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Piecewise Affine System (1)
General Model

• vector space: H = Kd

• partition of the space: H = ∪m
i=1Hi

Hi = convex polyhedron = {x |Mix 6 vi}
Mi ∈ Qd×d , vi ∈ Qd

• piecewise affine function f : H → H
f (x) = Aix + bi for x ∈ Hi Ai ∈ Qd×d ,bi ∈ Qd

• trajectory: x , f (x), f [2](x), . . . , f [i](x), . . .

⇒ Discrete time dynamical system

Three cases:
• K = N: integer case
• K = [0,1]: continuous bounded case
• K = R: continuous unbounded case
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Piecewise Affine System (1)
General Model

• vector space: H = Kd

• partition of the space: H = ∪m
i=1Hi

Hi = convex polyhedron = {x |Mix 6 vi}
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• piecewise affine function f : H → H
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Piecewise Affine System (2)

f continuous

f (x) =

{
2x if x ∈ [0, 1
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Example

Function

f (x) =

{
2x if x ∈ [0, 1

2 ]

2− 2x if x ∈ [1
2 ,1]
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1

Trajectory

0 1
2 1
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Existings Results
Problem: REACH-REGION

• Input: f : [0,1]d → [0,1]d continuous, piecewise affine

• Input: R0,R: convex regions of [0,1]d

• Question: ∃x ∈ R0,∃t ∈ N, f [t](x) ∈ R ?

Example

R0

R

x

f (x)

f [2](x)

f [3](x)

Theorem (Koiran, Cosnard, Gar-
zon)
REACH-REGION is undecidable
for d > 2

Proof (Idea)
Simulate a Turing Machine and
reduce from halting problem.

Open Problem
Decidability for d = 1, even for
two intervals.
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Existings Results
Problem: CONTROL-REGION

• Input: f : [0,1]d → [0,1]d continuous, piecewise affine
• Input: R0,R: convex regions of [0,1]d

• Question: ∀x ∈ R0, ∃t ∈ N, f [t](x) ∈ R ?

Example

R0

R

x

f (x)

f [2](x)

f [3](x)

Theorem (Blondel, Bournez,
Koiran, Tsitsiklis)
CONTROL-REGION is undecid-
able for d > 2

Proof (Idea)
Harder simulation of a Turing Ma-
chine

Open Problem
Decidability for d = 1, even for
two intervals.
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Our Results

Problem: REACH-REGION-TIME

• Input: f : [0,1]d → [0,1]d continuous, piecewise affine

• Input: R0,R: convex regions of [0,1]d , T ∈ N in unary
• Question: ∃x ∈ R0,∃t 6 T , f [t](x) ∈ R ?

Theorem
REACH-REGION-TIME is NP-complete for d > 2

Open Problem
Complexity for d = 1.
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Our Results

Problem: CONTROL-REGION-TIME

• Input: f : [0,1]d → [0,1]d continuous, piecewise affine
• Input: R0,R: convex regions of [0,1]d , T ∈ N in unary
• Question: ∀x ∈ R0, ∃t 6 T , f [t](x) ∈ R ?

Theorem
CONTROL-REGION-TIME is coNP-complete for d > 2

Open Problem
Complexity for d = 1.
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REACH-REGION-TIME is in NP

Proof.
Given f , R0, R = Rn and T :

• Guess reach time t 6 T ← Nondeterministic poly (NP)
• Guess sequence of regions r1, . . . , rt−1 ← NP
• Guess starting point x ∈ Qd of polynomial size ← NP
• Check that f [i](x) ∈ Rri for all i ∈ {0, . . . , t}:

f [i](x) ∈ Rri ⇔ Mri (Cix + di) 6 vi ← Polynomial size
• Accept if all systems are satisfied

Works because:
Every satisfiable rational linear system Ax 6 b has a rational
solution of polynomial size.
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Works because:
Every satisfiable rational linear system Ax 6 b has a rational
solution of polynomial size.
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REACH-REGION-TIME is NP-hard

Reduce from:

Problem SUBSET-SUM

• Input: a goal B ∈ N and integers A1, . . . ,An ∈ N
• Question: ∃I ⊆ {1, . . . ,n},

∑
i∈I Ai = B ?

• Carefully chosen: simplest we could find, already “affine”
• Still reduction is very tricky
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REACH-REGION-TIME is NP-hard (proof idea)
Problem SUBSET-SUM

• Input: a goal B ∈ N and integers A1, . . . ,An ∈ N
• Question: ∃I ⊆ {1, . . . ,n},

∑
i∈I Ai = B ?

Each point (x , y) encodes a triple (σ, i , I):
• σ: current sum, i : current index
• I: subset of {1, . . . ,n}

One step of f on (encoded) (σ, i , I) does:
• σ 7→ σ + Ai if i ∈ I, otherwise unchanged
• i 7→ i + 1 and I 7→ I \ {i}

Initial points:
• σ = 0 and i = 1
• I: any possible subset of {1, . . . ,n}

Example with A1 = 42,A2 = 13 and A3 = 7:
(0,1, {1,3}) 7→ (42,2, {3}) 7→ (42,3, {3}) 7→ (49,4,∅)
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• Question: ∃I ⊆ {1, . . . ,n},
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Each point (x , y) encodes a triple (σ, i , I):

x = i2−k + σ2−` y =
∑
i∈I

2−i

Tricky reduction:
• Initial points: (0,1, I) where I ⊆ {1, . . . ,n}
• Encoded initial points: (2−k ,q2−n) where

q ∈ {0, . . . ,2n − 1}
Not a convex region !

• Relaxed inital region: {2−k} × [0,1]
Contains “strange” points
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Ok, the actual proof is slightly more complicated...

0 1

1

0

R0

Rn+1

R1

R2
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...horribly more complicated

i2−p i2−p + 2−p−1

β−i+1

0
i2−p + (B + 1− Ai)2−q

Ri,0 : (a + 2−p,0)

Ri,0? : (a + 2−p,b − 0?β−i)

Ri,2 : (a + 2−p,3β−i − b)

R lin
i,3 : (a + 2−p + Ai2−q(bβ i − 3),0)

Rsat
i,3 : (?)

R lin
i,1? :(a+2−p+Ai 2−q ,b−1?β−i ) Rsat

i,1? :
((i+1)2−p+(B+1)2−q ,

b−1?β−i )

β−i

2β−i

3β−i

4β−i

(?):((i+1)2−p+2−p−1−(bβ i−3)(2−p−1−(B+1)2−q),0)
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Conclusion

Reachability in piecewise affine systems:

• Undecidable for d > 2
• NP-complete for d > 2 (bounded time variant)
• Open problem for d = 1
• Tricky reduction for the worst case
• Tells us nothing about practical instances
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Ordinary Differential Equation
Initial Value Problem

y(t0) = y0 y ′(t) = f (y(t)) ∀t ∈ I

where y : I → Rn and f : Rn → Rd

Some problems:
• Compute y(t)± 2−n for any t ∈ I and n ∈ N
⇒ Hard even for C∞ polytime computable f

• Does y(t) intersect a region R for some t ∈ I ? Is I
(maximum interval of life) bounded ? Compute I ?

• Find attractors. Characterize them. Compute basin of
attraction. ⇒ Usually undecidable even when restricted to
computable and C∞ or analytic f , even in fixed and low (2
or 3) dimension

Is there a more restricted and tractable class of ODEs ?
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Polynomial Initial Value Problem

Polynomial Initial Value Problem

y(t0) = y0 y ′(t) = p(y(t)) ∀t ∈ I

where y : I → Rn and p vector of polynomials

Example

y(0) = 1 y ′(t) = y(t) ; y(t) = exp(t)

{
s(0)= 0
c(0)= 1

{
s′(t)= c(t)
c′(t)= −s(t)

;
{

s(t)= sin(t)
c(t)= cos(t)

y(0) = 1 y ′(t) = −2ty(t)2 ; y(t) =
1

1 + t2
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Some problems

• Decide if I (maximum interval of life) is bounded: still
undecidable

• Compute y(t)± 2−n: P-complete*

Motivation:
• Simplest nontrivial class: between linear (easy) and

analytic (hard)
• Captures the General Purpose Analog Computer (GPAC):

realistic model of computation
• Contains many interesting systems (most of Newton

physics)



Piecewise Affine Systems Polynomial Initial Value Problem Linear hybrid automata

Some problems

• Decide if I (maximum interval of life) is bounded: still
undecidable

• Compute y(t)± 2−n: P-complete*

Motivation:
• Simplest nontrivial class: between linear (easy) and

analytic (hard)
• Captures the General Purpose Analog Computer (GPAC):

realistic model of computation
• Contains many interesting systems (most of Newton

physics)



Piecewise Affine Systems Polynomial Initial Value Problem Linear hybrid automata

Some problems

• Decide if I (maximum interval of life) is bounded: still
undecidable

• Compute y(t)± 2−n: P-complete*

Motivation:
• Simplest nontrivial class: between linear (easy) and

analytic (hard)

• Captures the General Purpose Analog Computer (GPAC):
realistic model of computation

• Contains many interesting systems (most of Newton
physics)



Piecewise Affine Systems Polynomial Initial Value Problem Linear hybrid automata

Some problems

• Decide if I (maximum interval of life) is bounded: still
undecidable

• Compute y(t)± 2−n: P-complete*

Motivation:
• Simplest nontrivial class: between linear (easy) and

analytic (hard)
• Captures the General Purpose Analog Computer (GPAC):

realistic model of computation
• Contains many interesting systems (most of Newton

physics)



Piecewise Affine Systems Polynomial Initial Value Problem Linear hybrid automata

Quick recap on GPAC

• by Claude Shanon (1941)

• idealization of an analog computer: Differential Analyzer
• circuit built from:

k k

A constant unit

+ u + v

An adder unit

u
v

× uv

An multiplier unit

u
v

∫ ∫
u dv

An integrator unit

u
v

Theorem
y is generated by a GPAC iff it is a component of a PIVP



Piecewise Affine Systems Polynomial Initial Value Problem Linear hybrid automata

Quick recap on GPAC

• by Claude Shanon (1941)
• idealization of an analog computer: Differential Analyzer

• circuit built from:

k k

A constant unit

+ u + v

An adder unit

u
v

× uv

An multiplier unit

u
v

∫ ∫
u dv

An integrator unit

u
v

Theorem
y is generated by a GPAC iff it is a component of a PIVP



Piecewise Affine Systems Polynomial Initial Value Problem Linear hybrid automata

Quick recap on GPAC

• by Claude Shanon (1941)
• idealization of an analog computer: Differential Analyzer
• circuit built from:

k k

A constant unit

+ u + v

An adder unit

u
v

× uv

An multiplier unit

u
v

∫ ∫
u dv

An integrator unit

u
v

Theorem
y is generated by a GPAC iff it is a component of a PIVP



Piecewise Affine Systems Polynomial Initial Value Problem Linear hybrid automata

Quick recap on GPAC

• by Claude Shanon (1941)
• idealization of an analog computer: Differential Analyzer
• circuit built from:

k k

A constant unit

+ u + v

An adder unit

u
v

× uv

An multiplier unit

u
v

∫ ∫
u dv

An integrator unit

u
v

Theorem
y is generated by a GPAC iff it is a component of a PIVP



Piecewise Affine Systems Polynomial Initial Value Problem Linear hybrid automata

It exists !



Piecewise Affine Systems Polynomial Initial Value Problem Linear hybrid automata

GPAC: examples

Example (One variable, linear system)

∫
et

{
y ′ = y

y(0)= 1t



Piecewise Affine Systems Polynomial Initial Value Problem Linear hybrid automata

GPAC: examples

Example (One variable, linear system)

∫
et

{
y ′ = y

y(0)= 1t

Example (One variable, nonlinear system)

×

×−2
× ∫ 1

1+t2

{
y ′ = −2ty2

y(0)= 1

t



Piecewise Affine Systems Polynomial Initial Value Problem Linear hybrid automata

GPAC: examples

Example (One variable, linear system)

∫
et

{
y ′ = y

y(0)= 1t

Example (Two variable, nonlinear system)

×
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y(0)= 1
t ′ = 1
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Solving PIVP over unbounded domain

Assume that y : I → Rd satisfies:

y(t0) = y0 y ′(t) = p(y(t)) ∀t ∈ I

Theorem (Previously known)
If I is compact then y is polynomial time computable over I:
computing y(t)± 2−n takes time poly(n) (n unary)

Issues with this:
• Doesn’t work for unbounded I
• How does the complexity depend on y0,d ,p, I ?
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Solving PIVP over unbounded domain (cont.)
Theorem (Our work)

Computing y(t)± 2−n takes time:

poly(deg p, log ‖y0‖ , log Σp,n, `(t0, t))d

where:

• Σp: sum of absolute value of coefficients of p
• `(t0, t): “length” of y over [t0, t ]

`(t0, t) =

∫ t

t0
max(1,

∥∥y ′(u)
∥∥)du

Notes:
• also works if p has PTIME computable coefficients (like π)
• the algorithm can find `(t0, t) automagically
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Interesting (practical ?) consequences

Compute y(t)± ε

Method Max. Order Number of steps
Fixed ω ω − 1 O

(
L
ω+1
ω−1 ε−

1
ω−1

)

Euler (ω = 2) 1 O
(

L3

ε

)
Taylor2 (ω = 3) 2 O

(
L2
√
ε

)
Taylor4 (ω = 5) 4 O

(
L3/2

4√ε

)
Smart

(
ω = 1 + log L

ε

)
log L

ε O
(
L∼1)

Taylor∞ (ω =∞) ∞ O (L)

Variable O
(

log
L
ε

)
O (L)

where L ≈
∫ t

0
max(1,

∥∥y ′(u)
∥∥)du
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y(0) = q(ψ(w)) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2−i

satisfies:

=
∫ t

0 ‖y
′‖

`(t)= length of y
over [0, t ]

1

−1

q(ψ(w))
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Characterization of Turing polynomial time

Definition: L ⊆ {0,1}∗ is polytime-recognizable iff for all w :

y(0) = q(ψ(w)) y ′ = p(y) ψ(w) =
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i=1

wi2−i

satisfies:

=
∫ t
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Theorem
L ∈ P if and only if L is polytime-recognizable.
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PIVP hardness

Corollary
The following problem is P-complete:
Input: y0 ∈ Qd , Υ ∈ N in unary, p polynomial

Assumption: ∃y : [0,1] → Rd s.t. y(0) = y0, y ′ = p(y) and
‖y(t)‖ 6 Υ
Assumption: y(1) > 1 or y(1) 6 −1
Decide: y(1) > 1 ?
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Conclusion

• Polynomial ODEs: good compromise between power and
tractability

• Point to region reachability with condition: P-complete

Future work:
• Extend PIVP solving to more general ODEs
• More general reachability
• Study practical complexity of PIVP solving
• Other measures of complexity
• More efficient algorithm for systems with more properties ?
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• Study practical complexity of PIVP solving
• Other measures of complexity
• More efficient algorithm for systems with more properties ?
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Linear Hybrid Automata

x ′ = A1x x ′ = A2x x ′ = A3x

• Finite number of control states
• Each state has a linear continuous dynamic: x ′ = Ax
• Nondeterministic transitions between states (no guards)
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Small math recap

The solution to a linear system of differential equations

x(0) = x0, x ′(t) = Ax(t)

is given by:
x(t) = x0eAt

where the exponential of matrices is given by

exp(M) =
∞∑

n=0

Mn

n!
.
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Problems

Reachability:
• Point to point (Orbit problem)
• Point to region (Hitting problem)
• Escape problem

Transformation:
• What kind of transformations can be achieved ?
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Matrix-Exponential Problems

Given algebraic matrices A1, . . . ,Ak ,C.

x ′ = A1x x ′ = A2x . . . x ′ = Akx

Definition (Matrix-Exponential Problem)
Decide if there exists t1, . . . , tk > 0 such that:

k∏
i=1

eAi ti = C.
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Matrix-Exponential Problems

Given algebraic matrices A1, . . . ,Ak ,C.
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Matrix-Exponential Semigroup Prolem

Given algebraic matrices A1, . . . ,Ak ,C.

x ′ = A1x x ′ = A2x . . . x ′ = Akx

NOTE: equivalent to a complete graph

Definition (Matrix-Exponential Semigroup Problem)

Decide if C belongs to the semigroup generated by:{
exp(Ai t) : t > 0, i = 1, . . . , k

}
.
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Results:

Theorem (Commutative case)
If the matrices A1, . . . ,Ak commute, Matrix-Exponential and
Matrix-Exponential Semigroup problems are equivalent and de-
cidable.

Theorem (General case)
In general, Matrix-Exponential and Matrix-Exponential Semi-
group problems are undecidable.
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Questions ?

• Do you have any questions ?
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