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Does this program halt?

Affine program

x = 9—10 Certificate of non-termination:
- 2 3_ 1023
y =1 XY = X° = qo73741824 (1)

while y > x do

» (1) is an invariant: it holds at every
step

» (1) implies the guard is true
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Invariants

invariant = overapproximation of the reachable states
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Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition
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Inductive invariants: example

X,y,z range over Q fi: R® - RS

ls

l1,b,l3 is an inductive invariant
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Why Invariants?

BAD!

The classical approach to the verification of temporal safety
properties of programs requires the construction of inductive
invariants [...]. Automation of this construction is the main
challenge in program verification.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko
Invariant Synthesis for Combined Theories, 2007
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Affine programs

» Nondeterministic branching (no guards)
» All assignments are affine
» Allow nondeterministic assignments (x := )

X =3x—-7y+1

fa

» Can overapproximate complex programs

» Covers existing formalisms:
probabilistic, quantum, quantitative automata
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Karr's Algorithm

Affine Relationships Among Variables of a Program*
Michael Karr

Received May 8, 1974

Summary. Several optimizations of programs can be performed when in certain
regions of a program equality relationships hold between a linear combination of the
variables of the program and a constant. This paper presents a practical approach to
detecting these relationships by considering the problem from the viewpoint of linear
algebra. Key to the practicality of this approach is an algorithm for the calculation of
the ““sum”’ of linear subspaces.

Theorem (Karr 76)

There is an algorithm which computes, for any given affine program
over Q, its strongest affine inductive invariant.
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Randomized Karr’'s Algorithm @ POPL 2003

Discovering Affine Equalities Using Random Interpretation

Sumit Gulwani George C. Necula
University of California, Berkeley
{gulwani,necula}@Qcs.berkeley.edu

ABSTRACT Keywords
‘We present a new polynomial-time randomized algorithm for Affine Relationships, Linear Equalities, Random Interpreta-
discovering affine equalities involving variables in a program. tion, Randomized Algorithm
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Some polynomial invariants

A Note on Karr’s Algorithm

Markus Miiller-Olm'* and Helmut Seidl®

Abstract. We give a simple formulation of Karr’s algorithm for computing all
affine relationships in affine programs. This simplified algorithm runs in time
O(nk*) where n is the program size and k is the number of program variables
assuming unit cost for arithmetic operations. This improves upon the original
formulation by a factor of k. Moreover, our re-formulation avoids exponential
growth of the lengths of intermediately occurring numbers (in binary representa-
tion) and uses less complicated elementary operations. We also describe a gener-
alization that determines all polynomial relations up to degree d in time ) (-nkM) .

Theorem (ICALP 2004)

There is an algorithm which computes, for any given affine program
over Q, all its polynomial inductive invariants up to any fixed degree d.
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A challenge: finding all polynomial invariants

Available online at www.sciencedirect.com
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It is a challenging open probiem whether or not the
set of all valid polynomial relations can be computed
not just the ones of some given form. It is not
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Main result

There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.

» strongest polynomial invariant <= smallest algebraic set
> algebraic sets = finite | J and () of polynomial equalities

» Thus our algorithm computes all polynomial relations that always
hold among program variables at each program location, in all
possible executions of the program

» We can represent this (usually infinite) set of relations using a
finite basis of polynomial equalities
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At the edge of decidability

X = M;x

x = Mox S

X = Myx Lo —

Theorem (Markov 1947%)

There is a fixed set of 6 x 6 integer matrices My, ..., My such that the
reachability problem “y is reachable from xy ?” is undecidable.

Theorem (Paterson 1970%)

The mortality problem “0 is reachable from xo with My, ..., My ?” is
undecidable for 3 x 3 matrices.

*QOriginal theorems about semigroups, reformulated with affine programs.
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Tools

> Algebraic geometry
» Number theory
» Group theory

Quantum automata and algebraic groups

Harm Derksen®, Emmanuel Jeandel®, Pascal Koiran®*

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States
bLaboratoire de | "Informatique du Parallélisme, Ecole Normale Supérieure de Lyon, 69364, France

Received 15 September 2003; accepted 1 November 2004

Theorem (Derksen, Jeandel and Koiran, 2004)

There is an algorithm which computes, for any given affine program
over Q using only invertible transformations, its strongest polynomial
inductive invariant.

15/17



Main contribution

Theorem

Given a finite set of rational square matrices of the same dimension,
we can compute the Zariski closure of the semigroup that they
generate.

Corollary

Given an affine program, we can compute for each location the ideal of
all polynomial relations that hold at that location.
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» invariant = overapproximation of reachable states

» invariants allow verification of safety properties
» affine program:
> nondeterministic branching, no guards, affine assignments

There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.
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