Continuous models of computation: computability, complexity, universality

Amaury Pouly
Joint work with Olivier Bournez and Daniel Graça

Université de Paris, IRIF, CNRS

14 june 2019
What is a computer?
What is a computer?
What is a computer?

VS
Analog Computers

Differential Analyser
“Mathematica of the 1920s”

Admiralty Fire Control Table
British Navy ships (WW2)
Church Thesis

All **reasonable** models of computation are equivalent.
Effective Church Thesis

All **reasonable** models of computation are equivalent for complexity.
Polynomial Differential Equations

\[k \times u + v \int u \]

General Purpose Analog Computer

Differential Analyzer
Polynomial Differential Equations

\[
\begin{align*}
 k & \quad \times \quad uv \\
 u & \quad + \quad u+v \\
 u & \quad \int \quad \int u
\end{align*}
\]

General Purpose Analog Computer

Differential Analyzer

Polynomial differential equations:
\[
\begin{cases}
 y(0) = y_0 \\
 y'(t) = p(y(t))
\end{cases}
\]
Polynomial Differential Equations

\[
\begin{align*}
 & k
 & u
 & v
 & \times
 & uv \\
 & u
 & v
 & +
 & u+v
 & \int
 & \int u
\end{align*}
\]

General Purpose Analog Computer

Differential Analyzer

Newton mechanics

Reaction networks:
- chemical
- enzymatic

Polynomial differential equations:
\[
\begin{align*}
 \{ y(0) &= y_0 \\
 y'(t) &= p(y(t)) \}
\end{align*}
\]
Polynomial Differential Equations

General Purpose Analog Computer

Newton mechanics

Reaction networks:
- chemical
- enzymatic

Differential Analyzer

Polynomial differential equations:

\[
\begin{align*}
\{ y(0) &= y_0 \\
y'(t) &= p(y(t)) \}
\end{align*}
\]

- Rich class
- Stable (+, \times, \circ, /, ED)
- No closed-form solution
Example of dynamical system

\[\ddot{\theta} + \frac{g}{\ell} \sin(\theta) = 0 \]
Example of dynamical system

\[\ddot{\theta} + \frac{g}{\ell} \sin(\theta) = 0 \]

\[
\begin{align*}
 y_1 &= \theta \\
 y_2 &= \dot{\theta} \\
 y_3 &= \sin(\theta) \\
 y_4 &= \cos(\theta)
\end{align*}
\]

\[
\begin{align*}
 y_1' &= y_2 \\
 y_2' &= -\frac{g}{\ell} y_3 \\
 y_3' &= y_2 y_4 \\
 y_4' &= -y_2 y_3
\end{align*}
\]

Historical remark: the word "analog"
Example of dynamical system

\[\ddot{\theta} + \frac{g}{\ell} \sin(\theta) = 0 \]

\[\begin{align*}
 y_1 &= \theta \\
 y_2 &= \dot{\theta} \\
 y_3 &= \sin(\theta) \\
 y_4 &= \cos(\theta)
\end{align*} \]

\[\begin{align*}
 y_1' &= y_2 \\
 y_2' &= -\frac{g}{\ell} y_3 \\
 y_3' &= y_2 y_4 \\
 y_4' &= -y_2 y_3
\end{align*} \]

Historical remark: the word "analog"
Example of dynamical system

\[\ddot{\theta} + \frac{g}{\ell} \sin(\theta) = 0 \]

\[
\begin{align*}
 y_1 &= \theta \\
 y_2 &= \dot{\theta} \\
 y_3 &= \sin(\theta) \\
 y_4 &= \cos(\theta)
\end{align*}
\]

\[
\begin{align*}
 y_1' &= y_2 \\
 y_2' &= -\frac{g}{\ell} y_3 \\
 y_3' &= y_2 y_4 \\
 y_4' &= -y_2 y_3
\end{align*}
\]

Historical remark: the word “analog”

The pendulum and the circuit have the same equation. One can study one using the other by analogy.
Computing with differential equations

Generable functions

\[
\begin{aligned}
 y(0) &= y_0 \\
 y'(x) &= p(y(x)) \\
 f(x) &= y_1(x)
\end{aligned}
\]

\[x \in \mathbb{R}\]

Shannon’s notion
Computing with differential equations

Generable functions

\[
\begin{cases}
 y(0) = y_0 \\
y'(x) = p(y(x))
\end{cases}
\quad x \in \mathbb{R}
\]

\[f(x) = y_1(x)\]

Shannon’s notion

sin, cos, exp, log, ...

Strictly weaker than Turing machines [Shannon, 1941]
Computing with differential equations

Generable functions
\[
\begin{align*}
 y(0) &= y_0 \\
y'(x) &= p(y(x))
\end{align*}
\]
\[x \in \mathbb{R}\]

\[f(x) = y_1(x)\]

Shannon’s notion
sin, cos, exp, log, ...

Strictly weaker than Turing machines [Shannon, 1941]

Computable
\[
\begin{align*}
 y(0) &= q(x) \\
y'(t) &= p(y(t))
\end{align*}
\]
\[x \in \mathbb{R}\]
\[t \in \mathbb{R}_+\]

\[f(x) = \lim_{t \to \infty} y_1(t)\]

Modern notion
Computing with differential equations

Generable functions
\[
\begin{align*}
 y(0) &= y_0 \\
 y'(x) &= p(y(x))
\end{align*}
\]
\[
f(x) = y_1(x)
\]

Shannon’s notion
\[
\sin, \cos, \exp, \log, \ldots
\]
Strictly weaker than Turing machines [Shannon, 1941]

Computable
\[
\begin{align*}
 y(0) &= q(x) \\
 y'(t) &= p(y(t))
\end{align*}
\]
\[
f(x) = \lim_{t \to \infty} y_1(t)
\]

Modern notion
\[
\sin, \cos, \exp, \log, \Gamma, \zeta, \ldots
\]
Turing powerful
[Bournez et al., 2007]
Computable Analysis: “Turing” computability over real numbers

Definition (Ko, 1991; Weihrauch, 2000)

\[x \in \mathbb{R} \text{ is computable iff} \exists \text{ a computable } f: \mathbb{N} \rightarrow \mathbb{Q} \text{ such that: } |x - f(n)| \leq 10^{-n}, n \in \mathbb{N} \]

Examples: rational numbers, \(\pi \), \(e \), ...

Beware: there exists uncomputable real numbers!

\[x = \sum_{n \in \Gamma} 2^{-n}, \Gamma = \{ n : \text{the } n\text{-th Turing machine halts} \} \]
From discrete to real computability

Computable Analysis: “Turing” computability over real numbers

Definition (Ko, 1991; Weihrauch, 2000)

\(x \in \mathbb{R} \) is computable iff \(\exists \) a computable \(f : \mathbb{N} \to \mathbb{Q} \) such that:

\[|x - f(n)| \leq 10^{-n} \quad n \in \mathbb{N} \]

Examples: rational numbers, \(\pi \), \(e \), ...

| \(n \) | \(f(n) \) | \(|\pi - f(n)| \) |
|---|---|---|
| 0 | 3 | 0.14 \(\leq 10^{-0} \) |
| 1 | 3.1 | 0.04 \(\leq 10^{-1} \) |
| 2 | 3.14 | 0.001 \(\leq 10^{-2} \) |
| 10 | 3.1415926535 | 0.9 \(\cdot 10^{-10} \) \(\leq 10^{-10} \) |

Beware: there exist uncomputable real numbers!
From discrete to real computability

Computable Analysis: “Turing” computability over real numbers

Definition (Ko, 1991; Weihrauch, 2000)

\(x \in \mathbb{R} \) is computable iff \(\exists \) a computable \(f : \mathbb{N} \rightarrow \mathbb{Q} \) such that:

\[|x - f(n)| \leq 10^{-n} \quad n \in \mathbb{N} \]

Examples: rational numbers, \(\pi \), \(e \), ...

| \(n \) | \(f(n) \) | \(|\pi - f(n)| \) |
|-------|---------|----------------|
| 0 | 3 | 0.14 \(\leq 10^{-0} \) |
| 1 | 3.1 | 0.04 \(\leq 10^{-1} \) |
| 2 | 3.14 | 0.001 \(\leq 10^{-2} \) |
| 10 | 3.1415926535 | 0.9 \cdot 10^{-10} \(\leq 10^{-10} \) |

Beware: there exists uncomputable real numbers!

\[x = \sum_{n \in \Gamma} 2^{-n}, \quad \Gamma = \{ n : \text{the } n^{th} \text{ Turing machine halts} \} \]
From discrete to real computability

Definition (Computable function)

\[f : [a, b] \to \mathbb{R} \text{ is computable iff } \exists m : \mathbb{N} \to \mathbb{N}, \psi : \mathbb{Q} \times \mathbb{N} \to \mathbb{Q} \]

computable functions such that:

\[\text{effective approx over } \mathbb{Q}: \quad |f(r) - \psi(r, n)| \leq 10^{-n} \]

\[\text{effective continuity: } m: \text{modulus of continuity} \]

Remark: there are other theories of computability over \(\mathbb{R} \), notably BSS (Blum-Shub-Smale).

Add "polynomial time computable" everywhere.
From discrete to real computability

Definition (Computable function)

\[f : [a, b] \to \mathbb{R} \text{ is computable iff } \exists m : \mathbb{N} \to \mathbb{N}, \]

computable functions such that:

- effective approx over \(\mathbb{Q} \):
 \[|f(r) - \psi(r, n)| \leq 10^{-n} \]
From discrete to real computability

Definition (Computable function)

\(f : [a, b] \rightarrow \mathbb{R} \) is computable iff \(\exists m : \mathbb{N} \rightarrow \mathbb{N} \), computable functions such that:

- effective approx over \(\mathbb{Q} \): \(|f(r) - \psi(r, n)| \leq 10^{-n} \)
Definition (Computable function)

$f : [a, b] \rightarrow \mathbb{R}$ is computable iff $\exists m : \mathbb{N} \rightarrow \mathbb{N}$, computable functions such that:

- effective approx over \mathbb{Q}: $|f(r) - \psi(r, n)| \leq 10^{-n}$
From discrete to real computability

Definition (Computable function)

$f : [a, b] \rightarrow \mathbb{R}$ is computable iff \(\exists m : \mathbb{N} \rightarrow \mathbb{N}, \psi : \mathbb{Q} \times \mathbb{N} \rightarrow \mathbb{Q} \) computable functions such that:

- effective approx over \(\mathbb{Q} \) : \(|f(r) - \psi(r, n)| \leq 10^{-n} \)
- effective continuity : \(|x - y| \leq 10^{-m(n)} \Rightarrow |f(x) - f(y)| \leq 10^{-n} \)

\(m \) : modulus of continuity
Definition (Computable function)

\(f : [a, b] \to \mathbb{R} \) is computable iff \(\exists m : \mathbb{N} \to \mathbb{N}, \psi : \mathbb{Q} \times \mathbb{N} \to \mathbb{Q} \)

computable functions such that:

▶ effective approx over \(\mathbb{Q} \) : \(|f(r) - \psi(r, n)| \leq 10^{-n} \)

▶ effective continuity : \(|x - y| \leq 10^{-m(n)} \Rightarrow |f(x) - f(y)| \leq 10^{-n} \)

\(m \) : modulus of continuity
From discrete to real computability

Definition (Computable function)

\(f : [a, b] \rightarrow \mathbb{R} \) is computable iff \(\exists m : \mathbb{N} \rightarrow \mathbb{N}, \psi : \mathbb{Q} \times \mathbb{N} \rightarrow \mathbb{Q} \)

computable functions such that:

- effective approx over \(\mathbb{Q} \): \(|f(r) - \psi(r, n)| \leq 10^{-n} \)
- effective continuity: \(|x - y| \leq 10^{-m(n)} \Rightarrow |f(x) - f(y)| \leq 10^{-n} \)

\(m \): modulus of continuity
Definition (Computable function)

$f : [a, b] \rightarrow \mathbb{R}$ is computable iff $\exists \ m : \mathbb{N} \rightarrow \mathbb{N}, \psi : \mathbb{Q} \times \mathbb{N} \rightarrow \mathbb{Q}$

computable functions such that:

- effective approx over \mathbb{Q}: $|f(r) - \psi(r, n)| \leq 10^{-n}$

- effective continuity: $|x - y| \leq 10^{-m(n)} \Rightarrow |f(x) - f(y)| \leq 10^{-n}$

m : modulus of continuity

All computable functions are continuous!

Examples: polynomials, \sin, \exp, $\sqrt{\cdot}$

Beware: there exists (continuous) uncomputable real functions!
From discrete to real computability

Definition (Computable function)

\(f : [a, b] \to \mathbb{R} \) is computable iff \(\exists m : \mathbb{N} \to \mathbb{N}, \psi : \mathbb{Q} \times \mathbb{N} \to \mathbb{Q} \)

computable functions such that:

- effective approx over \(\mathbb{Q} \):
 \[|f(r) - \psi(r, n)| \leq 10^{-n} \]

- effective continuity:
 \[|x - y| \leq 10^{-m(n)} \Rightarrow |f(x) - f(y)| \leq 10^{-n} \]

\(m \): modulus of continuity

All computable functions are continuous!

Examples: polynomials, \(\sin \), \(\exp \), \(\sqrt{\cdot} \)

Beware: there exists (continuous) uncomputable real functions!

Polytime complexity

Add “polynomial time computable” everywhere.
From discrete to real computability

Definition (Computable function)

\[f : [a, b] \rightarrow \mathbb{R} \text{ is computable iff } \exists \ m : \mathbb{N} \rightarrow \mathbb{N}, \psi : \mathbb{Q} \times \mathbb{N} \rightarrow \mathbb{Q} \]

computable functions such that :

- effective approx over \(\mathbb{Q} \) : \(|f(r) - \psi(r, n)| \leq 10^{-n} \)
- effective continuity : \(|x - y| \leq 10^{-m(n)} \Rightarrow |f(x) - f(y)| \leq 10^{-n} \)

\(m \) : modulus of continuity

All computable functions are continuous!

Examples : polynomials, \(\sin \), \(\exp \), \(\sqrt{\cdot} \).

Beware : there exists (continuous) uncomputable real functions!

Polytime complexity

Add “polynomial time computable” everywhere.

Remark : there are other theories of computability over \(\mathbb{R} \), notably BSS (Blum-Shub-Smale).
Equivalence with computable analysis

Definition (Bournez et al, 2007)

f **computable by GPAC** if $\exists p$ polynomial such that $\forall x \in [a, b]$

\[
y(0) = (x, 0, \ldots, 0) \quad y'(t) = p(y(t))
\]

satisfies $|f(x) - y_1(t)| \leq y_2(t)$ et $y_2(t) \xrightarrow{t \to \infty} 0$.

\[
\begin{align*}
y_1(t) & \xrightarrow{t \to \infty} f(x) \\
y_2(t) & = \text{error bound}
\end{align*}
\]
Equivalence with computable analysis

Definition (Bournez et al, 2007)

\[f \text{ computable by GPAC if } \exists p \text{ polynomial such that } \forall x \in [a, b] \]

\[y(0) = (x, 0, \ldots, 0) \quad y'(t) = p(y(t)) \]

satisfies \(|f(x) - y_1(t)| \leq y_2(t) \) et \(y_2(t) \xrightarrow{t \to \infty} 0. \)

Theorem (Bournez et al, 2007)

\[f : [a, b] \to \mathbb{R} \text{ computable } \iff f \text{ computable by GPAC} \]
Complexity of analog systems

- Turing machines: $T(x) =$ number of steps to compute on x
Complexity of analog systems

- Turing machines: \(T(x) = \) number of steps to compute on \(x \)
- GPAC:

Tentative definition

\[T(x) = ?? \]

\[y(0) = (x, 0, \ldots, 0) \quad y' = p(y) \]

\[w(t) = y(e^t) \quad x = y_1(t) \quad f(x) \]

Something is wrong...

All functions have constant time complexity.
Complexity of analog systems

- Turing machines: $T(x) =$ number of steps to compute on x
- GPAC:

Tentative definition

$$T(x, \mu) =$$

$$y(0) = (x, 0, \ldots, 0) \quad y' = p(y)$$

All functions have constant time complexity.
Complexity of analog systems

- Turing machines: \(T(x) = \) number of steps to compute on \(x \)
- GPAC:

Tentative definition

\[
T(x, \mu) = \text{first time } t \text{ so that } |y_1(t) - f(x)| \leq e^{-\mu}
\]

\[
y(0) = (x, 0, \ldots, 0) \quad y' = p(y)
\]

\[
x \rightarrow t
\[
y_1(t) \quad f(x)
\]

Something is wrong...
All functions have constant time complexity.

\[
w(t) = y(e^et)
\]

\[
x \rightarrow t
\[
y_1(t) \quad f(x)
\]
Complexity of analog systems

▶ Turing machines: $T(x) =$ number of steps to compute on x
▶ GPAC:

Tentative definition

$$T(x, \mu) = \text{first time } t \text{ so that } |y_1(t) - f(x)| \leq e^{-\mu}$$

\[
y(0) = (x, 0, \ldots, 0) \quad y' = p(y)
\]

\[
z(t) = y(e^t)
\]
Complexity of analog systems

- Turing machines: $T(x) =$ number of steps to compute on x
- GPAC:

Tentative definition

$$T(x, \mu) = \text{first time } t \text{ so that } |y_1(t) - f(x)| \leq e^{-\mu}$$

$$y(0) = (x, 0, \ldots, 0) \quad y' = p(y)$$

$$z(t) = y(e^{t})$$

$$w(t) = y(e^{e^{t}})$$
Complexity of analog systems

- Turing machines: $T(x) =$ number of steps to compute on x
- GPAC: time contraction problem \rightarrow open problem

Tentative definition

$$T(x, \mu) = \text{first time } t \text{ so that } |y_1(t) - f(x)| \leq e^{-\mu}$$

\[y(0) = (x, 0, \ldots, 0) \quad y' = p(y) \]

\[z(t) = y(e^t) \]

\[w(t) = y(e^{e^t}) \]

Something is wrong...

All functions have constant time complexity.
Time-space correlation of the GPAC

\[y(0) = q(x) \quad y' = p(y) \]

\[z(t) = y(e^t) \]

Observation: Time scaling costs "space". Time complexity for the GPAC must involve time and space!
Time-space correlation of the GPAC

\[y(0) = q(x) \quad y' = p(y) \]

\[z(t) = y(e^t) \]

extra component: \(w(t) = e^t \)
Time-space correlation of the GPAC

\[y(0) = q(x) \quad y' = p(y) \]

\[z(t) = y(e^t) \]

Observation

Time scaling costs "space".

Time complexity for the GPAC must involve time and space!
Characterization of polynomial time

Definition: \(\mathcal{L} \in \text{ANALOG-PTIME} \iff \exists p \text{ polynomial}, \ \forall \text{ word } w \)

\[
y(0) = (\psi(w), |w|, 0, \ldots, 0) \quad y' = p(y) \quad \psi(w) = \sum_{i=1}^{\frac{|w|}{2}} w_i 2^{-i}
\]

\[
y_1(t) \quad \ell(t) = \text{length of } y
\]
Definition: \(\mathcal{L} \in \text{ANALOG-PTIME} \iff \exists p \text{ polynomial, } \forall \text{ word } w \)

\[
y(0) = (\psi(w),|w|,0,\ldots,0) \quad y' = p(y) \quad \psi(w) = \sum_{i=1}^{\frac{|w|}{2}} w_i 2^{-i}
\]

accept: \(w \in \mathcal{L} \)

computing \(\ell(t) = \text{length of } y \)

satisfies

1. if \(y_1(t) \geq 1 \) then \(w \in \mathcal{L} \)
Characterization of polynomial time

Definition: \(\mathcal{L} \in \text{ANALOG-PTIME} \iff \exists p \text{ polynomial}, \forall \text{ word } w \)

\[
y(0) = (\psi(w), |w|, 0, \ldots, 0) \quad y' = p(y) \quad \psi(w) = \sum_{i=1}^{|w|} w_i 2^{-i}
\]

1. accept: \(w \in \mathcal{L} \)
2. reject: \(w \notin \mathcal{L} \)

satisfies

2. if \(y_1(t) \leq -1 \) then \(w \notin \mathcal{L} \)
Characterization of polynomial time

Definition: \(\mathcal{L} \in \text{ANALOG-PTIME} \iff \exists p \text{ polynomial, } \forall \text{ word } w \)

\[
y(0) = (\psi(w), |w|, 0, \ldots, 0) \quad y' = p(y) \quad \psi(w) = \sum_{i=1}^{|w|} w_i 2^{-i}
\]

satisfies

3. if \(\ell(t) \geq \text{poly}(|w|) \) then \(|y_1(t)| \geq 1 \)
Characterization of polynomial time

Definition: \(L \in \text{ANALOG-PTIME} \iff \exists p \text{ polynomial, } \forall \text{ word } w \)

\[
y(0) = (\psi(w), |w|, 0, \ldots, 0) \quad y' = p(y) \quad \psi(w) = \sum_{i=1}^{\frac{|w|}{\text{poly}(|w|)}} w_i2^{-i}
\]

Theorem

\[
\text{PTIME} = \text{ANALOG-PTIME}
\]
Theorem

- $\mathcal{L} \in \text{PTIME} \iff \mathcal{L} \in \text{ANALOG-PTIME}
- f : [a, b] \to \mathbb{R} \text{ computable in polynomial time} \iff f \in \text{ANALOG-}\mathbb{P}_\mathbb{R}

- Analog complexity theory based on length
- Time of Turing machine \iff length of the GPAC
- Purely continuous characterization of PTIME
Theorem

- \(\mathcal{L} \in \text{PTIME of and only if } \mathcal{L} \in \text{ANALOG-PTIME} \)
- \(f : [a, b] \rightarrow \mathbb{R} \text{ computable in polynomial time} \iff f \in \text{ANALOG-P}_{\mathbb{R}} \)

- Analog complexity theory based on length
- Time of Turing machine \(\Leftrightarrow \) length of the GPAC
- Purely continuous characterization of PTIME
- Only rational coefficients needed
Two applications of the techniques we have developed:

〜 Chemical Reaction Networks

Universal differential equation
Definition: a reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ ($a_i, b_i \in \mathbb{N}$, $f = \text{rate}$)

Example (any resemblance to chemistry is purely coincidental):

$$2H + O \rightarrow H_2O$$
$$C + O_2 \rightarrow CO_2$$
Definition: a reaction system is a finite set of
- molecular species y_1, \ldots, y_n
- reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ ($a_i, b_i \in \mathbb{N}, f = \text{rate}$)

Example (any resemblance to chemistry is purely coincidental):

2H + O \rightarrow H$_2$O
C + O$_2$ \rightarrow CO$_2$

Assumption: law of mass action

$$\sum_i a_i y_i \xrightarrow{k} \sum_i b_i y_i \sim f(y) = k \prod_i y_i^{a_i}$$
Chemical Reaction Networks

Definition: a reaction system is a finite set of

- molecular species \(y_1, \ldots, y_n \)
- reactions of the form \(\sum_i a_i y_i \overset{f}{\rightarrow} \sum_i b_i y_i \) (\(a_i, b_i \in \mathbb{N}, f = \text{rate} \))

Example (any resemblance to chemistry is purely coincidental):

\[
\begin{align*}
2\text{H} + \text{O} & \rightarrow \text{H}_2\text{O} \\
\text{C} + \text{O}_2 & \rightarrow \text{CO}_2
\end{align*}
\]

Assumption: law of mass action

\[
\sum_i a_i y_i \overset{k}{\rightarrow} \sum_i b_i y_i \sim f(y) = k \prod_i y_i^{a_i}
\]

Semantics:

- discrete
- differential
- stochastic
Chemical Reaction Networks

Definition: a reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i \quad (a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example (any resemblance to chemistry is purely coincidental):

- $2H + O \rightarrow H_2O$
- $C + O_2 \rightarrow CO_2$

Assumption: law of mass action

$$\sum_i a_i y_i \xrightarrow{k} \sum_i b_i y_i \sim f(y) = k \prod_i y_i^{a_i}$$

Semantics:

- discrete
- differential →
- stochastic

$$y_i' = \sum_{\text{reaction } R} (b_i^R - a_i^R) f^R(y)$$
Chemical Reaction Networks

Definition: a reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- reactions of the form $\sum_i a_i y_i \overset{f}{\rightarrow} \sum_i b_i y_i$ ($a_i, b_i \in \mathbb{N}, f = \text{rate}$)

Example (any resemblance to chemistry is purely coincidental):

- $2H + O \rightarrow H_2O$
- $C + O_2 \rightarrow CO_2$

Assumption: law of mass action

$$\sum_i a_i y_i \overset{k}{\rightarrow} \sum_i b_i y_i \sim f(y) = k \prod_i y_i^{a_i}$$

Semantics:

- discrete
- differential \rightarrow
- stochastic

$$y_i' = \sum_{\text{reaction } R} (b_i^R - a_i^R)k^R \prod_j y_j^{a_j}$$
Chemical Reaction Networks (CRNs)

- CRNs with differential semantics and mass action law = polynomial ODEs
- polynomial ODEs are Turing complete
Chemical Reaction Networks (CRNs)

- CRNs with differential semantics and mass action law = polynomial ODEs
- Polynomial ODEs are Turing complete

CRNs are Turing complete?
CRNs are Turing complete? Two “slight” problems:

- concentrations cannot be negative ($y_i < 0$)
- arbitrary reactions are not realistic
Chemical Reaction Networks (CRNs)

CRNs are Turing complete? Two “slight” problems:

- concentrations cannot be negative ($y_i < 0$)
- arbitrary reactions are not realistic

What is realistic?

Definition: an elementary reaction has at most two reactants. Can be implemented with DNA, RNA, or proteins.

Elementary reactions correspond to quadratic ODEs:

$$f(y, z) = k y^a z^b$$

Theorem (Folklore): Every polynomial ODE can be rewritten as a quadratic ODE.
CRNs are Turing complete? Two “slight” problems:

- concentrations cannot be negative ($y_i < 0$)
- arbitrary reactions are not realistic

Definition: a reaction is **elementary** if it has at most two reactants

⇒ can be implemented with DNA, RNA or proteins
Chemical Reaction Networks (CRNs)

CRNs are Turing complete? Two “slight” problems:
- concentrations cannot be negative \((y_i < 0)\)
- arbitrary reactions are not realistic

Definition: a reaction is **elementary** if it has at most two reactants
⇒ can be implemented with DNA, RNA or proteins

Elementary reactions correspond to **quadratic** ODEs:

\[
ay + bz \xrightarrow{k} \ldots \sim f(y, z) = ky^a z^b
\]
Chemical Reaction Networks (CRNs)

CRNs are Turing complete? Two “slight” problems:

- concentrations cannot be negative \(y_i < 0 \)
- arbitrary reactions are not realistic

Definition: a reaction is elementary if it has at most two reactants
\(\Rightarrow \) can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs:

\[
ay + bz \xrightarrow{k} \cdots \sim \quad f(y, z) = ky^a z^b
\]

Theorem (Folklore)

Every polynomial ODE can be rewritten as a quadratic ODE.
Chemical Reaction Networks (CRNs)

Definition: a reaction is **elementary** if it has at most two reactants ➞ can be implemented with DNA, RNA or proteins

Elementary reactions correspond to **quadratic** ODEs:

\[ay + bz \xrightarrow{k} \cdots \sim f(y, z) = k y^a z^b \]

Theorem (Work with François Fages, Guillaume Le Guludec)

Elementary mass-action-law reaction system on finite universes of molecules are Turing-complete under the differential semantics.

Notes:
- proof preserves polynomial length
- in fact the following elementary reactions suffice:

\[
\emptyset \xrightarrow{k} x \quad x \xrightarrow{k} x + z \quad x + y \xrightarrow{k} x + y + z \quad x + y \xrightarrow{k} \emptyset
\]
In the remaining time...

Two applications of the techniques we have developed:

- Chemical Reaction Networks

 \(\sim\) Universal differential equation
Universal differential equations

Generable functions

subclass of analytic functions

Computable functions

any computable function
Universal differential equations

Generable functions

subclass of analytic functions

Computable functions

any computable function
Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

For any continuous functions f and ε, there exists $y : \mathbb{R} \rightarrow \mathbb{R}$ solution to

\[
3y^{4}y''y''''^{2} - 4y''^{4}y''''^{2}y''''' + 6y'''^{2}y''y''''y''' + 24y''^{2}y''''^{4}y'''' = 0
\]

such that $\forall t \in \mathbb{R}$,

\[
|y(t) - f(t)| \leq \varepsilon(t).
\]
Theorem (Rubel, 1981)

There exists a fixed polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε, there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y, y', \ldots, y^{(k)}) = 0$$

such that $\forall t \in \mathbb{R}$,

$$|y(t) - f(t)| \leq \varepsilon(t).$$
Theorem (Rubel, 1981)

There exists a fixed polynomial \(p \) and \(k \in \mathbb{N} \) such that for any continuous functions \(f \) and \(\varepsilon \), there exists a solution \(y : \mathbb{R} \to \mathbb{R} \) to

\[
p(y, y', \ldots, y^{(k)}) = 0
\]

such that \(\forall t \in \mathbb{R}, \)

\[
|y(t) - f(t)| \leq \varepsilon(t).
\]

Problem: this is «weak» result.
The problem with Rubel’s DAE

The solution y is not unique, **even with added initial conditions**:

$$p(y, y', \ldots, y^{(k)}) = 0, \quad y(0) = \alpha_0, \ y'(0) = \alpha_1, \ldots, \ y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel’s proof to work!
The problem with Rubel’s DAE

The solution y is not unique, **even with added initial conditions**:

$$p(y, y', \ldots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \ldots, y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel’s proof to work!

- Rubel’s statement: this DAE is universal
- More realistic interpretation: this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE $y' = p(y)$?

Note: explicit polynomial ODE \Rightarrow unique solution
Take \(f(t) = e^{\frac{-1}{1-t^2}} \) for \(-1 < t < 1\) and \(f(t) = 0 \) otherwise.

It satisfies \((1 - t^2)^2 f''(t) + 2tf'(t) = 0\).
Rubel’s proof in one slide

- Take \(f(t) = e^{\frac{-1}{1-t^2}} \) for \(-1 < t < 1\) and \(f(t) = 0 \) otherwise. It satisfies \((1 - t^2)^2 f''(t) + 2tf'(t) = 0\).

- For any \(a, b, c \in \mathbb{R} \), \(y(t) = cf(at + b) \) satisfies

 \[
 3y'^4y''y''''^2 - 4y'^4y''y'''' + 6y'^3y''^2y'''y'''' + 24y'^2y''^4y'''' - 12y'^3y''y''''^2 - 29y'^2y'''^3y''^2 + 12y''^7 = 0
 \]

Translation and rescaling:
Rubel’s proof in one slide

- Take $f(t) = e^{\frac{-1}{1-t^2}}$ for $-1 < t < 1$ and $f(t) = 0$ otherwise.
 It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0$.

- For any $a, b, c \in \mathbb{R}$, $y(t) = cf(at + b)$ satisfies

 $$3y'^4y''^2y''''^2 - 4y'^4y''^2y'''' + 6y'^3y''^2y'''y'''' + 24y'^2y''^4y'''' - 12y'^3y''^3y'''' - 29y'^2y''^3y''''^2 + 12y''^7 = 0$$

- Can glue together arbitrary many such pieces

![Graph of function](image)
Rubel’s proof in one slide

- Take \(f(t) = e^{1/t^2} \) for \(-1 < t < 1\) and \(f(t) = 0 \) otherwise.

 It satisfies \((1 - t^2)^2 f''(t) + 2tf'(t) = 0\).

- For any \(a, b, c \in \mathbb{R} \), \(y(t) = cf(at + b) \) satisfies
 \[
 3y^4y''y''''^2 - 4y^4y''y'''^2 + 6y^3y''y'''' + 24y^2y''y'''y'''' - 12y^3y'y'''y'''' - 29y^2y''y''y'''' + 12y''y''^2 = 0
 \]

- Can glue together arbitrary many such pieces
- Can arrange so that \(\int f \) is solution: piecewise pseudo-linear
Rubel’s proof in one slide

- Take \(f(t) = e^{1-t^2} \) for \(-1 < t < 1\) and \(f(t) = 0 \) otherwise. It satisfies \((1 - t^2)^2 f''(t) + 2tf'(t) = 0\).

- For any \(a, b, c \in \mathbb{R} \), \(y(t) = cf(at + b) \) satisfies
 \[
 3y'^4y''^2 - 4y'^4y''^2 + 6y'^3y''y''' - 12y'^2y''y''' + 24y'^2y''y''' - 12y'^2y''y''' + 12y'' + 12y''^2 = 0
 \]

- Can glue together arbitrary many such pieces
- Can arrange so that \(\int f \) is solution: **piecewise pseudo-linear**

Conclusion: Rubel’s equation allows any piecewise pseudo-linear functions, and those are **dense in** \(C^0 \)
Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε, there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha, \quad y'(t) = p(y(t))$$

has a **unique solution** $y : \mathbb{R} \rightarrow \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t) - f(t)| \leq \varepsilon(t).$$
Universal initial value problem (IVP)

Notes:
- system of ODEs,
- \(y \) is analytic,
- we need \(d \approx 300 \).

Theorem

There exists a fixed (vector of) polynomial \(p \) such that for any continuous functions \(f \) and \(\varepsilon \), there exists \(\alpha \in \mathbb{R}^d \) such that

\[
y(0) = \alpha, \quad y'(t) = p(y(t))
\]

has a unique solution \(y : \mathbb{R} \to \mathbb{R}^d \) and \(\forall t \in \mathbb{R} \),

\[
|y_1(t) - f(t)| \leq \varepsilon(t).
\]
Universal initial value problem (IVP)

Notes:
▶ system of ODEs,
▶ \(y \) is analytic,
▶ we need \(d \approx 300 \).

Theorem

There exists a fixed (vector of) polynomial \(p \) such that for any continuous functions \(f \) and \(\varepsilon \), there exists \(\alpha \in \mathbb{R}^d \) such that

\[
\begin{align*}
y(0) &= \alpha, \\
y'(t) &= p(y(t))
\end{align*}
\]

*has a unique solution \(y : \mathbb{R} \to \mathbb{R}^d \) and \(\forall t \in \mathbb{R}, \)

\[
|y_1(t) - f(t)| \leq \varepsilon(t).
\]

Remark: \(\alpha \) is usually transcendental, but computable from \(f \) and \(\varepsilon \).
Future work

Reaction networks:
- chemical
- enzymatic

\[y' = p(y) \]
\[y' = p(y) + e(t) \]

- Finer time complexity (linear)
- Nondeterminism
- Robustness
- "Space" complexity
- Other models
- Stochastic
Backup slides
Complexity of solving polynomial ODEs

\[y(0) = x \quad y'(t) = p(y(t)) \]
Complexity of solving polynomial ODEs

\[y(0) = x \quad y'(t) = p(y(t)) \]

Theorem

If \(y(t) \) exists, one can compute \(p, q \) such that \(\left| \frac{p}{q} - y(t) \right| \leq 2^{-n} \) in time \(\text{poly}(\text{size of } x \text{ and } p, n, \ell(t)) \)

where \(\ell(t) \approx \text{length of the curve (between } x \text{ and } y(t) \text{)} \)

length of the curve = complexity = ressource
Characterization of real polynomial time

Definition: \(f : [a, b] \rightarrow \mathbb{R} \) in ANALOG-\(P_\mathbb{R} \) \iff \exists p \text{ polynomial}, \forall x \in [a, b]

\[
y(0) = (x, 0, \ldots, 0) \quad y' = p(y)
\]
Characterization of real polynomial time

Definition: \(f : [a, b] \rightarrow \mathbb{R} \) in ANALOG-P\(_\mathbb{R}\) ⇔ \(\exists p \) polynomial, \(\forall x \in [a, b] \)

\[
y(0) = (x, 0, \ldots, 0) \quad y' = p(y)
\]
satisfies:

1. \(|y_1(t) - f(x)| \leq 2^{-\ell(t)} \)

«greater length ⇒ greater precision»

2. \(\ell(t) \geq t \)

«length increases with time»

Theorem: \(f : [a, b] \rightarrow \mathbb{R} \) computable in polynomial time ⇔ \(f \in \text{ANALOG-P}_{\mathbb{R}} \).
Characterization of real polynomial time

Definition: \(f : [a, b] \rightarrow \mathbb{R} \) in \(\text{ANALOG-P}_\mathbb{R} \iff \exists p \text{ polynomial, } \forall x \in [a, b] \)

\[y(0) = (x, 0, \ldots, 0) \quad y' = p(y) \]

satisfies:

1. \(|y_1(t) - f(x)| \leq 2^{-\ell(t)} \)
 «greater length ⇒ greater precision»

2. \(\ell(t) \geq t \)
 «length increases with time»

Theorem

\(f : [a, b] \rightarrow \mathbb{R} \) **computable in polynomial time** \(\iff f \in \text{ANALOG-P}_\mathbb{R} \).
There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε, there exists $\alpha_0, \ldots, \alpha_k \in \mathbb{R}$ such that

$$p(y, y', \ldots, y^{(k)}) = 0, \quad y(0) = \alpha_0, \quad y'(0) = \alpha_1, \ldots, \quad y^{(k)}(0) = \alpha_k$$

has a **unique analytic solution** and this solution satisfies such that

$$|y(t) - f(t)| \leq \varepsilon(t).$$