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Does this program halt?

Affine program
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Does this program halt?

Affine program

x = 9—10 Certificate of non-termination:
- 2 3_ 1023
y =1 XY = X° = qo73741824 (1)

while y > x do

» (1) is an invariant: it holds at every
step

» (1) implies the guard is true
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Invariants

invariant = overapproximation of the reachable states
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Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition
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Inductive invariants: example
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S
S5 s
#
f
1 o 2 f>
f3
f5 f,
S
&

51,5,,53 is an invariant
4/38



Inductive invariants: example

X,y,z range over Q fi: R® —» R3
S
S.
e ke N
fi
1 A 2 f>
f3
f5 f,
g
S/

S4,5,,53 is an inductive invariant
4/38



Inductive invariants: example

X,y,z range over Q fi: R® —» R3
S
fi
1 o 2 f>
f3
f5 f,

l1,l>,l3 is an invariant
4/38



Inductive invariants: example

X,y,z range over Q fi: R® - RS
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l1,l,1; is NOT an inductive invariant
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Inductive invariants: example

X,y,z range over Q fi: R® - RS

ls

l1,b,l3 is an inductive invariant
4/38



Why Invariants?

/ BAD!

o
The classical approach to the verification of temporal safety

properties of programs requires the construction of inductive
invariants [...]. Automation of this construction is the main

challenge in program verification.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko
Invariant Synthesis for Combined Theories, 2007
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Affine programs
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Affine programs

» Nondeterministic branching (no guards)
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Affine programs

» Nondeterministic branching (no guards)
» All assignments are affine

X =3x—-7y+1
f3
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Affine programs

» Nondeterministic branching (no guards)
» All assignments are affine
> Allow nondeterministic assignments (x := %)

X =3x—-7y+1

fa

» Can overapproximate complex programs

» Covers existing formalisms:
probabilistic, quantum, quantitative automata
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Karr's Algorithm

Affine Relationships Among Variables of a Program*
Michael Karr

Received May 8, 1974

Summary. Several optimizations of programs can be performed when in certain
regions of a program equality relationships hold between a linear combination of the
variables of the program and a constant. This paper presents a practical approach to
detecting these relationships by considering the problem from the viewpoint of linear
algebra. Key to the practicality of this approach is an algorithm for the calculation of
the ““sum”’ of linear subspaces.

Theorem (Karr 76)

There is an algorithm which computes, for any given affine program
over Q, its strongest affine inductive invariant.
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Randomized Karr’'s Algorithm @ POPL 2003

Discovering Affine Equalities Using Random Interpretation

Sumit Gulwani George C. Necula
University of California, Berkeley
{gulwani,necula}@Qcs.berkeley.edu

ABSTRACT Keywords
Affine Relationships, Linear Equalities, Random Interpreta-

‘We present a new polynomial-time randomized algorithm for
tion, Randomized Algorithm

discovering affine equalities involving variables in a program.
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Some polynomial invariants

A Note on Karr’s Algorithm

Markus Miiller-Olm'* and Helmut Seidl®

Abstract. We give a simple formulation of Karr’s algorithm for computing all
affine relationships in affine programs. This simplified algorithm runs in time
O(nk") where n is the program size and k is the number of program variables
assuming unit cost for arithmetic operations. This improves upon the original
formulation by a factor of k. Moreover, our re-formulation avoids exponential
growth of the lengths of intermediately occurring numbers (in binary representa-
tion) and uses less complicated elementary operations. We also describe a gener-
alization that determines all polynomial relations up to degree d in time O ('ukw) .

Theorem (ICALP 2004)

There is an algorithm which computes, for any given affine program
over Q, all its polynomial inductive invariants up to any fixed degree d.
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A challenge: finding all polynomial invariants

Available online at www.sciencedirect.com

scIENOE@DIREGT’ lnforma.tlon

Processing
T SEVIR Letters
ELSEVIER Information Processing Letters 91 (2004) 233244

www.elsevier.com/locate/ipl

Computing polynomial program invariants

Markus Miiller-Olm **!, Helmut Seidl®

2 FernUniversitit Hagen, LG Praktische Informatik 5, 58084 Hagen, Germany
b U Miinchen, Informatik, 12, 85748 Miinchen, Germany

Received 16 October 2003; received in revised form 20 April 2004
Available online 19 June 2004
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scIENOE@DIRECT’ lnforma.tlon
Processing
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www.elsevier.com/locate/ipl

Computing polynomial program invariants

Markus Miiller-Olm **!, Helmut Seidl®

2 FernUniversitit Hagen, LG Praktische Informatik 5, 58084 Hagen, Germany
b U Miinchen, Informatik, 12, 85748 Miinchen, Germany

Received 16 October 2003; received in revised form 20 April 2004
Available online 19 June 2004

It is a challenging open probiem whether or not the
set of all valid polynomial relations can be computed
not just the ones of some given form. It is not
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Main result

There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.
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possible executions of the program
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Main result

There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.

» strongest polynomial invariant <= smallest algebraic set
> algebraic sets = finite | J and (" of polynomial equalities
» Thus our algorithm computes all polynomial relations that always

hold among program variables at each program location, in all
possible executions of the program

» We can represent this (usually infinite) set of relations using a
finite basis of polynomial equalities

13/38



At the edge of decidability
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X = Mx Lo —

14/38



At the edge of decidability

X = Myx

x = Mox S

X = Mx Lo —

Theorem (Markov 1947*)

There is a fixed set of 6 x 6 integer matrices My, ..., My such that the
reachability problem “y is reachable from xy ?” is undecidable.

*Original theorems about semigroups, reformulated with affine programs.
14/38



At the edge of decidability

X = Myx

x = Mox S

X = Mx Lo —

Theorem (Markov 1947*)

There is a fixed set of 6 x 6 integer matrices My, ..., My such that the
reachability problem “y is reachable from xy ?” is undecidable.

Theorem (Paterson 1970%)

The mortality problem “0 is reachable from xo with My, ..., My ?” is
undecidable for 3 x 3 matrices.

*Original theorems about semigroups, reformulated with affine programs.

14/38



Tools

> Algebraic geometry
» Number theory
» Group theory
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Tools

> Algebraic geometry
» Number theory
» Group theory

Quantum automata and algebraic groups

Harm Derksen®, Emmanuel Jeandel®, Pascal Koiran®*

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States
bLaboratoire de | "Informatique du Parallélisme, Ecole Normale Supérieure de Lyon, 69364, France

Received 15 September 2003; accepted 1 November 2004

Theorem (Derksen, Jeandel and Koiran, 2004)

There is an algorithm which computes, for any given affine program
over Q using only invertible transformations, its strongest polynomial
inductive invariant.
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Main contribution

Theorem

Given a finite set of rational square matrices of the same dimension,
we can compute the Zariski closure of the semigroup that they
generate.

Corollary

Given an affine program, we can compute for each location the ideal of
all polynomial relations that hold at that location.
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> invariant = overapproximation of reachable states
> invariants allow verification of safety properties

» affine program:
» nondeterministic branching, no guards, affine assignments

There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.
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Introduction to Algebraic Geometry

(for computer scientists)

Amaury Pouly

Université de Paris, IRIF, CNRS
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Overview of this tutorial

A very incomplete introduction to
» Polynomial ideals
> Affine varieties
> Zariski topology
» Constructible sets
» Regular maps
And algorithmic aspects of the above topics.

Everywhere K is a field, most of the time K = C.
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Motivating examples

Solutions to X% + x = 1? > S={-}+1V5 -1 —-1V5)

A
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Motivating examples

Solutionsto x3 +x=1? » S= {%\3/108-1- 12193 — #}

Y/108+12,/93

/7

X

/
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Motivating examples

Solutions to x4 + x = 1? > S=

» 2 isolated real roots
> we can approximate them

{no formula}

» algebraic numbers: arithmetic and comparisons are decidable

\ XY+ x
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Motivating examples

Solutions to xy = 1? > S={(x,5): x#0}
Although we have a formula, the geometry is more interesting.

y

|
\
\
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Motivating examples

Solutions to ((x — 1)2 + (y — 1)2)(x* + x — 1) = 0?» S = {no formula}
y .

+ No formula in general, but geometry:

> one isolated point

> two infinite curves

Algebraic Geometry is about
manipulating those objects, without
* X having explicit solutions.
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What is Algebraic Geometry?

Study systems of multivariate polynomial equations using abstract
algebraic techniques, with applications to geometry.

Examples
X°+y?+22-1=0 ~  sphereinR®
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Examples
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What is Algebraic Geometry?

Study systems of multivariate polynomial equations using abstract
algebraic techniques, with applications to geometry.
Examples

xX24+y?24+22-1=0 sphere in R®

XCry2+ 22 =1 Axty+z=1 ~  “sliced” sphere in R®
X2—|—1:O ~ ZginR
XX+1=0 ~ {i,—i}inC

The field K is very important:

» real algebraic geometry: more “intuitive” but more difficult, really
requires the study of semi-algebraic sets

» mainstream algebraic geometry: K is algebraically closedt, e.g. C

TK is algebraically closed if every non-constant polynomial has a root in K.
21/38



Polynomial ideals

A set of polynomials / C K[xy, ..., Xa] is an ideal if
» Vf,gel.f+gel » | is stable under addition
> Ve lVgeK[xq,...,xn]: fg,gf €] » |/ absorbs multiplication
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Polynomial ideals

A set of polynomials / C K[x, ..., Xp] is an ideal if
» Vf,gel.f+gel » | is stable under addition
> Ve lVgeK[xq,...,xn]: fg,gf €] » / absorbs multiplication

Example: I = {p e K[x] : p(1) = 0}
> if f(1) = g(1) = O then (f+ g)(1) = f(1) + g(1) =0
)

» if f(1) = 0 then for any g € K[x], (fg)(1) = f(1)g(1) =0

2 _
AN X X X — 1
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A set of polynomials / C K[x, ..., Xp] is an ideal if
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> Ve lVgeK[xq,...,xn]: fg,gf €] » / absorbs multiplication

Two main ways to create ideals:
» The vanishing polynomials on S C K" is an ideal:

I(S) :={f € K[x1,...,X] : Vx € S.f(x) = 0}
Remark: lis inclusion reversing, SC &' = I(S) D I(5)
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Polynomial ideals

A set of polynomials / C K[x, ..., Xp] is an ideal if
» Vf,gel.f+gel » | is stable under addition
> Ve lVgeK[xq,...,xn]: fg,gf €] » / absorbs multiplication

Two main ways to create ideals:
» The vanishing polynomials on S C K" is an ideal:
I(S) ={feK[xq,...,xn] : VX € S.f(x) =0}
Remark: lis inclusion reversing, SC &' = I(S) D I(5)
» The ideal generated by fi, ..., fx € K[xq,..., Xp] is
(fy,...,f) := smallest ideal containing fi, ..., fx
={p1fi+ -+ pxfc : P1,- -, Pk € K[X1,...,Xn]}

Example: {p €e K[x] : p(1) =0} = I({1}) = (x — 1).
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Polynomial ideals: important facts

A set of polynomials / C K[xy, ..., Xa] is an ideal if

> vf,gel:f+gel » | is stable under addition
> Vel Vg eK[xq,...,xn] : fg,gf € | » [ absorbs multiplication

Theorem (Hilbert’s basis theorem)

For any field K, K[x1, ..., Xa] is Noetherian: any chain of ideals
hSchChcC---
eventually stabilizes: 3k € N such that Iy = Ix;1 = lxzo =---.
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A set of polynomials / C K[xy, ..., Xa] is an ideal if
» Vf,gel:f+gel » / is stable under addition
> Vel Vg eK[xq,...,xn] : fg,gf € | » [ absorbs multiplication

Theorem (Hilbert’s basis theorem)

For any field K, K[x1, ..., Xa] is Noetherian: any chain of ideals
hThClhhC---

eventually stabilizes: 3k € N such that Iy = Ix;1 = lxzo =---.

Corollary

Every polynomial ideal | C K[xq, ..., Xp] is finitely generated:
dfi, ... Ik € K[X1,...,Xn] such that | = <f1,...,fk>.

We can represent ideals by a finite set of generators.
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Polynomial ideals: important operations

A set of polynomials / C K[xy, ..., Xa] is an ideal if
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Once we have some ideals, we can build new ones from them by
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Polynomial ideals: important operations

A set of polynomials / C K[xy, ..., Xa] is an ideal if
> Vf,gel.f+gel » / is stable under addition
> Vel Vg eK[xq,...,xn] : fg,gf € | » [ absorbs multiplication

Once we have some ideals, we can build new ones from them by
» addition: I+J:={f+g:fel geJ}
» intersection: INJ
» multiplication: IJ:=(fg: fel geJ)
» quotient: (/:J):={r:rJC [}

Remark: U Jis not anideal but I + J = (/U J)

All these operations are effective.
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Algebraic sets

Algebraic set: set of the common zeroes of polynomials
V(S)={xeK":Vpe S.p(x) =0} where S C K[x1,...,X]
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Algebraic sets

Algebraic set: set of the common zeroes of polynomials
V(S)={xeK":Vpe S.p(x) =0} where S C K[x1,...,X]
Examples

> {(x,y) eK%:y=x2}

> {(x.y.2)eK3:x=y2 Ay =12}

» K"={xeK":0=0}

» oa={xcK":1=0}

> {at={x:xy—ay=...=xp—ap=0}
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Algebraic sets

Algebraic set: set of the common zeroes of polynomials
V(S)={xeK":Vpe S.p(x) =0} where S C K[x1,...,X]

Examples

> {(x,y) eK%:y=x2}

> {(x.y.2)eK3:x=y2 Ay =12}

» K"={xeK":0=0}

» oa={xcK":1=0}

> {at={x:xy—ay=...=xp—ap=0}

For arbitrary S, V(S) = V(I) where | = (S) is the ideal generated by S.

~ Always take S to be an ideal, this gives us a finite representation of
algebraic sets.
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Algebraic sets / Zariski topology

Algebraic set: set of the common zeroes of an ideal / C K[xq, ..., X
V(I)={xeK":Vpel p(x)=0}
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Algebraic sets / Zariski topology

Algebraic set: set of the common zeroes of an ideal / C K[xq, ..., X
V() ={xeK":Vpelp(x)=0}
Basic properties:
» stable under finite unions: V(/) U V(J) = V(INnJ) = V()
» stable under arbitrary intersections: N;V(l;) = V(U;l;) =

V(i)
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Algebraic sets / Zariski topology

Algebraic set: set of the common zeroes of an ideal / C K[xq, ..., X
V(I)={xeK":Vpel p(x)=0}
Basic properties:
» stable under finite unions: V(/)u V(J) = V(InJ) = V(IJ)
» stable under arbitrary intersections: N;V(l;) = V(U;l;) =

Vi)
Zariski topology: the closed set are the algebraic sets

Examples
> {(x,y) e K?:y=x2} = V(y — x?) is closed
> {(x,y) e K%:y #x2} =K2\ V(y — x?) is open
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Irreducible sets

Algebraic set: set of the common zeroes of an ideal / C K[xq, ..., X
V(I)={xeK":Vpe l.p(x)=0}
Zariski topology: the closed set are the algebraic sets
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Irreducible sets

Algebraic set: set of the common zeroes of an ideal / C K[xq, ..., X
V(I)={xeK":Vpe l.p(x)=0}
Zariski topology: the closed set are the algebraic sets

Y C K"is irreducible if it is not the union of two proper closed subsets.

Examples
> {(x,y):y=x?}isirreducible
» {(x,y): xy =0}isreducible: {(x,y) : x=0}U{(x,y):y =0}

)(:ﬂ y::Xz
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Irreducible sets

Algebraic set: set of the common zeroes of an ideal / C K[xq, ..., X
V(I)={xeK":Vpe l.p(x)=0}

Zariski topology: the closed set are the algebraic sets

Y C K"is irreducible if it is not the union of two proper closed subsets.

Examples
> {(x,y):y=x2}isirreducible
» {(x,y): xy =0}isreducible: {(x,y) : x=0}U{(x,y):y =0}

Theorem

Any algebraic set can be written as the finite union of irreducible
algebraic sets.
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Ascending/Descending chains

Polynomial ideals satisfy the ascending chain condition (ACC): there is
no infinite chain of strictly increasing ideals

hChC - Che-
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hChC - Che-

Algebraic sets satisfy the descending chain condition (DCC): there is
no infinite chain of strictly decreasing algebraic sets

Vi Vo2 Ve
Irreducible algebraic sets satisfy the ACC: there is no infinite chain of

strictly increasing irreducible algebraic sets:
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Ascending/Descending chains

Polynomial ideals satisfy the ascending chain condition (ACC): there is
no infinite chain of strictly increasing ideals

hChC - Che-

Algebraic sets satisfy the descending chain condition (DCC): there is
no infinite chain of strictly decreasing algebraic sets

Vi Ve V2

Irreducible algebraic sets satisfy the ACC: there is no infinite chain of
strictly increasing irreducible algebraic sets:

VicVeG- - CVkGC--

Remark: the last fact comes from the notion of dimension of an
algebraic set. It is geometrically “what one would expect”: a curve has
dimension 1, a hypersurface n — 1, the whole space n.
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Affine varieties

Algebraic set: set of the common zeroes of an ideal / C K[xq, ..., X
V() ={xeK":vpel.p(x)=0}
Zariski topology: the closed set are the algebraic sets
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Affine varieties

Algebraic set: set of the common zeroes of an ideal / C K[xq,
V() ={xeK":vpel.p(x)=0}
Zariski topology: the closed set are the algebraic sets

ooy Xn]

Y C K" is irreducible if it is not the union of two proper closed subsets.

A The term affine variety is ambiguous, it can mean
» algebraic set

> irreducible algebraic set

In this lecture

affine variety = algebraic set
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Zariski topology / Zariski closure

Let X C K" be a variety. The Zariski topology on X has as closed sets
the subvarieties of X: the sets A C X that are varieties in K".

Examples
> X ={(x,y,2) eR®: x? + y2 + 22 =1} is closed in R®
> S=Xn{(x,y,z)eR®: x+y+z=1}isclosedin X
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Zariski topology / Zariski closure

Let X C K" be a variety. The Zariski topology on X has as closed sets
the subvarieties of X: the sets A C X that are varieties in K.
Examples

> X={(x,y,2) e R3: x2+ y? + 72 =1} is closed in R®

> S=Xn{(x,y,z)eR®: x+y+z=1}isclosedin X

Given a set S C X, its Zariski closure S (or just S) is the closure in
the above topology: the smallest closed set containing S.
Examples

> [-1,1] =R

» N =R

= {(x,y)eRz:x>OAx:y2}P:{(x,y)eR2:x:yz}
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A quick summary of what we have seen so far

ideal: set of polynomials, stable under +, absorbing x
algebraic set: common zeroes of a set of polynomials/ideal
irreducible set: not the union of two proper algebraic subsets
affine variety: (irreducible) algebraic set (author dependent)
Zariski topology: the closed sets are the algebraic sets
Zariski closure: S = smallest closed set containing X
effective operations: union and intersection of closed sets

vVvVvvyVvVvYvVvyyypy
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Quantifier Elimination (QE): R vs C

Let S={(x,y) e K®: x2+y2=1}.
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Quantifier Elimination (QE): R vs C

Let S={(x,y) e K®: x2+y2=1}.

Projection of S on x: y
S={xeK:3Jy:(x,y) e S}

Two very different behaviors: S
» ForK =R: / \

S’=[—1,1]:{XER:x2<1} $

» ForK =C:
s-c NS

In R we need to introduce inequalities.

Theorem (QE over R) Theorem (QE over C)
(R,+, x,0,1,<) admits QE. (C,+, x,0,1,=) admits QE.

32/38



Definable/Constructible sets: motivation

S={(x,y)eR2:xy=1}»
variety/closed set
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p(x,y) = x
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S'=p(S)={x:x#0}t=R\{0}
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Definable/Constructible sets: motivation

S={(x,y)eR2:xy=1}»
variety/closed set

y
p(x,y) = x
» “nice” function (polynomial) \
S' =p(S) = {x: x #£0} =R\ {0} \
» open subset of R S’ S
S —

q(x,y) = (%, xy)
» “nice” function (polynomial) \

" =q(S) = {(x.1): x #0} \
» not open, not closed in R? \
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Definable/Constructible sets: motivation

S={(x,y)eR2:xy=1}»
variety/closed set

y
p(x.y) = x |
» “nice” function (polynomial) \
S' =p(S) = {x: x #£0} =R\ {0} \
» open subset of R S’ S
S —

q(x,y) = (%, xy)
» “nice” function (polynomial) \

S =q(S) = {(x.1) : x # 0} \
» not open, not closed in R2 \

We need something more general than varieties: the above sets are
> definable: {x € K" : ¢(x)}

» constructible: intersections/unions of open/closed sets
33/38



Constructible/Definable sets

A set Sis definable if S = {x € K" : ¢(x)} for ¢ first-order formula*.
Examples

> any variety: ¢(x) = A\; pi(x) =0

> any open set: ¢(x) =~ A\; pi(x) =0
> S={(x.y):y=1Ax#0}

> S={x:3Jy.xy =1}

*On the signature (K, +, x,0,1,=): we have 3,V, - and equality of polynomials.
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Constructible/Definable sets

A set Sis definable if S = {x € K" : ¢(x)} for ¢ first-order formula¥.
Examples

> any variety: ¢(x) = A\; pi(x) =

> any open set: ¢(x) = = A, pi(x ) =0

> S={(x,y):y=1Ax#£0}

> S={x:3Jy.xy =1}

The constructible sets are all Boolean combinations (including
complementation) of Zariski closed sets.

Examples
» any closed or open set
> S={(x.1):x#0}={(x,y) 1y =1}n{(x,y) : x = 0}°
> S={(x,y):x=0U{(0,0)}

*On the signature (K, +, x,0,1,=): we have 3,V, - and equality of polynomials.
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Constructible/Definable sets (continued)

A set Sis definable if S = {x € K" : ¢(x)} for ¢ first-order formula.

The constructible sets are all Boolean combinations (including
complementation) of Zariski closed sets.

Theorem (Consequence of quantifier elimination)

For K = C, the constructible sets are exactly the definable sets.
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Constructible/Definable sets (continued)

A set Sis definable if S = {x € K" : ¢(x)} for ¢ first-order formula.

The constructible sets are all Boolean combinations (including
complementation) of Zariski closed sets.

Theorem (Consequence of quantifier elimination)

ForK = C, the constructible sets are exactly the definable sets.

In this lecture
We use constructible sets over C everywhere.

Theorem (Chevalley)

The image of a constructible set under a polynomial map is
constructible.

(also follows from quantifier elimination)
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Algorithmic aspects of constructible sets

The constructible sets are all Boolean combinations (including
complementation) of Zariski closed sets. ~ effective representation
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Algorithmic aspects of constructible sets

The constructible sets are all Boolean combinations (including
complementation) of Zariski closed sets. ~ effective representation

Effective operations:
> union, intersection, complementation (trivial)
» any first-order definition (by quantifier elimination)
Example: {x € C: 3y € C.(x,y) € S} where S constructible
» image under a polynomial map$
Example: p(S) where S constructible and p(x, y) = x

» Zariski closure: S where S constructible

Common use: p(S) where S constructible and p polynomial

SImportant special case of first-order definition. The two examples are the same.
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Constructible sets: decomposition and application

The constructible sets are all Boolean combinations (including
complementation) of Zariski closed sets.

Lemma

If X is constructible then A+, . .., A irreducible and By, . . . , Bx closed,

K
X=JA\B
i=1
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Constructible sets: decomposition and application

The constructible sets are all Boolean combinations (including
complementation) of Zariski closed sets.

If X is constructible then A+, . .., A irreducible and By, . . . , Bx closed,
k
X=JA\B

i=1

Exercice: if Airreducible, B closed and A\ B# o then A\ B=A
A=(A\B)U(ANnB) ~ A=A\ BU(ANB) then use irreducibility

Application: Zariski closure of a constructible set X

k k k
X=JAa\B =JA\B =|JA  assuming A\ B # @
i=1 i=1 i=1
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ideal: set of polynomials, stable under +, absorbing x
algebraic set: common zeroes of a set of polynomials/ideal
irreducible set: not the union of two proper algebraic subsets
affine variety: (irreducible) algebraic set (author dependent)
Zariski topology: the closed sets are the algebraic sets
Zariski closure: S = smallest closed set containing X
effective operations: union and intersection of closed sets

vVvvyVvVvVvyyypy
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vVvvyVvVvVvyyypy

ideal: set of polynomials, stable under +, absorbing x
algebraic set: common zeroes of a set of polynomials/ideal
irreducible set: not the union of two proper algebraic subsets
affine variety: (irreducible) algebraic set (author dependent)
Zariski topology: the closed sets are the algebraic sets
Zariski closure: S = smallest closed set containing X
effective operations: union and intersection of closed sets

» constructible set: Boolean combinations of closed sets
» definable set: first-order definable with equality
» effective operations: union, intersection, complementation,

first-order definition, image under polynomial map, Zariski closure
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