Continuous models of computation: computability, complexity, universality

Amaury Pouly Joint work with Olivier Bournez and Daniel Graça

Université de Paris, IRIF, CNRS

14 june 2019

INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

What is a computer?

What is a computer?

What is a computer?

Analog Computers

Differential Analyser "Mathematica of the 1920s"

Admiralty Fire Control Table British Navy ships (WW2)

Computability

Church Thesis

All reasonable models of computation are equivalent.

Complexity

Effective Church Thesis

All reasonable models of computation are equivalent for complexity.

General Purpose Analog Computer

Differential Analyzer

$$\begin{array}{c|c} k & u & \downarrow \\ k & v & \downarrow \\ \end{array} \\ \downarrow & \downarrow \\ v & \downarrow + \end{matrix} - u + v \quad u - \int \left[- \int u \right] \\ \end{array}$$

General Purpose Analog Computer

Differential Analyzer

polynomial differential equations : $\begin{cases} y(0) = y_0 \\ y'(t) = p(y(t)) \end{cases}$

enzymatic

No closed-form solution

$$\ddot{\theta} + rac{g}{\ell}\sin(\theta) = 0$$

$$\begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases} \Leftrightarrow \begin{cases} y'_1 = y_2 \\ y'_2 = -\frac{g}{I} y_3 \\ y'_3 = y_2 y_4 \\ y'_4 = -y_2 y_3 \end{cases}$$

$$\begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases} \Leftrightarrow \begin{cases} y'_1 = y_2 \\ y'_2 = -\frac{g}{l}y_3 \\ y'_3 = y_2y_4 \\ y'_4 = -y_2y_3 \end{cases}$$

Historical remark : the word "analog"

The pendulum and the circuit have the same equation. One can study one using the other by analogy.

Generable functions

Shannon's notion

Generable functions

Shannon's notion

 $\sin,\cos,\exp,\log,\ldots$

Strictly weaker than Turing machines [Shannon, 1941]

Generable functions

Shannon's notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \dots$

Strictly weaker than Turing machines [Shannon, 1941]

Computable

$$\left\{ egin{array}{ll} y(0) = q(x) & x \in \mathbb{R} \ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{array}
ight.$$

Modern notion

Generable functions

Shannon's notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \dots$

Strictly weaker than Turing machines [Shannon, 1941]

Computable

$$\left\{ egin{array}{ll} y(0) = q(x) & x \in \mathbb{R} \ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{array}
ight.$$

Modern notion

 $\sin,\cos,\exp,\log,\Gamma,\zeta,\ldots$

Turing powerful [Bournez et al., 2007]

Computable Analysis : "Turing" computability over real numbers

Computable Analysis : "Turing" computability over real numbers

Definition (Ko, 1991; Weihrauch, 2000)

 $x \in \mathbb{R}$ is computable iff \exists a computable $f : \mathbb{N} \to \mathbb{Q}$ such that :

$$|x-f(n)|\leqslant 10^{-n}$$
 $n\in\mathbb{N}$

Examples : rational numbers, π , e, ...

n	f (n)	$ \pi - \mathbf{f}(\mathbf{n}) $
0	3	0.14 ≼ 10 ^{−0}
1	3.1	$0.04 \leqslant 10^{-1}$
2	3.14	$0.001 \leqslant 10^{-2}$
10	3.1415926535	$0.9 \cdot 10^{-10} \leqslant 10^{-10}$

Computable Analysis : "Turing" computability over real numbers

Definition (Ko, 1991; Weihrauch, 2000)

 $x \in \mathbb{R}$ is computable iff \exists a computable $f : \mathbb{N} \to \mathbb{Q}$ such that :

$$|x-f(n)|\leqslant 10^{-n}$$
 $n\in\mathbb{N}$

Examples : rational numbers, π , e, ...

n	f (n)	$ \pi - {f f}({f n}) $
0	3	0.14
1	3.1	$0.04 \leqslant 10^{-1}$
2	3.14	$0.001 \leqslant 10^{-2}$
10	3.1415926535	$0.9 \cdot 10^{-10} \leqslant 10^{-10}$

Beware : there exists uncomputable real numbers !

$$\mathbf{x} = \sum_{n \in \Gamma} 2^{-n}, \qquad \Gamma = \{n : \text{the } n^{th} \text{ Turing machine halts} \}$$

- $f : [a, b] \to \mathbb{R}$ is computable iff $\exists m : \mathbb{N} \to \mathbb{N}$, computable functions such that :
 - effective approx over \mathbb{Q} : $|f(r) \psi(r, n)| \leq 10^{-n}$

- $f : [a, b] \to \mathbb{R}$ is computable iff $\exists m : \mathbb{N} \to \mathbb{N}$, computable functions such that :
 - effective approx over \mathbb{Q} : $|f(r) \psi(r, n)| \leq 10^{-n}$

- $f : [a, b] \to \mathbb{R}$ is computable iff $\exists m : \mathbb{N} \to \mathbb{N}$, computable functions such that :
 - effective approx over \mathbb{Q} : $|f(r) \psi(r, n)| \leq 10^{-n}$

- $f : [a, b] \to \mathbb{R}$ is computable iff $\exists m : \mathbb{N} \to \mathbb{N}, \psi : \mathbb{Q} \times \mathbb{N} \to \mathbb{Q}$ computable functions such that :
 - effective approx over \mathbb{Q} : $|f(r) \psi(r, n)| \leq 10^{-n}$
 - effective continuity : $|x y| \le 10^{-m(n)} \Rightarrow |f(x) f(y)| \le 10^{-n}$ *m* : modulus of continuity

- $f : [a, b] \to \mathbb{R}$ is computable iff $\exists m : \mathbb{N} \to \mathbb{N}, \psi : \mathbb{Q} \times \mathbb{N} \to \mathbb{Q}$ computable functions such that :
 - effective approx over \mathbb{Q} : $|f(r) \psi(r, n)| \leq 10^{-n}$
 - effective continuity : $|x y| \le 10^{-m(n)} \Rightarrow |f(x) f(y)| \le 10^{-n}$ *m* : modulus of continuity

- $f : [a, b] \to \mathbb{R}$ is computable iff $\exists m : \mathbb{N} \to \mathbb{N}, \psi : \mathbb{Q} \times \mathbb{N} \to \mathbb{Q}$ computable functions such that :
 - effective approx over \mathbb{Q} : $|f(r) \psi(r, n)| \leq 10^{-n}$
 - effective continuity : $|x y| \le 10^{-m(n)} \Rightarrow |f(x) f(y)| \le 10^{-n}$ *m* : modulus of continuity

Definition (Computable function)

 $f : [a, b] \to \mathbb{R}$ is computable iff $\exists m : \mathbb{N} \to \mathbb{N}, \psi : \mathbb{Q} \times \mathbb{N} \to \mathbb{Q}$ computable functions such that :

- effective approx over \mathbb{Q} : $|f(r) \psi(r, n)| \leq 10^{-n}$
- effective continuity : $|x y| \le 10^{-m(n)} \Rightarrow |f(x) f(y)| \le 10^{-n}$ *m* : modulus of continuity

All computable functions are continuous !

Examples : polynomials, sin, exp, $\sqrt{\cdot}$ Beware : there exists (continuous) uncomputable real functions !

Definition (Computable function)

 $f : [a, b] \to \mathbb{R}$ is computable iff $\exists m : \mathbb{N} \to \mathbb{N}, \psi : \mathbb{Q} \times \mathbb{N} \to \mathbb{Q}$ computable functions such that :

- effective approx over \mathbb{Q} : $|f(r) \psi(r, n)| \leq 10^{-n}$
- effective continuity : $|x y| \le 10^{-m(n)} \Rightarrow |f(x) f(y)| \le 10^{-n}$ *m* : modulus of continuity

All computable functions are continuous !

Examples : polynomials, sin, exp, $\sqrt{\cdot}$ Beware : there exists (continuous) uncomputable real functions !

Polytime complexity

Add "polynomial time computable" everywhere.

Definition (Computable function)

 $f : [a, b] \to \mathbb{R}$ is computable iff $\exists m : \mathbb{N} \to \mathbb{N}, \psi : \mathbb{Q} \times \mathbb{N} \to \mathbb{Q}$ computable functions such that :

- effective approx over \mathbb{Q} : $|f(r) \psi(r, n)| \leq 10^{-n}$
- effective continuity : $|x y| \le 10^{-m(n)} \Rightarrow |f(x) f(y)| \le 10^{-n}$ *m* : modulus of continuity

All computable functions are continuous !

Examples : polynomials, sin, exp, $\sqrt{\cdot}$ Beware : there exists (continuous) uncomputable real functions !

Polytime complexity

Add "polynomial time computable" everywhere.

Remark : there are other theories of computability over \mathbb{R} , notably BSS (Blum-Shub-Smale).

Definition (Bournez et al, 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x \in [a, b]$

$$y(0) = (x, 0, \dots, 0) \qquad y'(t) = p(y(t))$$

satisfies $|f(x) - y_1(t)| \leq y_2(t)$ et $y_2(t) \xrightarrow[t \to \infty]{t \to \infty} 0$.

 $y_1(t) \xrightarrow[t \to \infty]{} f(x)$ $y_2(t) = \text{error bound}$

Definition (Bournez et al, 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x \in [a, b]$

$$y(0) = (x, 0, \dots, 0) \qquad y'(t) = p(y(t))$$

satisfies $|f(x) - y_1(t)| \leq y_2(t)$ et $y_2(t) \xrightarrow[t \to \infty]{} 0$.

$$y_1(t) \xrightarrow[t \to \infty]{} f(x)$$

 $y_2(t) = \text{error bound}$

Theorem (Bournez et al, 2007)

 $f : [a, b] \rightarrow \mathbb{R}$ computable \Leftrightarrow f computable by GPAC

Complexity of analog systems

Turing machines : T(x) = number of steps to compute on x

Complexity of analog systems

Turing machines : T(x) = number of steps to compute on x
 GPAC :

Tentative definition

T(x) = ??

Turing machines : T(x) = number of steps to compute on x
 GPAC :

Tentative definition

 $T(x, \mu) =$

Turing machines : T(x) = number of steps to compute on x
 GPAC :

Tentative definition

 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq e^{-\mu}$

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

Turing machines : T(x) = number of steps to compute on x
 GPAC :

Tentative definition

 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq e^{-\mu}$

Turing machines : T(x) = number of steps to compute on x
 GPAC :

Tentative definition

 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq e^{-\mu}$

- Turing machines : T(x) = number of steps to compute on x
- ► GPAC : time contraction problem → open problem

Tentative definition

 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq e^{-\mu}$

Something is wrong...

All functions have constant time complexity.

Time-space correlation of the GPAC

 \sim

Time-space correlation of the GPAC

extra component : $w(t) = e^t$

Time-space correlation of the GPAC

Observation

Time scaling costs "space".

 \sim

Time complexity for the GPAC must involve time and space!

satisfies

1. if
$$y_1(t) \ge 1$$
 then $w \in \mathcal{L}$

satisfies

2. if
$$y_1(t) \leq -1$$
 then $w \notin \mathcal{L}$

satisfies

3. if $\ell(t) \ge \operatorname{poly}(|w|)$ then $|y_1(t)| \ge 1$

Theorem

$\mathsf{PTIME} = \mathsf{ANALOG}\mathsf{-}\mathsf{PTIME}$

Summary

Theorem

• $\mathcal{L} \in \mathsf{PTIME}$ of and only if $\mathcal{L} \in \mathsf{ANALOG}\operatorname{-PTIME}$

▶ $f : [a, b] \rightarrow \mathbb{R}$ computable in polynomial time $\Leftrightarrow f \in \mathsf{ANALOG-P}_{\mathbb{R}}$

- Analog complexity theory based on length
- ► Time of Turing machine ⇔ length of the GPAC
- Purely continuous characterization of PTIME

Summary

Theorem

• $\mathcal{L} \in \mathsf{PTIME}$ of and only if $\mathcal{L} \in \mathsf{ANALOG}\operatorname{-PTIME}$

▶ $f : [a, b] \rightarrow \mathbb{R}$ computable in polynomial time $\Leftrightarrow f \in \mathsf{ANALOG-P}_{\mathbb{R}}$

- Analog complexity theory based on length
- ► Time of Turing machine ⇔ length of the GPAC
- Purely continuous characterization of PTIME
- Only rational coefficients needed

Two applications of the techniques we have developed :

→ Chemical Reaction Networks

Universal differential equation

Definition : a reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example (any resemblance to chemistry is purely coincidental) :

Definition : a reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example (any resemblance to chemistry is purely coincidental) :

Assumption : law of mass action

$$\sum_{i} a_{i} y_{i} \xrightarrow{k} \sum_{i} b_{i} y_{i} \rightsquigarrow f(y) = k \prod_{i} y_{i}^{a_{i}}$$

Definition : a reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example (any resemblance to chemistry is purely coincidental) :

2H	+	0	\rightarrow	H_2O
С	+	O ₂	\rightarrow	CO_2

Assumption : law of mass action

$$\sum_{i} a_{i} y_{i} \xrightarrow{k} \sum_{i} b_{i} y_{i} \rightsquigarrow f(y) = k \prod_{i} y_{i}^{a_{i}}$$

Semantics :

- discrete
- differential
- stochastic

Definition : a reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example (any resemblance to chemistry is purely coincidental) :

2H	+	0	\rightarrow	H_2O
С	+	O ₂	\rightarrow	CO_2

Assumption : law of mass action

$$\sum_{i} a_{i} y_{i} \xrightarrow{k} \sum_{i} b_{i} y_{i} \rightsquigarrow f(y) = k \prod_{i} y_{i}^{a_{i}}$$

Semantics :

- discrete
- $\blacktriangleright \text{ differential} \rightarrow$
- stochastic

$$y'_i = \sum_{\text{reaction } R} (b^R_i - a^R_i) f^R(y)$$

Definition : a reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example (any resemblance to chemistry is purely coincidental) :

2H	+	0	\rightarrow	H_2O
С	+	O ₂	\rightarrow	CO_2

Assumption : law of mass action

$$\sum_{i} a_{i} y_{i} \xrightarrow{k} \sum_{i} b_{i} y_{i} \rightsquigarrow f(y) = k \prod_{i} y_{i}^{a_{i}}$$

Semantics :

- discrete
- $\blacktriangleright \text{ differential} \rightarrow$

stochastic

$$y'_i = \sum_{\text{reaction } R} (b^R_i - a^R_i) k^R \prod_j y^{a_j}_j$$

- CRNs with differential semantics and mass action law = polynomial ODEs
- polynomial ODEs are Turing complete

- CRNs with differential semantics and mass action law = polynomial ODEs
- polynomial ODEs are Turing complete

CRNs are Turing complete?

CRNs are Turing complete? Two "slight" problems :

- concentrations cannot be negative ($y_i < 0$)
- arbitrary reactions are not realistic

CRNs are Turing complete? Two "slight" problems :

- concentrations cannot be negative ($y_i < 0$)
- arbitrary reactions are not realistic

easy to solvewhat is realistic?

CRNs are Turing complete? Two "slight" problems :

- concentrations cannot be negative $(y_i < 0)$
- arbitrary reactions are not realistic

easy to solvewhat is realistic?

Definition : a reaction is **elementary** if it has at most two reactants \Rightarrow can be implemented with DNA, RNA or proteins

CRNs are Turing complete? Two "slight" problems :

- concentrations cannot be negative $(y_i < 0)$
- arbitrary reactions are not realistic

easy to solvewhat is realistic?

Definition : a reaction is **elementary** if it has at most two reactants \Rightarrow can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

$$ay + bz \xrightarrow{k} \cdots \qquad \rightsquigarrow \qquad f(y, z) = ky^a z^b$$

CRNs are Turing complete? Two "slight" problems :

- concentrations cannot be negative $(y_i < 0)$
- arbitrary reactions are not realistic

easy to solvewhat is realistic?

Definition : a reaction is **elementary** if it has at most two reactants \Rightarrow can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

$$ay + bz \xrightarrow{k} \cdots \qquad \rightsquigarrow \qquad f(y, z) = ky^a z^b$$

Theorem (Folklore)

Every polynomial ODE can be rewritten as a quadratic ODE.

Definition : a reaction is **elementary** if it has at most two reactants \Rightarrow can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

$$ay + bz \xrightarrow{k} \cdots \qquad \rightsquigarrow \qquad f(y, z) = ky^a z^b$$

Theorem (Work with François Fages, Guillaume Le Guludec)

Elementary mass-action-law reaction system on finite universes of molecules are Turing-complete under the differential semantics.

Notes :

- proof preserves polynomial length
- in fact the following elementary reactions suffice :

Two applications of the techniques we have developed :

Chemical Reaction Networks

 \rightsquigarrow Universal differential equation

Universal differential equations

Generable functions

Computable functions

x $y_1(t)$ f(x) t

subclass of analytic functions

any computable function

Universal differential equations

Generable functions

Computable functions

subclass of analytic functions

any computable function

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

For any continuous functions f and ε , there exists $y : \mathbb{R} \to \mathbb{R}$ solution to

$$3y'^{4}y''y''''^{2} -4y'^{4}y'''^{2}y'''' + 6y'^{3}y''^{2}y'''y'''' + 24y'^{2}y''^{4}y'''' -12y'^{3}y''y'''^{3} - 29y'^{2}y''^{3}y'''^{2} + 12y''^{7} = 0$$

such that $\forall t \in \mathbb{R}$,

 $|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y, y', \ldots, y^{(k)}) = 0$$

such that $\forall t \in \mathbb{R}$,

 $|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y, y', \ldots, y^{(k)}) = 0$$

such that $\forall t \in \mathbb{R}$,

$$|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$$

Problem : this is «weak» result.

The solution y is not unique, even with added initial conditions : $p(y, y', ..., y^{(k)}) = 0$, $y(0) = \alpha_0$, $y'(0) = \alpha_1$, ..., $y^{(k)}(0) = \alpha_k$

In fact, this is fundamental for Rubel's proof to work!

The solution y is not unique, even with added initial conditions : $p(y, y', ..., y^{(k)}) = 0$, $y(0) = \alpha_0$, $y'(0) = \alpha_1$, ..., $y^{(k)}(0) = \alpha_k$

In fact, this is fundamental for Rubel's proof to work !

- Rubel's statement : this DAE is universal
- More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y' = p(y)? Note : explicit polynomial ODE \Rightarrow unique solution

► Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise.
It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0$.

Take f(t) = e^{-1/(1-t^2)}/(1-t^2) for -1 < t < 1 and f(t) = 0 otherwise. It satisfies (1 - t²)² f''(t) + 2tf'(t) = 0.
For any a, b, c ∈ ℝ, y(t) = cf(at + b) satisfies

$$3y'^{4}y''y''''^{2} -4y'^{4}y''^{2}y'''' + 6y'^{3}y''^{2}y''''y'''' + 24y'^{2}y''^{4}y'''' -12y'^{3}y''y'''^{3} - 29y'^{2}y''^{3}y'''^{2} + 12y''^{7} = 0$$

► Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise.
It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0$.

For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

Can glue together arbitrary many such pieces

• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$

For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

- Can glue together arbitrary many such pieces
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear

• Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise.

It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$

For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

- Can glue together arbitrary many such pieces
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear

Conclusion : Rubel's equation allows any piecewise pseudo-linear functions, and those are **dense in** C^0

Universal initial value problem (IVP)

Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t)-f(t)|\leqslant \varepsilon(t).$

Universal initial value problem (IVP)

Notes :

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t) - f(t)| \leq \varepsilon(t).$

Universal initial value problem (IVP)

Notes :

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t) - f(t)| \leq \varepsilon(t).$

Remark : α is usually transcendental, but computable from *f* and ε

$$y' = p(y)$$

$$\uparrow^{?}$$

$$y' = p(y) + e(t)$$

- Reaction networks :
 - chemical
 - enzymatic

- ► Finer time complexity (linear)
- Nondeterminism
- Robustness
- « Space» complexity
- Other models
- Stochastic

Backup slides

Complexity of solving polynomial ODEs

$$y(0) = x$$
 $y'(t) = p(y(t))$

Complexity of solving polynomial ODEs

$$y(0) = x$$
 $y'(t) = p(y(t))$

Theorem

If y(t) exists, one can compute p, q such that $\left|\frac{p}{q} - y(t)\right| \leq 2^{-n}$ in time poly (size of x and $p, n, \ell(t)$)

where $\ell(t) \approx$ length of the curve (between x and y(t))

length of the curve = complexity = ressource

Characterization of real polynomial time

Definition : $f : [a, b] \rightarrow \mathbb{R}$ in ANALOG-P_R $\Leftrightarrow \exists p$ polynomial, $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

Characterization of real polynomial time

Definition : $f : [a, b] \rightarrow \mathbb{R}$ in ANALOG-P_R $\Leftrightarrow \exists p$ polynomial, $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

satisfies :

1.
$$|y_1(t) - f(x)| \leq 2^{-\ell(t)}$$

«greater length \Rightarrow greater precision»

2. $\ell(t) \ge t$

«length increases with time»

Characterization of real polynomial time

Definition : $f : [a, b] \rightarrow \mathbb{R}$ in ANALOG-P_R $\Leftrightarrow \exists p$ polynomial, $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

satisfies :

1.
$$|y_1(t) - f(x)| \leq 2^{-\ell(t)}$$

«greater length \Rightarrow greater precision»

2. $\ell(t) \ge t$

«length increases with time»

Theorem

 $f : [a, b] \to \mathbb{R}$ computable in polynomial time $\Leftrightarrow f \in \mathsf{ANALOG-P}_{\mathbb{R}}$.

Universal DAE revisited

Theorem

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists $\alpha_0, \ldots, \alpha_k \in \mathbb{R}$ such that

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

has a unique analytic solution and this solution satisfies such that

 $|\mathbf{y}(t) - f(t)| \leq \varepsilon(t).$