A universal differential equation

Olivier Bournez, Amaury Pouly

21 mars 2017

Digital vs analog computers

Digital vs analog computers

Computability

Church Thesis

All reasonable models of computation are equivalent.

Complexity

Effective Church Thesis

All reasonable models of computation are equivalent for complexity.

Polynomial Differential Equations

No closed-form solution

Example of dynamical system

$$\ddot{\theta} + rac{g}{\ell}\sin(\theta) = 0$$

$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{7}y_3 \\ y_3' = y_2y_4 \\ y_4' = -y_2y_3 \end{cases} \Leftrightarrow \begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases}$$

Generable functions

$$egin{cases} y(0)=y_0\ y'(x)=
ho(y(x)) \ & x\in\mathbb{R} \end{cases}$$

$$f(x)=y_1(x)$$

Shannon's notion

Generable functions

$$\begin{cases} y(0) = y_0 \\ y'(x) = p(y(x)) \end{cases} \quad x \in \mathbb{R} \\ f(x) = y_1(x) \\ \hline y_1(x) \\ \hline y_1(x) \\ \hline x \end{cases}$$

Shannon's notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \dots$

Strictly weaker than Turing machines [Shannon, 1941]

Computing with the GPAC

Generable functions

$$\left\{egin{array}{ll} y(0)=y_0 \ y'(x)=
ho(y(x)) \end{array}
ight. x\in\mathbb{R}$$

$$f(x)=y_1(x)$$

Shannon's notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \dots$

Strictly weaker than Turing machines [Shannon, 1941]

Computable

$$egin{cases} y(0) = q(x) & x \in \mathbb{R} \ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{cases}$$

$$f(x) = \lim_{t\to\infty} y_1(t)$$

Modern notion

Computing with the GPAC

Generable functions

$$\left\{egin{array}{ll} y(0)=y_0 \ y'(x)=p(y(x)) \end{array}
ight. x\in\mathbb{R}$$

$$f(x) = y_1(x)$$

Shannon's notion

 $\sin,\cos,\exp,\log,\ldots$

Strictly weaker than Turing machines [Shannon, 1941]

Computable

$$egin{cases} y(0) = q(x) & x \in \mathbb{R} \ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{cases}$$

$$f(x) = \lim_{t\to\infty} y_1(t)$$

Modern notion

 $\sin, \cos, \exp, \log, \Gamma, \zeta, \dots$

Turing powerful [Bournez et al., 2007]

Universal differential equations

Generable functions

Computable functions

(t)

subclass of analytic functions

any computable function

f(x)

Universal differential equations

Generable functions

Computable functions

subclass of analytic functions

any computable function

Universal differential equation (Rubel)

Theorem (Rubel)

There exists a **fixed** polynomial *p* and $k \in \mathbb{N}$ such that for any continuous functions *f* and ε , there exists a solution *y* to

$$p(y, y', \ldots, y^{(k)}) = 0$$

such that

$$|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$$

Universal differential equation (Rubel)

Theorem (Rubel)

There exists a **fixed** polynomial *p* and $k \in \mathbb{N}$ such that for any continuous functions *f* and ε , there exists a solution *y* to

$$3{y'}^4 {y''} {y''''}^2 -4{y'}^4 {y'''}^2 {y''''} + 6{y'}^3 {y''}^2 {y'''} {y''''} + 24{y'}^2 {y''}^4 {y''''} \\ -12{y'}^3 {y''} {y''''}^3 - 29{y'}^2 {y''}^3 {y'''}^2 + 12{y''}^7 = 0$$

such that

$$|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$$

Problem : Rubel is «cheating».

• Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise
 $(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$

• Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise
 $(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$

• Can do the same with cf(at + b) (translation+scaling)

• Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise
 $(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$

- Can do the same with cf(at + b) (translation+scaling)
- Can glue together arbitrary many such pieces

• Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise
 $(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$

- Can do the same with cf(at + b) (translation+scaling)
- Can glue together arbitrary many such pieces
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear

• Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise
 $(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$

- Can do the same with cf(at + b) (translation+scaling)
- Can glue together arbitrary many such pieces
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear

Conclusion : Rubel's equation allows any piecewise pseudo-linear functions, and those are **dense in** C^0

Why I don't like Rubel's result

• the solution y is not unique, even with added initial conditions :

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

Why I don't like Rubel's result

• the solution y is not unique, even with added initial conditions :

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

• ...even with a countable number of extra conditions :

$$p(y, y', \dots, y^{(k)}) = 0, y^{(d_i)}(a_i) = b_i, i \in \mathbb{N}$$

In fact, this is fundamental for the proof to work !

Why I don't like Rubel's result

• the solution y is not unique, even with added initial conditions :

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

• ...even with a countable number of extra conditions :

$$p(y, y', \dots, y^{(k)}) = 0, y^{(d_i)}(a_i) = b_i, i \in \mathbb{N}$$

In fact, this is fundamental for the proof to work !

- Rubel's interpretation : this equation is universal
- My interpretation : this equation allows almost anything

Universal differential equation (PIVP)

Theorem

There exists a **fixed** polynomial p and $d \in \mathbb{N}$ such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

has a unique solution and this solution satisfies such that

 $|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$

Universal differential equation (DAE)

Theorem

There exists a **fixed** polynomial *p* and $k \in \mathbb{N}$ such that for any continuous functions *f* and ε , there exists $\alpha_0, \ldots, \alpha_k \in \mathbb{R}$ such that

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

has a unique analytic solution and this solution satisfies such that

 $|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$

Key ingredients :

- fast-growing function
- (analog) bit generator
- \rightarrow On the white board.

Almost-Theorem

 $f : [0, 1] \to \mathbb{R}$ is **computable** if and only if there exists $\tau > 1$, $y_0 \in \mathbb{R}^d$ and p polynomial such that

$$y'(0) = y_0, \qquad y'(t) = p(y(t))$$

satisfies

$$|f(x) - y(x + n\tau)| \leq 2^{-n}, \quad \forall x \in [0, 1], \forall n \in \mathbb{N}$$

- Rubel's universal differential is very weak
- We provide a stronger result
- Another notion of analog computability