
Polynomial Invariants for Affine Programs

Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, James Worrell

Max Planck Institute for Software Systems &
Department of Computer Science, Oxford University &

Mathematical Institute, Oxford University

1 / 17



Does this program halt?

Affine program

x := 2−10

y := 1
while y > x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

I (1) is an invariant: it holds at every
step

I (1) implies the guard is true

2 / 17



Does this program halt?

Affine program

x := 2−10

y := 1
while y > x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

I (1) is an invariant: it holds at every
step

I (1) implies the guard is true

2 / 17



Does this program halt?

Affine program

x := 2−10

y := 1
while y > x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

I (1) is an invariant: it holds at every
step

I (1) implies the guard is true

2 / 17



Does this program halt?

Affine program

x := 2−10

y := 1
while y > x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

I (1) is an invariant: it holds at every
step

I (1) implies the guard is true

2 / 17



Does this program halt?

Affine program

x := 2−10

y := 1
while y > x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

I (1) is an invariant: it holds at every
step

I (1) implies the guard is true

2 / 17



Does this program halt?

Affine program

x := 2−10

y := 1
while y > x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

I (1) is an invariant: it holds at every
step

I (1) implies the guard is true

2 / 17



Does this program halt?

Affine program

x := 2−10

y := 1
while y > x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]
Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

I (1) is an invariant: it holds at every
step

I (1) implies the guard is true

2 / 17



Does this program halt?

Affine program

x := 2−10

y := 1
while y > x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]
Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

I (1) is an invariant: it holds at every
step

I (1) implies the guard is true

2 / 17



Does this program halt?

Affine program

x := 2−10

y := 1
while y > x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]
Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

I (1) is an invariant: it holds at every
step

I (1) implies the guard is true

2 / 17



Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition

3 / 17



Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition

3 / 17



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 17



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 17



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 17



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 17



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 17



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 17



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 17



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 17



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 17



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 17



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 17



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 17



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 17



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1

S1

I2

S2

I3

S3

S1,S2,S3 is an invariant
4 / 17



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1

S1

I2

S2

I3

S3

S1,S2,S3 is an inductive invariant
4 / 17



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

I1,I2,I3 is an invariant
4 / 17



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1

S1

I2

S2

I3

S3

I1,I2,I3 is NOT an inductive invariant
4 / 17



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1

S1

I2

S2

I3

S3

I1,I2,I3 is an inductive invariant
4 / 17



Why Invariants?

I
S

BAD!

The classical approach to the verification of temporal safety
properties of programs requires the construction of inductive
invariants [...]. Automation of this construction is the main
challenge in program verification.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko
Invariant Synthesis for Combined Theories, 2007

5 / 17



Which invariants?

Octagons Polyhedrons

Affine/linear sets Algebraic sets =
polynomial equalities

Semialgebraic sets

6 / 17



Which invariants?

Intervals

Octagons Polyhedrons

Affine/linear sets Algebraic sets =
polynomial equalities

Semialgebraic sets

6 / 17



Which invariants?

Intervals

Octagons

Polyhedrons

Affine/linear sets Algebraic sets =
polynomial equalities

Semialgebraic sets

6

6 / 17



Which invariants?

Intervals

Octagons

Polyhedrons

Affine/linear sets

Algebraic sets =
polynomial equalities

Semialgebraic sets

6

6 / 17



Which invariants?

Intervals

Octagons Polyhedrons

Affine/linear sets

Algebraic sets =
polynomial equalities

Semialgebraic sets

6

6

6

6 / 17



Which invariants?

Intervals

Octagons Polyhedrons

Affine/linear sets Algebraic sets =
polynomial equalities

Semialgebraic sets

6

6

6
6

6 / 17



Which invariants?

Intervals

Octagons Polyhedrons

Affine/linear sets Algebraic sets =
polynomial equalities

Semialgebraic sets

6

6

6
6

6

6

6 / 17



Affine programs

I Nondeterministic branching (no guards)
I All assignments are affine
I Allow nondeterministic assignments (x := ∗)

1 2

3

f1
f2

f3

f4f5

I Can overapproximate complex programs
I Covers existing formalisms:

probabilistic, quantum, quantitative automata

7 / 17



Affine programs

I Nondeterministic branching (no guards)

I All assignments are affine
I Allow nondeterministic assignments (x := ∗)

1 2

3

f1
f2

f3

f4f5

I Can overapproximate complex programs
I Covers existing formalisms:

probabilistic, quantum, quantitative automata

7 / 17



Affine programs

I Nondeterministic branching (no guards)
I All assignments are affine

I Allow nondeterministic assignments (x := ∗)

1 2

3

x := 3x − 7y + 1
f2

f3

f4f5

I Can overapproximate complex programs
I Covers existing formalisms:

probabilistic, quantum, quantitative automata

7 / 17



Affine programs

I Nondeterministic branching (no guards)
I All assignments are affine
I Allow nondeterministic assignments (x := ∗)

1 2

3

x := 3x − 7y + 1
f2

f3

y :=
∗f5

I Can overapproximate complex programs
I Covers existing formalisms:

probabilistic, quantum, quantitative automata

7 / 17



Affine programs

I Nondeterministic branching (no guards)
I All assignments are affine
I Allow nondeterministic assignments (x := ∗)

1 2

3

x := 3x − 7y + 1
f2

f3

y :=
∗f5

I Can overapproximate complex programs

I Covers existing formalisms:
probabilistic, quantum, quantitative automata

7 / 17



Affine programs

I Nondeterministic branching (no guards)
I All assignments are affine
I Allow nondeterministic assignments (x := ∗)

1 2

3

x := 3x − 7y + 1
f2

f3

y :=
∗f5

I Can overapproximate complex programs
I Covers existing formalisms:

probabilistic, quantum, quantitative automata

7 / 17



Karr’s Algorithm

Theorem (Karr 76)

There is an algorithm which computes, for any given affine program
over Q, its strongest affine inductive invariant.

8 / 17



Randomized Karr’s Algorithm @ POPL 2003

9 / 17



Some polynomial invariants

Theorem (ICALP 2004)

There is an algorithm which computes, for any given affine program
over Q, all its polynomial inductive invariants up to any fixed degree d.

10 / 17



A challenge: finding all polynomial invariants

11 / 17



A challenge: finding all polynomial invariants

11 / 17



Why fixed degree is not enough

I Paraboloid z = x2 + y2

I Union of 3 hyperplanes (x − y)(10y + x)(y + 10x) = 0

12 / 17



Why fixed degree is not enough

I Paraboloid z = x2 + y2

I Union of 3 hyperplanes (x − y)(10y + x)(y + 10x) = 0

12 / 17



Why fixed degree is not enough

I Paraboloid z = x2 + y2

I Union of 3 hyperplanes (x − y)(10y + x)(y + 10x) = 0

12 / 17



Why fixed degree is not enough

I Paraboloid z = x2 + y2

I Union of 3 hyperplanes (x − y)(10y + x)(y + 10x) = 0

12 / 17



Why fixed degree is not enough

I Paraboloid z = x2 + y2

I Union of 3 hyperplanes (x − y)(10y + x)(y + 10x) = 0

12 / 17



Why fixed degree is not enough

I Paraboloid z = x2 + y2

I Union of 3 hyperplanes (x − y)(10y + x)(y + 10x) = 0

12 / 17



Main result

Theorem
There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.

I strongest polynomial invariant ⇐⇒ smallest algebraic set
I algebraic sets = finite

⋃
and

⋂
of polynomial equalities

I Thus our algorithm computes all polynomial relations that always
hold among program variables at each program location, in all
possible executions of the program

I We can represent this (usually infinite) set of relations using a
finite basis of polynomial equalities

13 / 17



Main result

Theorem
There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.

I strongest polynomial invariant ⇐⇒ smallest algebraic set

I algebraic sets = finite
⋃

and
⋂

of polynomial equalities

I Thus our algorithm computes all polynomial relations that always
hold among program variables at each program location, in all
possible executions of the program

I We can represent this (usually infinite) set of relations using a
finite basis of polynomial equalities

13 / 17



Main result

Theorem
There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.

I strongest polynomial invariant ⇐⇒ smallest algebraic set
I algebraic sets = finite

⋃
and

⋂
of polynomial equalities

I Thus our algorithm computes all polynomial relations that always
hold among program variables at each program location, in all
possible executions of the program

I We can represent this (usually infinite) set of relations using a
finite basis of polynomial equalities

13 / 17



Main result

Theorem
There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.

I strongest polynomial invariant ⇐⇒ smallest algebraic set
I algebraic sets = finite

⋃
and

⋂
of polynomial equalities

I Thus our algorithm computes all polynomial relations that always
hold among program variables at each program location, in all
possible executions of the program

I We can represent this (usually infinite) set of relations using a
finite basis of polynomial equalities

13 / 17



Main result

Theorem
There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.

I strongest polynomial invariant ⇐⇒ smallest algebraic set
I algebraic sets = finite

⋃
and

⋂
of polynomial equalities

I Thus our algorithm computes all polynomial relations that always
hold among program variables at each program location, in all
possible executions of the program

I We can represent this (usually infinite) set of relations using a
finite basis of polynomial equalities

13 / 17



At the edge of decidability

x :=x0

x := M1x
x := M2x

. . .

x := Mkx

S

Theorem (Markov 1947∗)

There is a fixed set of 6× 6 integer matrices M1, . . . ,Mk such that the
reachability problem “y is reachable from x0?” is undecidable.

Theorem (Paterson 1970∗)

The mortality problem “ 0 is reachable from x0 with M1, . . . ,Mk?” is
undecidable for 3× 3 matrices.

∗Original theorems about semigroups, reformulated with affine programs.

14 / 17



At the edge of decidability

x :=x0

x := M1x
x := M2x

. . .

x := Mkx

S

Theorem (Markov 1947∗)

There is a fixed set of 6× 6 integer matrices M1, . . . ,Mk such that the
reachability problem “y is reachable from x0?” is undecidable.

Theorem (Paterson 1970∗)

The mortality problem “ 0 is reachable from x0 with M1, . . . ,Mk?” is
undecidable for 3× 3 matrices.

∗Original theorems about semigroups, reformulated with affine programs.
14 / 17



At the edge of decidability

x :=x0

x := M1x
x := M2x

. . .

x := Mkx

S

Theorem (Markov 1947∗)

There is a fixed set of 6× 6 integer matrices M1, . . . ,Mk such that the
reachability problem “y is reachable from x0?” is undecidable.

Theorem (Paterson 1970∗)

The mortality problem “ 0 is reachable from x0 with M1, . . . ,Mk?” is
undecidable for 3× 3 matrices.

∗Original theorems about semigroups, reformulated with affine programs.
14 / 17



Tools

I Algebraic geometry
I Number theory
I Group theory

Theorem (Derksen, Jeandel and Koiran, 2004)

There is an algorithm which computes, for any given affine program
over Q using only invertible transformations, its strongest polynomial
inductive invariant.

15 / 17



Tools

I Algebraic geometry
I Number theory
I Group theory

Theorem (Derksen, Jeandel and Koiran, 2004)

There is an algorithm which computes, for any given affine program
over Q using only invertible transformations, its strongest polynomial
inductive invariant.

15 / 17



Main contribution

Theorem
Given a finite set of rational square matrices of the same dimension,
we can compute the Zariski closure of the semigroup that they
generate.

Corollary

Given an affine program, we can compute for each location the ideal of
all polynomial relations that hold at that location.

16 / 17



Summary

I invariant = overapproximation of reachable states
I invariants allow verification of safety properties
I affine program:

I nondeterministic branching, no guards, affine assignments

1 2

3

x := 3x − 7y + 1
f2

f3

y :=
∗f5

Theorem
There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.

17 / 17


