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Analog Computers

Differential Analyser
“Mathematica of the 1920s”

Admiralty Fire Control Table
British Navy ships (WW2)
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Church Thesis

Computability

discrete

Turing
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boolean circuitslogic

recursive
functions
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calculus

quantum analog
continuous

Church Thesis
All reasonable models of computation are equivalent.
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Church Thesis

Complexity
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Effective Church Thesis
All reasonable models of computation are equivalent for complexity.
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Polynomial Differential Equations
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General Purpose
Analog Computer Differential Analyzer

polynomial differential
equations :{

y(0)= y0
y ′(t)= p(y(t))Reaction networks :

I chemical
I enzymatic

Newton mechanics

I Rich class
I Stable (+,×,◦,/,ED)
I No closed-form solution
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Example of dynamical system

θ

`

m

g

×
∫ ∫

×
∫−g

`

××−1
∫

y1
y2

y3 y4

θ̈ + g
` sin(θ) = 0


y1 = θ

y2 = θ̇
y3 = sin(θ)
y4 = cos(θ)

⇔


y ′1 = y2
y ′2 = −g

l y3
y ′3 = y2y4
y ′4 = −y2y3

Historical remark : the word “analog”

The pendulum and the circuit have the same equation. One can study
one using the other by analogy.
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Computing with differential equations

Generable functions{
y(0)= y0

y ′(x)= p(y(x))
x ∈ R

f (x) = y1(x)

x
y1(x)

Shannon’s notion

sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computable{
y(0)= q(x)
y ′(t)= p(y(t))

x ∈ R
t ∈ R+

f (x) = lim
t→∞

y1(t)

t

f (x)

x

y1(t)

Modern notion

sin, cos, exp, log, Γ, ζ, ...

Turing powerful
[Bournez et al., 2007]
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From discrete to real computability

Computable Analysis : “Turing” computability over real numbers

Definition (Ko, 1991 ; Weihrauch, 2000)

x ∈ R is computable iff ∃ a computable f : N→ Q such that :

|x − f (n)| 6 10−n n ∈ N

Examples : rational numbers, π, e, ...
n f(n) |π − f(n)|
0 3 0.14 6 10−0

1 3.1 0.04 6 10−1

2 3.14 0.001 6 10−2

10 3.1415926535 0.9 · 10−10 6 10−10

Beware : there exists uncomputable real numbers !

x =
∑
n∈Γ

2−n, Γ = {n : the nth Turing machine halts}
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From discrete to real computability

x

f (x)

r ∈ Q

f (r)

y

f (y)

610−m(0)

610−0

y

f (y)

610−m(1)

610−1

y

f (y)

610−m(2)

610−2
ψ(r ,0)

610−0ψ(r ,1) 610−1ψ(r ,2) 610−2

Definition (Computable function)

f : [a,b]→ R is computable iff ∃ m : N→ N,

ψ : Q× N→ Q

computable functions such that :
I effective approx over Q : |f (r)− ψ(r ,n)| 6 10−n

I effective continuity :
m : modulus of continuity

Polytime complexity

Add “polynomial time computable” everywhere.

Remark : there are other theories of computability over R, notably BSS
(Blum-Shub-Smale).
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Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if ∃p polynomial such that ∀x ∈ [a,b]

y(0) = (x ,0, . . . ,0) y ′(t) = p(y(t))

satisfies |f (x)− y1(t)| 6 y2(t) et y2(t) −−−→
t→∞

0.

t

f (x)

x

y1(t) y1(t) −−−→
t→∞

f (x)

y2(t) = error bound

Theorem (Bournez et al, 2007)

f : [a,b]→ R computable⇔ f computable by GPAC
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Complexity of analog systems

I Turing machines : T (x) = number of steps to compute on x

I GPAC :

time contraction problem→ open problem

Tentative definition

y(0) = (x ,0, . . . ,0) y ′ = p(y)

t

f (x)

x

y1(t)
;

z(t) = y(et )

t

f (x)

x

z1(t)

Something is wrong...

All functions have constant
time complexity.

w(t) = y(eet
)

t

f (x)

x

w1(t)
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Time-space correlation of the GPAC

y(0) = q(x) y ′ = p(y)

t

f (x)

q(x)

y1(t)
;

z(t) = y(et )

t

f (x)

q̃(x)

z1(t)

Observation
Time scaling costs “space”.

;

Time complexity for the GPAC
must involve time and space !

extra component : w(t) = et

t

w(t)
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Characterization of polynomial time

Definition : L ∈ ANALOG-PTIME⇔ ∃p polynomial, ∀ word w

y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2−i

`(t) = length of y

1

−1

y1(t)

ψ(w)
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Summary

ANALOG-PTIME ANALOG-PR

`(t)

1

−1
poly(|w |)

w∈L

w /∈L

y1(t)

y1(t)

y1(t)
ψ(w)

`(t)

f (x)

x

y1(t)

Theorem

I L ∈ PTIME of and only if L ∈ ANALOG-PTIME

I f : [a,b]→ R computable in polynomial time⇔ f ∈ ANALOG-PR

I Analog complexity theory based on length
I Time of Turing machine⇔ length of the GPAC
I Purely continuous characterization of PTIME

I Only rational coefficients needed
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In the remaining time...

Two applications of the techniques we have developed :

; Chemical Reaction Networks

Universal differential equation
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Chemical Reaction Networks

Definition : a reaction system is a finite set of
I molecular species y1, . . . , yn

I reactions of the form
∑

i aiyi
f−→
∑

i biyi (ai ,bi ∈ N, f = rate)

Example (any resemblance to chemistry is purely coincidental) :

2H + O → H2O
C + O2 → CO2

Assumption : law of mass action∑
i

aiyi
k−→
∑

i

biyi ; f (y) = k
∏

i

yai
i

Semantics :
I discrete
I differential
I stochastic
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Chemical Reaction Networks (CRNs)
I CRNs with differential semantics and mass action law =

polynomial ODEs
I polynomial ODEs are Turing complete

CRNs are Turing complete? Two “slight” problems :
I concentrations cannot be negative (yi < 0)
I arbitrary reactions are not realistic

Definition : a reaction is elementary if it has at most two reactants
⇒ can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

ay + bz k−→ · · · ; f (y , z) = kyazb

Theorem (Folklore)

Every polynomial ODE can be rewritten as a quadratic ODE.
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Chemical Reaction Networks (CRNs)

Definition : a reaction is elementary if it has at most two reactants
⇒ can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

ay + bz k−→ · · · ; f (y , z) = kyazb

Theorem (Work with François Fages, Guillaume Le Guludec)

Elementary mass-action-law reaction system on finite universes of
molecules are Turing-complete under the differential semantics.

Notes :
I proof preserves polynomial length
I in fact the following elementary reactions suffice :

∅ k−→ x x k−→ x + z x + y k−→ x + y + z x + y k−→ ∅
16 / 23



In the remaining time...

Two applications of the techniques we have developed :

Chemical Reaction Networks

; Universal differential equation
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Universal differential equations

Generable functions

x
y1(x)

subclass of analytic functions

Computable functions

t

f (x)

x

y1(t)

any computable function

x
y1(x)
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Universal differential algebraic equation (DAE)

x
y(x)

Theorem (Rubel, 1981)

For any continuous functions f and ε, there exists y : R→ R solution to

3y ′4y
′′
y
′′′′2 −4y ′4y

′′′2
y
′′′′

+ 6y ′3y
′′2

y
′′′

y
′′′′

+ 24y ′2y
′′4

y
′′′′

−12y ′3y
′′
y
′′′3 − 29y ′2y

′′3
y
′′′2

+ 12y
′′7

= 0

such that ∀t ∈ R,
|y(t)− f (t)| 6 ε(t).

Problem : this is «weak» result.
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The problem with Rubel’s DAE

The solution y is not unique, even with added initial conditions :

p(y , y ′, . . . , y (k)) = 0, y(0) = α0, y ′(0) = α1, . . . , y (k)(0) = αk

In fact, this is fundamental for Rubel’s proof to work !

I Rubel’s statement : this DAE is universal
I More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y ′ = p(y) ?
Note : explicit polynomial ODE⇒ unique solution
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Rubel’s proof in one slide

I Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1− t2)2f
′′

(t) + 2tf ′(t) = 0.

I For any a,b, c ∈ R, y(t) = cf (at + b) satisfies
I Can glue together arbitrary many such pieces
I Can arrange so that

∫
f is solution : piecewise pseudo-linear

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0

21 / 23



Rubel’s proof in one slide

I Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1− t2)2f
′′

(t) + 2tf ′(t) = 0.
I For any a,b, c ∈ R, y(t) = cf (at + b) satisfies

3y ′4y ′′y ′′′′2 −4y ′4y ′′2y ′′′′ + 6y ′3y ′′2y ′′′y ′′′′ + 24y ′2y ′′4y ′′′′

−12y ′3y ′′y ′′′3 − 29y ′2y ′′3y ′′′2 + 12y ′′7 = 0

I Can glue together arbitrary many such pieces
I Can arrange so that

∫
f is solution : piecewise pseudo-linear

Translation and rescaling :

t
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Universal initial value problem (IVP)

x
y1(x)

Notes :
I system of ODEs,
I y is analytic,
I we need d ≈ 300.

Theorem
There exists a fixed (vector of) polynomial p such that for any
continuous functions f and ε, there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).

Remark : α is usually transcendental, but computable from f and ε
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Future work

Reaction networks :
I chemical
I enzymatic

y ′ = p(y)

y ′ = p(y) + e(t)

?

I Finer time complexity (linear)
I Nondeterminism
I Robustness
I « Space» complexity
I Other models
I Stochastic
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Backup slides
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Complexity of solving polynomial ODEs

y(0) = x y ′(t) = p(y(t))

Theorem
If y(t) exists, one can compute p,q such that

∣∣∣pq − y(t)
∣∣∣ 6 2−n in time

poly (size of x and p,n, `(t))

where `(t) ≈ length of the curve (between x and y(t))

x y(t) x y(t)

length of the curve = complexity = ressource

25 / 23



Complexity of solving polynomial ODEs

y(0) = x y ′(t) = p(y(t))

Theorem
If y(t) exists, one can compute p,q such that

∣∣∣pq − y(t)
∣∣∣ 6 2−n in time

poly (size of x and p,n, `(t))

where `(t) ≈ length of the curve (between x and y(t))

x y(t) x y(t)

length of the curve = complexity = ressource

25 / 23



Characterization of real polynomial time

Definition : f : [a,b]→ R in ANALOG-PR ⇔ ∃p polynomial, ∀x ∈ [a,b]

y(0) = (x ,0, . . . ,0) y ′ = p(y)

satisfies :
1. |y1(t)− f (x)| 6 2−`(t)

«greater length⇒ greater precision»
2. `(t) > t

«length increases with time»

`(t)

f (x)

x

y1(t)

Theorem
f : [a,b]→ R computable in polynomial time⇔ f ∈ ANALOG-PR.
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Universal DAE revisited

x
y1(x)

Theorem
There exists a fixed polynomial p and k ∈ N such that for any
continuous functions f and ε, there exists α0, . . . , αk ∈ R such that

p(y , y ′, . . . , y (k)) = 0, y(0) = α0, y ′(0) = α1, . . . , y (k)(0) = αk

has a unique analytic solution and this solution satisfies such that

|y(t)− f (t)| 6 ε(t).
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