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Does this program halt?

Affine program

x := 2−10

y := 1
while y > x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

I (1) is an invariant: it holds at every
step

I (1) implies the guard is true
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Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition
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Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3
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Why Invariants?

I
S

BAD!

The classical approach to the verification of temporal safety
properties of programs requires the construction of inductive
invariants [...]. Automation of this construction is the main
challenge in program verification.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko
Invariant Synthesis for Combined Theories, 2007
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Which invariants?

Octagons Polyhedrons

Affine/linear sets Algebraic sets =
polynomial equalities

Semialgebraic sets
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Affine programs

I Nondeterministic branching (no guards)
I All assignments are affine
I Allow nondeterministic assignments (x := ∗)

1 2

3

f1
f2

f3

f4f5

I Can overapproximate complex programs
I Covers existing formalisms:

probabilistic, quantum, quantitative automata
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Karr’s Algorithm

Theorem (Karr 76)

There is an algorithm which computes, for any given affine program
over Q, its strongest affine inductive invariant.
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Randomized Karr’s Algorithm @ POPL 2003
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Some polynomial invariants

Theorem (ICALP 2004)

There is an algorithm which computes, for any given affine program
over Q, all its polynomial inductive invariants up to any fixed degree d.

10 / 38



A challenge: finding all polynomial invariants
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Why fixed degree is not enough

I Paraboloid z = x2 + y2

I Union of 3 hyperplanes (x − y)(10y + x)(y + 10x) = 0
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Main result

Theorem
There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.

I strongest polynomial invariant ⇐⇒ smallest algebraic set
I algebraic sets = finite

⋃
and

⋂
of polynomial equalities

I Thus our algorithm computes all polynomial relations that always
hold among program variables at each program location, in all
possible executions of the program

I We can represent this (usually infinite) set of relations using a
finite basis of polynomial equalities
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At the edge of decidability

x :=x0

x := M1x
x := M2x

. . .

x := Mkx

S

Theorem (Markov 1947*)

There is a fixed set of 6× 6 integer matrices M1, . . . ,Mk such that the
reachability problem “y is reachable from x0?” is undecidable.

Theorem (Paterson 1970*)

The mortality problem “ 0 is reachable from x0 with M1, . . . ,Mk?” is
undecidable for 3× 3 matrices.

*Original theorems about semigroups, reformulated with affine programs.
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Tools

I Algebraic geometry
I Number theory
I Group theory

Theorem (Derksen, Jeandel and Koiran, 2004)

There is an algorithm which computes, for any given affine program
over Q using only invertible transformations, its strongest polynomial
inductive invariant.
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Main contribution

Theorem
Given a finite set of rational square matrices of the same dimension,
we can compute the Zariski closure of the semigroup that they
generate.

Corollary

Given an affine program, we can compute for each location the ideal of
all polynomial relations that hold at that location.

16 / 38



Summary

I invariant = overapproximation of reachable states
I invariants allow verification of safety properties
I affine program:

I nondeterministic branching, no guards, affine assignments

1 2

3

x := 3x − 7y + 1
f2

f3

y :=
∗f5

Theorem
There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.
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Introduction to Algebraic Geometry
(for computer scientists)

Amaury Pouly

Université de Paris, IRIF, CNRS
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Overview of this tutorial

A very incomplete introduction to
I Polynomial ideals
I Affine varieties
I Zariski topology
I Constructible sets
I Regular maps

And algorithmic aspects of the above topics.

Everywhere K is a field, most of the time K = C.

19 / 38



Motivating examples
Solutions to x2 + x = 1? I S =

{
−1

2 + 1
2

√
5,−1

2 −
1
2

√
5
}

x

x2 + x

1
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Motivating examples

Solutions to x3 + x = 1? I S =

{
1
6

3
√

108 + 12
√

93− 2
3
√

108+12
√

93

}

x

x3 + x

1
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Motivating examples
Solutions to x4 + x = 1? I S = {no formula}

I 2 isolated real roots
I we can approximate them
I algebraic numbers: arithmetic and comparisons are decidable

x

x4 + x

1

20 / 38



Motivating examples
Solutions to xy = 1? I S =

{
(x , 1

x ) : x 6= 0
}

Although we have a formula, the geometry is more interesting.

y

x

S

20 / 38



Motivating examples
Solutions to ((x − 1)2 + (y − 1)2)(x4 + x − 1) = 0?I S = {no formula}

y

x

S

No formula in general, but geometry:
I one isolated point
I two infinite curves

Algebraic Geometry is about
manipulating those objects, without
having explicit solutions.

20 / 38



What is Algebraic Geometry?

Study systems of multivariate polynomial equations using abstract
algebraic techniques, with applications to geometry.

Examples

x2 + y2 + z2 − 1 = 0 ; sphere in R3

x2 + y2 + z2 = 1 ∧ x + y + z = 1 ; “sliced” sphere in R3

x2 + 1 = 0 ; ∅ in R
x2 + 1 = 0 ; {i ,−i} in C

The field K is very important:
I real algebraic geometry: more “intuitive” but more difficult, really

requires the study of semi-algebraic sets
I mainstream algebraic geometry: K is algebraically closed†, e.g. C

†K is algebraically closed if every non-constant polynomial has a root in K.
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Polynomial ideals

A set of polynomials I ⊆ K[x1, . . . , xn] is an ideal if
I ∀f ,g ∈ I. f + g ∈ I I I is stable under addition
I ∀f ∈ I.∀g ∈ K[x1, . . . , xn] : fg,gf ∈ I I I absorbs multiplication

22 / 38



Polynomial ideals

A set of polynomials I ⊆ K[x1, . . . , xn] is an ideal if
I ∀f ,g ∈ I. f + g ∈ I I I is stable under addition
I ∀f ∈ I.∀g ∈ K[x1, . . . , xn] : fg,gf ∈ I I I absorbs multiplication

Example: I = {p ∈ K[x ] : p(1) = 0}
I if f (1) = g(1) = 0 then (f + g)(1) = f (1) + g(1) = 0
I if f (1) = 0 then for any g ∈ K[x ], (fg)(1) = f (1)g(1) = 0

x

x − 1x2 − x

−x3 + x
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I ∀f ,g ∈ I. f + g ∈ I I I is stable under addition
I ∀f ∈ I.∀g ∈ K[x1, . . . , xn] : fg,gf ∈ I I I absorbs multiplication

Two main ways to create ideals:
I The vanishing polynomials on S ⊆ Kn is an ideal:

I(S) := {f ∈ K[x1, . . . , xn] : ∀x ∈ S. f (x) = 0}
Remark: I is inclusion reversing, S ⊆ S′ ⇒ I(S) ⊇ I(S′)

I The ideal generated by f1, . . . , fk ∈ K[x1, . . . , xn] is

〈f1, . . . , fk 〉 := smallest ideal containing f1, . . . , fk
:= {p1f1 + · · ·+ pk fk : p1, . . . ,pk ∈ K[x1, . . . , xn]}

Example: {p ∈ K[x ] : p(1) = 0} = I({1}) = 〈x − 1〉.
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Polynomial ideals: important facts

A set of polynomials I ⊆ K[x1, . . . , xn] is an ideal if
I ∀f ,g ∈ I : f + g ∈ I I I is stable under addition
I ∀f ∈ I,∀g ∈ K[x1, . . . , xn] : fg,gf ∈ I I I absorbs multiplication

Theorem (Hilbert’s basis theorem)

For any field K, K[x1, . . . , xn] is Noetherian: any chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·
eventually stabilizes: ∃k ∈ N such that Ik = Ik+1 = Ik+2 = · · · .

Corollary

Every polynomial ideal I ⊆ K[x1, . . . , xn] is finitely generated:

∃f1, . . . , fk ∈ K[x1, . . . , xn] such that I = 〈f1, . . . , fk 〉.

We can represent ideals by a finite set of generators.

23 / 38



Polynomial ideals: important facts

A set of polynomials I ⊆ K[x1, . . . , xn] is an ideal if
I ∀f ,g ∈ I : f + g ∈ I I I is stable under addition
I ∀f ∈ I,∀g ∈ K[x1, . . . , xn] : fg,gf ∈ I I I absorbs multiplication

Theorem (Hilbert’s basis theorem)

For any field K, K[x1, . . . , xn] is Noetherian: any chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·
eventually stabilizes: ∃k ∈ N such that Ik = Ik+1 = Ik+2 = · · · .

Corollary

Every polynomial ideal I ⊆ K[x1, . . . , xn] is finitely generated:

∃f1, . . . , fk ∈ K[x1, . . . , xn] such that I = 〈f1, . . . , fk 〉.

We can represent ideals by a finite set of generators.
23 / 38



Polynomial ideals: important operations

A set of polynomials I ⊆ K[x1, . . . , xn] is an ideal if
I ∀f ,g ∈ I. f + g ∈ I I I is stable under addition
I ∀f ∈ I,∀g ∈ K[x1, . . . , xn] : fg,gf ∈ I I I absorbs multiplication

Once we have some ideals, we can build new ones from them by

I addition: I + J := {f + g : f ∈ I,g ∈ J}
I intersection: I ∩ J
I multiplication: IJ := 〈fg : f ∈ I,g ∈ J〉
I quotient: (I : J) := {r : rJ ⊆ I}

Remark: I ∪ J is not an ideal but I + J = 〈I ∪ J〉

All these operations are effective.
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Algebraic sets

Algebraic set: set of the common zeroes of polynomials

V (S) = {x ∈ Kn : ∀p ∈ S.p(x) = 0} where S ⊆ K[x1, . . . , xn]

Examples
I
{
(x , y) ∈ K2 : y = x2}

I
{
(x , y , z) ∈ K3 : x = y2 ∧ y = z

}
I Kn = {x ∈ Kn : 0 = 0}
I ∅ = {x ∈ Kn : 1 = 0}
I {a} = {x : x1 − a1 = . . . = xn − an = 0}

For arbitrary S, V (S) = V (I) where I = 〈S〉 is the ideal generated by S.

; Always take S to be an ideal, this gives us a finite representation of
algebraic sets.
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Algebraic sets / Zariski topology

Algebraic set: set of the common zeroes of an ideal I ⊆ K[x1, . . . , xn]

V (I) = {x ∈ Kn : ∀p ∈ I.p(x) = 0}

Basic properties:
I stable under finite unions: V (I) ∪ V (J) = V (I ∩ J) = V (IJ)
I stable under arbitrary intersections: ∩iV (Ii) = V (∪i Ii) = V (

∑
i Ii)

Zariski topology: the closed set are the algebraic sets

Examples
I
{
(x , y) ∈ K2 : y = x2} = V (y − x2) is closed

I
{
(x , y) ∈ K2 : y 6= x2} = K2 \ V (y − x2) is open
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Irreducible sets

Algebraic set: set of the common zeroes of an ideal I ⊆ K[x1, . . . , xn]

V (I) = {x ∈ Kn : ∀p ∈ I.p(x) = 0}
Zariski topology: the closed set are the algebraic sets

Y ⊆ Kn is irreducible if it is not the union of two proper closed subsets.

Examples
I
{
(x , y) : y = x2} is irreducible

I {(x , y) : xy = 0} is reducible: {(x , y) : x = 0} ∪ {(x , y) : y = 0}
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Y ⊆ Kn is irreducible if it is not the union of two proper closed subsets.

Examples
I
{
(x , y) : y = x2} is irreducible

I {(x , y) : xy = 0} is reducible: {(x , y) : x = 0} ∪ {(x , y) : y = 0}

Theorem
Any algebraic set can be written as the finite union of irreducible
algebraic sets.
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Ascending/Descending chains

Polynomial ideals satisfy the ascending chain condition (ACC): there is
no infinite chain of strictly increasing ideals

I1 ( I2 ( · · · ( Ik ( · · ·

Algebraic sets satisfy the descending chain condition (DCC): there is
no infinite chain of strictly decreasing algebraic sets

V1 ) V2 ) · · · ( Vk ) · · ·

Irreducible algebraic sets satisfy the ACC: there is no infinite chain of
strictly increasing irreducible algebraic sets:

V1 ( V2 ( · · · ( Vk ( · · ·

Remark: the last fact comes from the notion of dimension of an
algebraic set. It is geometrically “what one would expect”: a curve has
dimension 1, a hypersurface n − 1, the whole space n.
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Affine varieties

Algebraic set: set of the common zeroes of an ideal I ⊆ K[x1, . . . , xn]

V (I) = {x ∈ Kn : ∀p ∈ I.p(x) = 0}
Zariski topology: the closed set are the algebraic sets

Y ⊆ Kn is irreducible if it is not the union of two proper closed subsets.

! The term affine variety is ambiguous, it can mean
I algebraic set
I irreducible algebraic set

In this lecture
affine variety = algebraic set
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Zariski topology / Zariski closure

Let X ⊆ Kn be a variety. The Zariski topology on X has as closed sets
the subvarieties of X : the sets A ⊆ X that are varieties in Kn.

Examples
I X =

{
(x , y , z) ∈ R3 : x2 + y2 + z2 = 1

}
is closed in R3

I S = X ∩
{
(x , y , z) ∈ R3 : x + y + z = 1

}
is closed in X

Given a set S ⊆ X , its Zariski closure S
X

(or just S) is the closure in
the above topology: the smallest closed set containing S.

Examples

I [−1,1]
R
= R

I NR
= R

I
{
(x , y) ∈ R2 : x > 0 ∧ x = y2

}R
=
{
(x , y) ∈ R2 : x = y2}
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A quick summary of what we have seen so far

I ideal: set of polynomials, stable under +, absorbing ×
I algebraic set: common zeroes of a set of polynomials/ideal
I irreducible set: not the union of two proper algebraic subsets
I affine variety: (irreducible) algebraic set (author dependent)
I Zariski topology: the closed sets are the algebraic sets
I Zariski closure: S = smallest closed set containing X
I effective operations: union and intersection of closed sets
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Quantifier Elimination (QE): R vs C

Let S =
{
(x , y) ∈ K2 : x2 + y2 = 1

}
.

Projection of S on x :
S′ = {x ∈ K : ∃y : (x , y) ∈ S}

Two very different behaviors:
I For K = R:

S′ = [−1,1] =
{

x ∈ R : x2 6 1
}

I For K = C:

S′ = C

In R we need to introduce inequalities.

y

x

S

Theorem (QE over R)

(R,+,×,0,1,6) admits QE.

Theorem (QE over C)

(C,+,×,0,1,=) admits QE.
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Definable/Constructible sets: motivation

S =
{
(x , y) ∈ R2 : xy = 1

}
I

variety/closed set

p(x , y) = x
I “nice” function (polynomial)

S′ = p(S) = {x : x 6= 0} = R \ {0}
I open subset of R

q(x , y) = (x , xy)
I “nice” function (polynomial)

S′′ = q(S) = {(x ,1) : x 6= 0}
I not open, not closed in R2

y

x

S

We need something more general than varieties: the above sets are
I definable: {x ∈ Kn : φ(x)}
I constructible: intersections/unions of open/closed sets
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Constructible/Definable sets

A set S is definable if S = {x ∈ Kn : φ(x)} for φ first-order formula‡.

Examples
I any variety: φ(x) ≡

∧
i pi(x) = 0

I any open set: φ(x) ≡ ¬
∧

i pi(x) = 0
I S = {(x , y) : y = 1 ∧ x 6= 0}
I S = {x : ∃y . xy = 1}

The constructible sets are all Boolean combinations (including
complementation) of Zariski closed sets.

Examples
I any closed or open set
I S = {(x ,1) : x 6= 0} = {(x , y) : y = 1} ∩ {(x , y) : x = 0}{

I S = {(x , y) : x = 0}{ ∪ {(0,0)}

‡On the signature (K,+,×, 0, 1,=): we have ∃, ∀,¬ and equality of polynomials.
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Constructible/Definable sets (continued)

A set S is definable if S = {x ∈ Kn : φ(x)} for φ first-order formula.

The constructible sets are all Boolean combinations (including
complementation) of Zariski closed sets.

Theorem (Consequence of quantifier elimination)

For K = C, the constructible sets are exactly the definable sets.

In this lecture
We use constructible sets over C everywhere.

Theorem (Chevalley)

The image of a constructible set under a polynomial map is
constructible.

(also follows from quantifier elimination)
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Algorithmic aspects of constructible sets

The constructible sets are all Boolean combinations (including
complementation) of Zariski closed sets. ; effective representation

Effective operations:
I union, intersection, complementation (trivial)
I any first-order definition (by quantifier elimination)

Example: {x ∈ C : ∃y ∈ C.(x , y) ∈ S} where S constructible
I image under a polynomial map§

Example: p(S) where S constructible and p(x , y) = x
I Zariski closure: S where S constructible

Common use: p(S) where S constructible and p polynomial

§Important special case of first-order definition. The two examples are the same.
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Constructible sets: decomposition and application

The constructible sets are all Boolean combinations (including
complementation) of Zariski closed sets.

Lemma
If X is constructible then ∃A1, . . . ,Ak irreducible and B1, . . . ,Bk closed,

X =
k⋃

i=1

Ai \ Bi

Exercice: if A irreducible, B closed and A \ B 6= ∅ then A \ B = A

A = (A \ B) ∪ (A ∩ B) ; A = A \ B ∪ (A ∩ B) then use irreducibility

Application: Zariski closure of a constructible set X

X =
k⋃

i=1

Ai \ Bi =
k⋃

i=1

Ai \ Bi =
k⋃

i=1

Ai assuming Ai \ Bi 6= ∅
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Summary

I ideal: set of polynomials, stable under +, absorbing ×
I algebraic set: common zeroes of a set of polynomials/ideal
I irreducible set: not the union of two proper algebraic subsets
I affine variety: (irreducible) algebraic set (author dependent)
I Zariski topology: the closed sets are the algebraic sets
I Zariski closure: S = smallest closed set containing X
I effective operations: union and intersection of closed sets

I constructible set: Boolean combinations of closed sets
I definable set: first-order definable with equality
I effective operations: union, intersection, complementation,

first-order definition, image under polynomial map, Zariski closure
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