
On the Computation of the Zariski Closure of Finitely
Generated Groups of Matrices

Klara Nosan, Amaury Pouly, Sylvain Schmitz, Mahsa Shirmohammadi
and James Worrell

Universite de Paris, CNRS, IRIF
Department of Computer Science, Oxford University

6 July 2022

1 / 17

Motivation

2 / 17

Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

y

x

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

▶ (1) is an invariant: it holds at every step
▶ (1) implies the guard is true

Computing such invariants reduces to
computing the Zariski closure of a
semigroup of matrices.

3 / 17

Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

y

x

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

▶ (1) is an invariant: it holds at every step
▶ (1) implies the guard is true

Computing such invariants reduces to
computing the Zariski closure of a
semigroup of matrices.

3 / 17

Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

y

x

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

▶ (1) is an invariant: it holds at every step
▶ (1) implies the guard is true

Computing such invariants reduces to
computing the Zariski closure of a
semigroup of matrices.

3 / 17

Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

y

x

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

▶ (1) is an invariant: it holds at every step
▶ (1) implies the guard is true

Computing such invariants reduces to
computing the Zariski closure of a
semigroup of matrices.

3 / 17

Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

y

x

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

▶ (1) is an invariant: it holds at every step
▶ (1) implies the guard is true

Computing such invariants reduces to
computing the Zariski closure of a
semigroup of matrices.

3 / 17

Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

y

x

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

▶ (1) is an invariant: it holds at every step
▶ (1) implies the guard is true

Computing such invariants reduces to
computing the Zariski closure of a
semigroup of matrices.

3 / 17

Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

y

x

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

▶ (1) is an invariant: it holds at every step
▶ (1) implies the guard is true

Computing such invariants reduces to
computing the Zariski closure of a
semigroup of matrices.

3 / 17

Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

y

x

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

▶ (1) is an invariant: it holds at every step
▶ (1) implies the guard is true

Computing such invariants reduces to
computing the Zariski closure of a
semigroup of matrices.

3 / 17

Quantum automata

A matrix U ∈ Cn×n is unitary if it is length preserving:

∥Ux∥2 = ∥x∥2.

A (measure once) quantum finite automaton (QFA):
▶ Σ: finite alphabet,
▶ s ∈ Cn: vector of unit norm,
▶ Xa ∈ Cn×n: unitary transition matrix for each a ∈ Σ,
▶ P ∈ Cn×n: orthogonal projection matrix.

Value of a word w ∈ Σ∗:

ValA(w) = ∥PXw s∥2
2 where Xw = Xw|w | · · ·Xw1

Interpretation: the probability of observing the quantum state in
acceptance space after having applied the operator sequence Xw1 to Xw|w|
to the initial quantum states.

4 / 17

Quantum automata

A matrix U ∈ Cn×n is unitary if it is length preserving:

∥Ux∥2 = ∥x∥2.

A (measure once) quantum finite automaton (QFA):
▶ Σ: finite alphabet,
▶ s ∈ Cn: vector of unit norm,
▶ Xa ∈ Cn×n: unitary transition matrix for each a ∈ Σ,
▶ P ∈ Cn×n: orthogonal projection matrix.

Value of a word w ∈ Σ∗:

ValA(w) = ∥PXw s∥2
2 where Xw = Xw|w | · · ·Xw1

Interpretation: the probability of observing the quantum state in
acceptance space after having applied the operator sequence Xw1 to Xw|w|
to the initial quantum states.

4 / 17

Quantum automata

A matrix U ∈ Cn×n is unitary if it is length preserving:

∥Ux∥2 = ∥x∥2.

A (measure once) quantum finite automaton (QFA):
▶ Σ: finite alphabet,
▶ s ∈ Cn: vector of unit norm,
▶ Xa ∈ Cn×n: unitary transition matrix for each a ∈ Σ,
▶ P ∈ Cn×n: orthogonal projection matrix.

Value of a word w ∈ Σ∗:

ValA(w) = ∥PXw s∥2
2 where Xw = Xw|w | · · ·Xw1

Interpretation: the probability of observing the quantum state in
acceptance space after having applied the operator sequence Xw1 to Xw|w|
to the initial quantum states.

4 / 17

Quantum automata problems

Given a QFA A and a threshold λ:

Emptiness Problem

∃w ∈ Σ∗ such that ValA(w) ≥ λ ?

Undecidable∗: proof by reduction from PCP.

Strict Emptiness Problem

∃w ∈ Σ∗ such that ValA(w) > λ ?

Decidable∗: reduces to computing the Zariski closure of a group of
matrices

∗Derksen, Jeandel and Koiran, 2004
5 / 17

Quantum automata problems

Given a QFA A and a threshold λ:

Emptiness Problem

∃w ∈ Σ∗ such that ValA(w) ≥ λ ?

Undecidable∗: proof by reduction from PCP.

Strict Emptiness Problem

∃w ∈ Σ∗ such that ValA(w) > λ ?

Decidable∗: reduces to computing the Zariski closure of a group of
matrices

∗Derksen, Jeandel and Koiran, 2004
5 / 17

The Problem

6 / 17

The Zariski topology

Algebraic set: set of common zeroes of a collection S of polynomials in
A[x1, . . . , xn]:

V (S) = {x ∈ An : ∀p ∈ S , p(x) = 0}

x2 + y2 = c xy = 0

Hilbert’s basis theorem: for any S , there exists S ′ finite s.t. V (S) = V (S ′)

Zariski topology: closed sets are algebraic sets.

Zariski closure of a set X is the smallest algebraic set X that contains X .

X = X if X finite Z = A Z2
= A2

7 / 17

The Zariski topology

Algebraic set: set of common zeroes of a collection S of polynomials in
A[x1, . . . , xn]:

V (S) = {x ∈ An : ∀p ∈ S , p(x) = 0}

x2 + y2 = c xy = 0

Hilbert’s basis theorem: for any S , there exists S ′ finite s.t. V (S) = V (S ′)

Zariski topology: closed sets are algebraic sets.

Zariski closure of a set X is the smallest algebraic set X that contains X .

X = X if X finite Z = A Z2
= A2

7 / 17

The Zariski topology

Algebraic set: set of common zeroes of a collection S of polynomials in
A[x1, . . . , xn]:

V (S) = {x ∈ An : ∀p ∈ S , p(x) = 0}

x2 + y2 = c xy = 0

Hilbert’s basis theorem: for any S , there exists S ′ finite s.t. V (S) = V (S ′)

Zariski topology: closed sets are algebraic sets.

Zariski closure of a set X is the smallest algebraic set X that contains X .

X = X if X finite Z = A Z2
= A2

7 / 17

Zariski closure of finitely generated matrix semigroups

Given A1, . . . ,Ak ∈ An×n, consider

⟨A1, . . . ,Ak⟩ = semigroup generated by the Ai .

Problem: compute ⟨A1, . . . ,Ak⟩.

▶ ⟨A1, . . . ,Ak⟩ is an algebraic set, the output of the algorithm is a finite
set of polynomials,

▶ view An×n as An2
to make sense of the closure.

Example:

S =

[
0 −1
1 0

]
, T =

[
1 1
0 1

]
; ⟨S ,T ⟩ = SL2(Z)

then

⟨S ,T ⟩ = SL2(Z) = SL2(A) =
{
M ∈ An×n : det(M) = 1

}
.

8 / 17

Zariski closure of finitely generated matrix semigroups

Given A1, . . . ,Ak ∈ An×n, consider

⟨A1, . . . ,Ak⟩ = semigroup generated by the Ai .

Problem: compute ⟨A1, . . . ,Ak⟩.

▶ ⟨A1, . . . ,Ak⟩ is an algebraic set, the output of the algorithm is a finite
set of polynomials,

▶ view An×n as An2
to make sense of the closure.

Example:

S =

[
0 −1
1 0

]
, T =

[
1 1
0 1

]
; ⟨S ,T ⟩ = SL2(Z)

then

⟨S ,T ⟩ = SL2(Z) = SL2(A) =
{
M ∈ An×n : det(M) = 1

}
.

8 / 17

Zariski closure of finitely generated matrix semigroups

Given A1, . . . ,Ak ∈ An×n, consider

⟨A1, . . . ,Ak⟩ = semigroup generated by the Ai .

Problem: compute ⟨A1, . . . ,Ak⟩.

▶ ⟨A1, . . . ,Ak⟩ is an algebraic set, the output of the algorithm is a finite
set of polynomials,

▶ view An×n as An2
to make sense of the closure.

Example:

S =

[
0 −1
1 0

]
, T =

[
1 1
0 1

]
; ⟨S ,T ⟩ = SL2(Z)

then

⟨S ,T ⟩ = SL2(Z) = SL2(A) =
{
M ∈ An×n : det(M) = 1

}
.

8 / 17

History of the problem

Given a finite set S ⊆ An×n and d ∈ N, define the “degree-d closure” as
the smallest algebraic set that contains ⟨S⟩ and is defined by polynomials
of total degree at most d .

Theorem (Karr, 1974; Müller-Olm and Seidl, 2004)

There is an algorithm that computes, given S and d , the degree-d closure
of ⟨S⟩, in time O(|S | · (n2 + 1)3d).

There is even a randomized algorithm by Gulwani and Necula (2003).

Remarks:
▶ most applications do not need the closure: a sufficiently good

approximation is sufficient
▶ surely one can obtain an upper bound on d ?

9 / 17

History of the problem

Given a finite set S ⊆ An×n and d ∈ N, define the “degree-d closure” as
the smallest algebraic set that contains ⟨S⟩ and is defined by polynomials
of total degree at most d .

Theorem (Karr, 1974; Müller-Olm and Seidl, 2004)

There is an algorithm that computes, given S and d , the degree-d closure
of ⟨S⟩, in time O(|S | · (n2 + 1)3d).

There is even a randomized algorithm by Gulwani and Necula (2003).

Remarks:
▶ most applications do not need the closure: a sufficiently good

approximation is sufficient
▶ surely one can obtain an upper bound on d ?

9 / 17

History of the problem

Given a finite set S ⊆ An×n and d ∈ N, define the “degree-d closure” as
the smallest algebraic set that contains ⟨S⟩ and is defined by polynomials
of total degree at most d .

Theorem (Karr, 1974; Müller-Olm and Seidl, 2004)

There is an algorithm that computes, given S and d , the degree-d closure
of ⟨S⟩, in time O(|S | · (n2 + 1)3d).

There is even a randomized algorithm by Gulwani and Necula (2003).

Remarks:
▶ most applications do not need the closure: a sufficiently good

approximation is sufficient
▶ surely one can obtain an upper bound on d ?

9 / 17

Why fixed degree is not enough

▶ Paraboloid z = x2 + y2

▶ Union of 3 hyperplanes (x − y)(10y + x)(y + 10x) = 0

10 / 17

Why fixed degree is not enough

▶ Paraboloid z = x2 + y2

▶ Union of 3 hyperplanes (x − y)(10y + x)(y + 10x) = 0

10 / 17

Why fixed degree is not enough

▶ Paraboloid z = x2 + y2

▶ Union of 3 hyperplanes (x − y)(10y + x)(y + 10x) = 0

10 / 17

Why fixed degree is not enough

▶ Paraboloid z = x2 + y2

▶ Union of 3 hyperplanes (x − y)(10y + x)(y + 10x) = 0

10 / 17

Why fixed degree is not enough

▶ Paraboloid z = x2 + y2

▶ Union of 3 hyperplanes (x − y)(10y + x)(y + 10x) = 0

10 / 17

Why fixed degree is not enough

▶ Paraboloid z = x2 + y2

▶ Union of 3 hyperplanes (x − y)(10y + x)(y + 10x) = 0

10 / 17

History of the problem (cont)

Theorem (Derksen, Jeandel and Koiran, 2004)

There is an algorithm that computes ⟨S⟩ given a finite set S of invertible
matrices.

Theorem (Hrushovski, Ouaknine, P., Worrell, 2018)

There is an algorithm that computes ⟨S⟩ given a finite set S of matrices.

None of these algorithms puts a bound on the degree of the closure!

11 / 17

History of the problem (cont)

Theorem (Derksen, Jeandel and Koiran, 2004)

There is an algorithm that computes ⟨S⟩ given a finite set S of invertible
matrices.

Theorem (Hrushovski, Ouaknine, P., Worrell, 2018)

There is an algorithm that computes ⟨S⟩ given a finite set S of matrices.

None of these algorithms puts a bound on the degree of the closure!

11 / 17

History of the problem (cont)

Theorem (Derksen, Jeandel and Koiran, 2004)

There is an algorithm that computes ⟨S⟩ given a finite set S of invertible
matrices.

Theorem (Hrushovski, Ouaknine, P., Worrell, 2018)

There is an algorithm that computes ⟨S⟩ given a finite set S of matrices.

None of these algorithms puts a bound on the degree of the closure!
11 / 17

Main result

We obtain a degree bound for invertible matrices:

Theorem
Given a finite set S of invertible matrices of dimension n, the algebraic
group G := ⟨S⟩ can be defined with equations of degree at most septuply
exponential in n.

12 / 17

Main result

We obtain a degree bound for invertible matrices:

Theorem
Let n ∈ N and let S ⊆ GLn(Q) be a finite set of matrices whose entries
have height at most h. Then the Zariski closure of the group generated
by S can be represented by finitely many polynomials of degree at most

(log h)2
|S|exp

4(poly(n))
with coefficients in Q, forming a basis of the vanishing

ideal of the group generated by S . Furthermore, if G contains only

semisimple elements then the degree can be bounded by (log h)2
|S|2

poly(n)

.

Corollary

The algebraic closure of a finitely genrated matrix group is computable in
elementary (octuply exponential) time.

12 / 17

Main result

We obtain a degree bound for invertible matrices:

Theorem
Let n ∈ N and let S ⊆ GLn(Q) be a finite set of matrices whose entries
have height at most h. Then the Zariski closure of the group generated
by S can be represented by finitely many polynomials of degree at most

(log h)2
|S|exp

4(poly(n))
with coefficients in Q, forming a basis of the vanishing

ideal of the group generated by S . Furthermore, if G contains only

semisimple elements then the degree can be bounded by (log h)2
|S|2

poly(n)

.

Corollary

The algebraic closure of a finitely genrated matrix group is computable in
elementary (octuply exponential) time.

12 / 17

Algebraic groups

General linear group: the set of all invertible matrices of dimension n with
entries from A, denoted GLn(A).

Linear algebraic group: a subgroup of GLn(A) that is an algebraic set.

GLn(A) = {(M, y) ∈ An2+1 : det(M) · y = 1}

SLn(A) = {(M, y) ∈ An2+1 : det(M) · y = 1, det(M) = 1}

Key fact: if S ⊆ GLn(A) then ⟨S⟩ is an algebraic group

We analyse the structure of algebraic groups that come from finitely
generated groups.

13 / 17

Algebraic groups

General linear group: the set of all invertible matrices of dimension n with
entries from A, denoted GLn(A).

Linear algebraic group: a subgroup of GLn(A) that is an algebraic set.

GLn(A) = {(M, y) ∈ An2+1 : det(M) · y = 1}

SLn(A) = {(M, y) ∈ An2+1 : det(M) · y = 1, det(M) = 1}

Key fact: if S ⊆ GLn(A) then ⟨S⟩ is an algebraic group

We analyse the structure of algebraic groups that come from finitely
generated groups.

13 / 17

Algebraic groups

General linear group: the set of all invertible matrices of dimension n with
entries from A, denoted GLn(A).

Linear algebraic group: a subgroup of GLn(A) that is an algebraic set.

GLn(A) = {(M, y) ∈ An2+1 : det(M) · y = 1}

SLn(A) = {(M, y) ∈ An2+1 : det(M) · y = 1, det(M) = 1}

Key fact: if S ⊆ GLn(A) then ⟨S⟩ is an algebraic group

We analyse the structure of algebraic groups that come from finitely
generated groups.

13 / 17

Algebraic groups

General linear group: the set of all invertible matrices of dimension n with
entries from A, denoted GLn(A).

Linear algebraic group: a subgroup of GLn(A) that is an algebraic set.

GLn(A) = {(M, y) ∈ An2+1 : det(M) · y = 1}

SLn(A) = {(M, y) ∈ An2+1 : det(M) · y = 1, det(M) = 1}

Key fact: if S ⊆ GLn(A) then ⟨S⟩ is an algebraic group

We analyse the structure of algebraic groups that come from finitely
generated groups.

13 / 17

Can we hope for better ?

A closely related topic is the computation of the Galois group of a linear
differential equation which is a linear algebraic group.

▶ Ehud Hrushovski (2002): computable (no degree bound)
▶ Ruyong Feng (2015): sextuply exponential
▶ Mengxiao Sun (2018): triple exponential
▶ Amzallag, Minchenko, Pogudin (2021): single exponential

Big difference: these bounds only depend on the dimension, ours also
depend on the height of the entries (see next slide)

We use many ideas from the above papers to prove our result.
Future work: use the techniques of Amzallag, Minchenko and Pogudin to
reduce our bound

14 / 17

Can we hope for better ?

A closely related topic is the computation of the Galois group of a linear
differential equation which is a linear algebraic group.

▶ Ehud Hrushovski (2002): computable (no degree bound)
▶ Ruyong Feng (2015): sextuply exponential
▶ Mengxiao Sun (2018): triple exponential
▶ Amzallag, Minchenko, Pogudin (2021): single exponential

Big difference: these bounds only depend on the dimension, ours also
depend on the height of the entries (see next slide)

We use many ideas from the above papers to prove our result.
Future work: use the techniques of Amzallag, Minchenko and Pogudin to
reduce our bound

14 / 17

Can we hope for better ?

A closely related topic is the computation of the Galois group of a linear
differential equation which is a linear algebraic group.

▶ Ehud Hrushovski (2002): computable (no degree bound)
▶ Ruyong Feng (2015): sextuply exponential
▶ Mengxiao Sun (2018): triple exponential
▶ Amzallag, Minchenko, Pogudin (2021): single exponential

Big difference: these bounds only depend on the dimension, ours also
depend on the height of the entries (see next slide)

We use many ideas from the above papers to prove our result.
Future work: use the techniques of Amzallag, Minchenko and Pogudin to
reduce our bound

14 / 17

Can we hope for better ?

A closely related topic is the computation of the Galois group of a linear
differential equation which is a linear algebraic group.

▶ Ehud Hrushovski (2002): computable (no degree bound)
▶ Ruyong Feng (2015): sextuply exponential
▶ Mengxiao Sun (2018): triple exponential
▶ Amzallag, Minchenko, Pogudin (2021): single exponential

Big difference: these bounds only depend on the dimension, ours also
depend on the height of the entries (see next slide)

We use many ideas from the above papers to prove our result.
Future work: use the techniques of Amzallag, Minchenko and Pogudin to
reduce our bound

14 / 17

Remarks on lower bounds

A difficulty in the proof is that the degree bound must depend on the
height of the entries:

A = diag(2p, 1/2).
The height is h = 2p.

The vanishing ideal of ⟨A⟩ is generated by the
multiplicative relations among the eigenvalues of A. Here there is only one:

(2p)1 · (1
2)

p = 1.

Therefore any polynomial that vanishes on ⟨A⟩ must also vanish on

{diag(x , y) : xyp = 1}
and thus be of degree at least 1 + p ⩾ log(h).

Conclusion:
▶ even in dimension 2, the degree can be arbitrarily large and depends

on the height.
▶ the exponential “lower bound” of Amzallag, Minchenko, Pogudin

probably also works in our case

15 / 17

Remarks on lower bounds

A difficulty in the proof is that the degree bound must depend on the
height of the entries:

A = diag(2p, 1/2).
The height is h = 2p. The vanishing ideal of ⟨A⟩ is generated by the
multiplicative relations among the eigenvalues of A. Here there is only one:

(2p)1 · (1
2)

p = 1.

Therefore any polynomial that vanishes on ⟨A⟩ must also vanish on

{diag(x , y) : xyp = 1}
and thus be of degree at least 1 + p ⩾ log(h).

Conclusion:
▶ even in dimension 2, the degree can be arbitrarily large and depends

on the height.
▶ the exponential “lower bound” of Amzallag, Minchenko, Pogudin

probably also works in our case

15 / 17

Remarks on lower bounds

A difficulty in the proof is that the degree bound must depend on the
height of the entries:

A = diag(2p, 1/2).
The height is h = 2p. The vanishing ideal of ⟨A⟩ is generated by the
multiplicative relations among the eigenvalues of A. Here there is only one:

(2p)1 · (1
2)

p = 1.

Therefore any polynomial that vanishes on ⟨A⟩ must also vanish on

{diag(x , y) : xyp = 1}
and thus be of degree at least 1 + p ⩾ log(h).

Conclusion:
▶ even in dimension 2, the degree can be arbitrarily large and depends

on the height.
▶ the exponential “lower bound” of Amzallag, Minchenko, Pogudin

probably also works in our case
15 / 17

Chains of algebraic groups

The proof yields a potentially useful result on chains of algebraic groups:

Theorem
Let n ∈ N, k be a number field, and Gi = ⟨Si ⟩ for Si ⊆ GLn(k), 1 ≤ i ≤ ℓ,
be such that G1 ⊊ G2 ⊊ · · · ⊊ Gℓ. Then

ℓ ≤ exp
(
poly([k : Q]) exp3(poly(n))

)
,

and ℓ ≤ 2poly(n[k:Q]) if each Gi consists only of semisimple elements.

This may be useful to analyse the running time of algorithms.

16 / 17

Summary

Motivation:
▶ certifying non-termination of linear loops
▶ analysing quantum automata

Problem: compute the Zariski closure of a finitely generated group of
matrices
▶ computable
▶ we obtained a septuly exponential bound on the degree of the closure

Future work:
▶ improve bound using ideas from differential Galois group algorithms
▶ study special classes of groups
▶ extend to semigroups

17 / 17

The idea behind of our proof

G has a normal subgroup of finite
index H:

G is the union of |G/H|
copies of H

; we can write equations for G from
that of H and |G/H|.

Good properties
▶ we know |G/H|,
▶ we have degree bounds on H

G

H

18 / 17

The idea behind of our proof

G has a normal subgroup of finite
index H: G is the union of |G/H|
copies of H

; we can write equations for G from
that of H and |G/H|.

Good properties
▶ we know |G/H|,
▶ we have degree bounds on H

G

H

18 / 17

More details

G = Gu · Gs

U := ⟨Gu⟩

U is a normal subgroup of G , and
we have a bound on the degree of
defining equations.

How can we use it to obtain a
normal subgroup of finite index?

The quotient G/U is an algebraic
group consisting only of
semisimple elements.

We can use this to reduce to the
case of semisimple matrices!

19 / 17

More details

G = Gu · Gs

U := ⟨Gu⟩

H

U is a normal subgroup of G , and
we have a bound on the degree of
defining equations.

How can we use it to obtain a
normal subgroup of finite index?

The quotient G/U is an algebraic
group consisting only of
semisimple elements.

We can use this to reduce to the
case of semisimple matrices!

19 / 17

More details

G = Gu · Gs

U := ⟨Gu⟩

H

U is a normal subgroup of G , and
we have a bound on the degree of
defining equations.

How can we use it to obtain a
normal subgroup of finite index?

The quotient G/U is an algebraic
group consisting only of
semisimple elements.

We can use this to reduce to the
case of semisimple matrices!

19 / 17

The construction

G = Gu · Gs

U := ⟨Gu⟩

ϕU(G) ∼= G/UϕU(G) ∼= G/U

ϕU : G → GLp(A)

→ U ◁ G

→ ϕU(G) ∼= G/U semisimple

→ Bound on U
→ Bound on the degree of equations defining ϕU [Feng’15]

→ U ◁ H ◁ G

→ ϕU(G) ∼= G/U semisimple

→ Bound on U

→ Bound on the degree of equations defining ϕU

→ Bound on H

→ H finite index in G

→ H/U commutative

20 / 17

The construction

G = Gu · Gs

U := ⟨Gu⟩

ϕU(G) ∼= G/UϕU(G) ∼= G/U

ϕU : G → GLp(A)

ϕU(G)

ϕU (G)0

P

→ Pistil P of ϕU(G)

→ ϕU(G) ◁ (ϕU(G) ∩ P) ◁ ϕU(G)

→ ϕU(G) ∩ P finite index in ϕU(G)

→ P commutative

→ P bounded by 1

→ U ◁ H ◁ G

→ ϕU(G) ∼= G/U semisimple

→ Bound on U

→ Bound on the degree of equations defining ϕU

→ Bound on H

→ H finite index in G

→ H/U commutative

20 / 17

The construction

G = Gu · Gs

U := ⟨Gu⟩

ϕU(G) ∼= G/U

P = pistil of ϕU(G)

ϕU(G) ∼= G/U

ϕU(G)0

ϕU(G) ∩ P ⊴ ϕU(G)

ϕU : G → GLp(A)

ϕU(G)

ϕU (G)0

P

→ Pistil P of ϕU(G)

→ ϕU(G) ◁ (ϕU(G) ∩ P) ◁ ϕU(G)

→ ϕU(G) ∩ P finite index in ϕU(G)

→ P commutative

→ P bounded by 1

→ U ◁ H ◁ G

→ ϕU(G) ∼= G/U semisimple

→ Bound on U

→ Bound on the degree of equations defining ϕU

→ Bound on H

→ H finite index in G

→ H/U commutative

20 / 17

The construction

G = Gu · Gs

H := ϕ−1
U (P)

U := ⟨Gu⟩

ϕU(G) ∼= G/U

P = pistil of ϕU(G)

ϕU(G) ∼= G/U

ϕU(G)0

ϕU(G) ∩ P ⊴ ϕU(G)

ϕ−1
U

ϕU : G → GLp(A)

→ U ◁ H ◁ G

→ ϕU(G) ∼= G/U semisimple

→ Bound on U

→ Bound on the degree of equations defining ϕU

→ Bound on H

→ H finite index in G

→ H/U commutative
20 / 17

Deciding Strict Emptiness for QFA

Strict Emptiness

Given a QFA A and a threshold λ:

∃w ∈ Σ∗ s.t. ValA(w) > λ ?

Note: if such a word exists, it is a finite certificate. Enumerate!

21 / 17

Deciding Strict Emptiness for QFA

Strict Emptiness

Given a QFA A and a threshold λ:

∃w ∈ Σ∗ s.t. ValA(w) > λ ?

Note: if such a word exists, it is a finite certificate. Enumerate!

Our aim is to construct a finite certificate of non-existence.

21 / 17

Deciding Strict Emptiness for QFA

Strict Emptiness

Given a QFA A and a threshold λ:

∃w ∈ Σ∗ s.t. ValA(w) > λ ?

Our aim is to construct a finite certificate of non-existence.

X = {Xw : w ∈ Σ∗} = ⟨Xa : a ∈ Σ⟩

f (X) = ∥sXP∥2

21 / 17

Deciding Strict Emptiness for QFA

Strict Emptiness

Given a QFA A and a threshold λ:

∃w ∈ Σ∗ s.t. ValA(w) > λ ?

Our aim is to construct a finite certificate of non-existence.

X = {Xw : w ∈ Σ∗} = ⟨Xa : a ∈ Σ⟩

f (X) = ∥sXP∥2

Observation:
(i) ValA(w) = f (Xw),
(ii) f is an Euclidean-continuous polynomial map.

21 / 17

Deciding Strict Emptiness for QFA

Strict Emptiness

Given a QFA A and a threshold λ:

∃w ∈ Σ∗ s.t. ValA(w) > λ ?

f (X) ≤ λ for all X ∈ X

⇕

f (X) ≤ λ for all X in the Euclidian closure of X

21 / 17

Deciding Strict Emptiness for QFA

Strict Emptiness

Given a QFA A and a threshold λ:

∃w ∈ Σ∗ s.t. ValA(w) > λ ?

f (X) ≤ λ for all X ∈ X

⇕

f (X) ≤ λ for all X in the Euclidian closure of X

Crucial fact: the Euclidian closure of X is algebraic.

21 / 17

Deciding Strict Emptiness for QFA

Strict Emptiness

Given a QFA A and a threshold λ:

∃w ∈ Σ∗ s.t. ValA(w) > λ ?

f (X) ≤ λ for all X ∈ X

⇕

f (X) ≤ λ for all X in the Euclidian closure of X

Crucial fact: the Euclidian closure of X is algebraic.

Finite certificate: X can be finitely represented and is computable.
[Derksen et al.’05]

21 / 17

At the edge of decidability

x :=x0

x := M1x
x := M2x

. . .

x := Mkx

S

Theorem (Markov 1947)

There is a fixed finite set of 6× 6 integer matrices S such that the problem
of deciding whether A ∈ ⟨S⟩ for a given A is undecidable.

Theorem (Paterson 1970)

The problem of deciding, given M1, . . . ,Mk , whether 0 ∈ ⟨M1, . . . ,Mk⟩ is
undecidable for 3 × 3 matrices.

22 / 17

At the edge of decidability

x :=x0

x := M1x
x := M2x

. . .

x := Mkx

S

Theorem (Markov 1947)

There is a fixed finite set of 6× 6 integer matrices S such that the problem
of deciding whether A ∈ ⟨S⟩ for a given A is undecidable.

Theorem (Paterson 1970)

The problem of deciding, given M1, . . . ,Mk , whether 0 ∈ ⟨M1, . . . ,Mk⟩ is
undecidable for 3 × 3 matrices.

22 / 17

At the edge of decidability

x :=x0

x := M1x
x := M2x

. . .

x := Mkx

S

Theorem (Markov 1947)

There is a fixed finite set of 6× 6 integer matrices S such that the problem
of deciding whether A ∈ ⟨S⟩ for a given A is undecidable.

Theorem (Paterson 1970)

The problem of deciding, given M1, . . . ,Mk , whether 0 ∈ ⟨M1, . . . ,Mk⟩ is
undecidable for 3 × 3 matrices.

22 / 17

Affine programs

▶ Nondeterministic branching (no guards)
▶ All assignments are affine
▶ Allow nondeterministic assignments (x := ∗)

1 2

3

f1
f2

f3

f4f5

▶ Can overapproximate complex programs
▶ Covers existing formalisms:

probabilistic, quantum, quantitative automata

23 / 17

Affine programs

▶ Nondeterministic branching (no guards)

▶ All assignments are affine
▶ Allow nondeterministic assignments (x := ∗)

1 2

3

f1
f2

f3

f4f5

▶ Can overapproximate complex programs
▶ Covers existing formalisms:

probabilistic, quantum, quantitative automata

23 / 17

Affine programs

▶ Nondeterministic branching (no guards)
▶ All assignments are affine

▶ Allow nondeterministic assignments (x := ∗)

1 2

3

x := 3x − 7y + 1
f2

f3

f4f5

▶ Can overapproximate complex programs
▶ Covers existing formalisms:

probabilistic, quantum, quantitative automata

23 / 17

Affine programs

▶ Nondeterministic branching (no guards)
▶ All assignments are affine
▶ Allow nondeterministic assignments (x := ∗)

1 2

3

x := 3x − 7y + 1
f2

f3

y :
= ∗f5

▶ Can overapproximate complex programs
▶ Covers existing formalisms:

probabilistic, quantum, quantitative automata

23 / 17

Affine programs

▶ Nondeterministic branching (no guards)
▶ All assignments are affine
▶ Allow nondeterministic assignments (x := ∗)

1 2

3

x := 3x − 7y + 1
f2

f3

y :
= ∗f5

▶ Can overapproximate complex programs

▶ Covers existing formalisms:
probabilistic, quantum, quantitative automata

23 / 17

Affine programs

▶ Nondeterministic branching (no guards)
▶ All assignments are affine
▶ Allow nondeterministic assignments (x := ∗)

1 2

3

x := 3x − 7y + 1
f2

f3

y :
= ∗f5

▶ Can overapproximate complex programs
▶ Covers existing formalisms:

probabilistic, quantum, quantitative automata

23 / 17

Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition

24 / 17

Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition

24 / 17

Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

25 / 17

Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

25 / 17

Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

25 / 17

Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

25 / 17

Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

25 / 17

Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

25 / 17

Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

25 / 17

Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

25 / 17

Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

25 / 17

Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

25 / 17

Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

25 / 17

Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

25 / 17

Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

25 / 17

Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1

S1

I2

S2

I3

S3

S1,S2,S3 are the reachable states
25 / 17

Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1

S1

I2

S2

I3

S3

S1,S2,S3 is also an inductive invariant
25 / 17

Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

I1,I2,I3 is an invariant
25 / 17

Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1

S1

I2

S2

I3

S3

I1,I2,I3 is NOT an inductive invariant
25 / 17

Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1

S1

I2

S2

I3

S3

I1,I2,I3 is an inductive invariant
25 / 17

Why Invariants?

I
S

BAD!

The classical approach to the verification of temporal safety proper-
ties of programs requires the construction of inductive invariants
[...]. Automation of this construction is the main challenge
in program verification.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko
Invariant Synthesis for Combined Theories, 2007

26 / 17

Which invariants?

Intervals

Octagons Polyhedrons

Affine/linear sets Algebraic sets =
polynomial equalities

Semialgebraic sets

⩽

⩽

⩽
⩽

⩽

⩽

27 / 17

