\alpha t)}$$



Theorem

There exists a polynomial $p : \mathbb{R}^d \to \mathbb{R}^d$ such that for any continuous function $f : \mathbb{R}_+ \to \mathbb{R}$, we can find $\alpha \in \mathbb{R}^d$ such that

satisfies

$$y(0) = \alpha, \qquad y'(t) = p(y(t))$$

$$y_1(t) \ge f(t), \qquad \forall t \ge 0.$$

Theorem

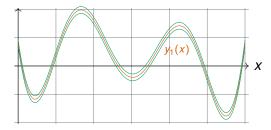
There exists a polynomial $p : \mathbb{R}^d \to \mathbb{R}^d$ such that for any continuous function $f : \mathbb{R}_+ \to \mathbb{R}$, we can find $\alpha \in \mathbb{R}^d$ such that

satisfies

$$y(0) = \alpha, \qquad y'(t) = p(y(t))$$

$$y_1(t) \ge f(t), \quad \forall t \ge 0.$$

Note : both results require α to be **transcendental**. Conjecture still open for **rational** (or algebraic) coefficients.



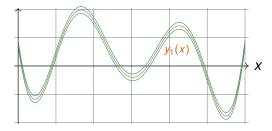
Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t)-f(t)|\leqslant \varepsilon(t).$



Notes :

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

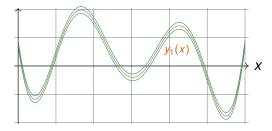
Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha, \qquad y'(t) = p(y(t))$$

has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t) - f(t)| \leq \varepsilon(t).$



Notes :

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t) - f(t)| \leq \varepsilon(t).$

Remark : α is usually transcendental, but computable from *f* and ε

$$y' = p(y)$$

$$\uparrow^{?}$$

$$y' = p(y) + e(t)$$

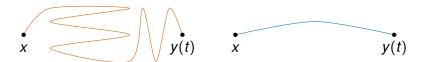
- Reaction networks :
 - chemical
 - enzymatic

- Finer time complexity (linear)
- Nondeterminism
- Robustness
- « Space» complexity
- Other models
- Stochastic

Backup slides

Complexity of solving polynomial ODEs

$$y(0) = x$$
 $y'(t) = p(y(t))$



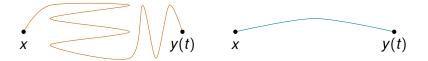
Complexity of solving polynomial ODEs

$$y(0) = x$$
 $y'(t) = p(y(t))$

Theorem

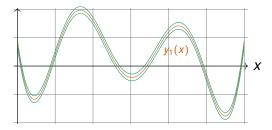
If y(t) exists, one can compute p, q such that $\left|\frac{p}{q} - y(t)\right| \leq 2^{-n}$ in time poly (size of x and $p, n, \ell(t)$)

where $\ell(t) \approx$ length of the curve (between x and y(t))



length of the curve = complexity = ressource

Universal DAE revisited



Theorem

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists $\alpha_0, \ldots, \alpha_k \in \mathbb{R}$ such that

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

has a unique analytic solution and this solution satisfies such that

 $|\mathbf{y}(t) - f(t)| \leq \varepsilon(t).$