Polynomial Initial Value Problem

Linear hybrid automata

On the complexity of some reachability problems

Amaury Pouly Joint work with H. Bazille, O. Bournez, W. Gomaa, D. Graça, J. Ouakine, J. Worrel, J. Sousa-Pinto

10 february 2016

Polynomial Initial Value Problem

Linear hybrid automata

Piecewise Affine Systems

Polynomial Initial Value Problem

Piecewise Affine Systems

Linear hybrid automata

Piecewise Affine System (1)

General Model

• vector space: $\mathcal{H} = \mathbb{K}^d$

Linear hybrid automata

Piecewise Affine System (1)

- vector space: $\mathcal{H} = \mathbb{K}^d$
- partition of the space: $\mathcal{H} = \bigcup_{i=1}^{m} \mathcal{H}_i$ $\mathcal{H}_i = \text{convex polyhedron} = \{x \mid M_i x \leq v_i\}$ $M_i \in \mathbb{Q}^{d \times d}, v_i \in \mathbb{Q}^d$

Linear hybrid automata

Piecewise Affine System (1)

- vector space: $\mathcal{H} = \mathbb{K}^d$
- partition of the space: $\mathcal{H} = \bigcup_{i=1}^{m} \mathcal{H}_i$ $\mathcal{H}_i = \text{convex polyhedron} = \{x \mid M_i x \leq v_i\}$ $M_i \in \mathbb{Q}^{d \times d}, v_i \in \mathbb{Q}^d$
- piecewise affine function $f : \mathcal{H} \to \mathcal{H}$

Linear hybrid automata

Piecewise Affine System (1)

- vector space: $\mathcal{H} = \mathbb{K}^d$
- partition of the space: $\mathcal{H} = \bigcup_{i=1}^{m} \mathcal{H}_i$ $\mathcal{H}_i = \text{convex polyhedron} = \{x \mid M_i x \leq v_i\}$ $M_i \in \mathbb{Q}^{d \times d}, v_i \in \mathbb{Q}^d$
- piecewise affine function $f : \mathcal{H} \to \mathcal{H}$ $f(x) = A_i x + b_i$ for $x \in \mathcal{H}_i$

$$A_i \in \mathbb{Q}^{d imes d}, b_i \in \mathbb{Q}^d$$

Linear hybrid automata

Piecewise Affine System (1)

- vector space: $\mathcal{H} = \mathbb{K}^d$
- partition of the space: $\mathcal{H} = \bigcup_{i=1}^{m} \mathcal{H}_i$ $\mathcal{H}_i = \text{convex polyhedron} = \{x \mid M_i x \leq v_i\}$ $M_i \in \mathbb{Q}^{d \times d}, v_i \in \mathbb{Q}^d$
- piecewise affine function $f : \mathcal{H} \to \mathcal{H}$ $f(x) = A_i x + b_i$ for $x \in \mathcal{H}_i$ $A_i \in \mathbb{Q}^{d \times d}, b_i \in \mathbb{Q}^d$
- trajectory: *x*, *f*(*x*), *f*^[2](*x*), ..., *f*^[*i*](*x*), ...

Linear hybrid automata

Piecewise Affine System (1)

General Model

- vector space: $\mathcal{H} = \mathbb{K}^d$
- partition of the space: $\mathcal{H} = \bigcup_{i=1}^{m} \mathcal{H}_i$ $\mathcal{H}_i = \text{convex polyhedron} = \{x \mid M_i x \leq v_i\}$ $M_i \in \mathbb{Q}^{d \times d}, v_i \in \mathbb{Q}^d$
- piecewise affine function $f : \mathcal{H} \to \mathcal{H}$ $f(x) = A_i x + b_i$ for $x \in \mathcal{H}_i$

$$A_i \in \mathbb{Q}^{d imes d}, b_i \in \mathbb{Q}^d$$

• trajectory: $x, f(x), f^{[2]}(x), ..., f^{[i]}(x), ...$

⇒ Discrete time dynamical system

Linear hybrid automata

Piecewise Affine System (1)

General Model

- vector space: $\mathcal{H} = \mathbb{K}^d$
- partition of the space: $\mathcal{H} = \bigcup_{i=1}^{m} \mathcal{H}_i$ $\mathcal{H}_i = \text{convex polyhedron} = \{x \mid M_i x \leq v_i\}$ $M_i \in \mathbb{Q}^{d \times d}, v_i \in \mathbb{Q}^d$
- piecewise affine function $f : \mathcal{H} \to \mathcal{H}$ $f(x) = A_i x + b_i$ for $x \in \mathcal{H}_i$

$$A_i \in \mathbb{Q}^{d imes d}, b_i \in \mathbb{Q}^d$$

• trajectory: $x, f(x), f^{[2]}(x), \dots, f^{[i]}(x), \dots$

⇒ Discrete time dynamical system

- $\mathbb{K} = \mathbb{N}$: integer case
- $\mathbb{K} = [0, 1]$: continuous bounded case
- $\mathbb{K} = \mathbb{R}$: continuous unbounded case

Linear hybrid automata

Piecewise Affine System (1)

General Model

- vector space: $\mathcal{H} = \mathbb{K}^d$
- partition of the space: $\mathcal{H} = \bigcup_{i=1}^{m} \mathcal{H}_i$ $\mathcal{H}_i = \text{convex polyhedron} = \{x \mid M_i x \leq v_i\}$ $M_i \in \mathbb{Q}^{d \times d}, v_i \in \mathbb{Q}^d$
- piecewise affine function $f : \mathcal{H} \to \mathcal{H}$ $f(x) = A_i x + b_i$ for $x \in \mathcal{H}_i$

$$A_i \in \mathbb{Q}^{d imes d}, b_i \in \mathbb{Q}^d$$

• trajectory: $x, f(x), f^{[2]}(x), \dots, f^{[i]}(x), \dots$

⇒ Discrete time dynamical system

- $\mathbb{K} = \mathbb{N}$: integer case \rightarrow Very different from [0, 1] and \mathbb{R}
- $\mathbb{K} = [0, 1]$: continuous bounded case
- $\mathbb{K} = \mathbb{R}$: continuous unbounded case

Linear hybrid automata

Piecewise Affine System (1)

General Model

- vector space: $\mathcal{H} = \mathbb{K}^d$
- partition of the space: $\mathcal{H} = \bigcup_{i=1}^{m} \mathcal{H}_i$ $\mathcal{H}_i = \text{convex polyhedron} = \{x \mid M_i x \leq v_i\}$ $M_i \in \mathbb{Q}^{d \times d}, v_i \in \mathbb{Q}^d$
- piecewise affine function $f : \mathcal{H} \to \mathcal{H}$ $f(x) = A_i x + b_i$ for $x \in \mathcal{H}_i$

$$A_i \in \mathbb{Q}^{d imes d}, b_i \in \mathbb{Q}^d$$

• trajectory: $x, f(x), f^{[2]}(x), \dots, f^{[i]}(x), \dots$

⇒ Discrete time dynamical system

- $\mathbb{K} = \mathbb{N}$: integer case \rightarrow Very different from [0, 1] and \mathbb{R}
- + $\mathbb{K} = [0,1]$: continuous bounded case \rightarrow Our case
- $\mathbb{K} = \mathbb{R}$: continuous unbounded case

Piecewise Affine System (1)

General Model

- vector space: $\mathcal{H} = \mathbb{K}^d$
- partition of the space: $\mathcal{H} = \bigcup_{i=1}^{m} \mathcal{H}_i$ $\mathcal{H}_i = \text{convex polyhedron} = \{x \mid M_i x \leq v_i\}$ $M_i \in \mathbb{Q}^{d \times d}, v_i \in \mathbb{Q}^d$
- piecewise affine function $f : \mathcal{H} \to \mathcal{H}$ $f(x) = A_i x + b_i$ for $x \in \mathcal{H}_i$ $A_i \in$

$$\mathbf{A}_i \in \mathbb{Q}^{d imes d}, b_i \in \mathbb{Q}^{d}$$

• trajectory: $x, f(x), f^{[2]}(x), \ldots, f^{[i]}(x), \ldots$

⇒ Discrete time dynamical system

- $\mathbb{K} = \mathbb{N}$: integer case \rightarrow Very different from [0, 1] and \mathbb{R}
- $\mathbb{K} = [0,1]$: continuous bounded case \rightarrow Our case
- $\mathbb{K} = \mathbb{R}$: continuous unbounded case \rightarrow Similarish to [0, 1] ?

Polynomial Initial Value Problem

Linear hybrid automata

Piecewise Affine System (2)

Polynomial Initial Value Problem

Linear hybrid automata

Piecewise Affine System (2)

f discontinuous

$$f(x) = \begin{cases} 2x & \text{if } x \in [0, \frac{1}{2}[\\ 2x - 1 & \text{if } x \in [\frac{1}{2}, 1] \end{cases}$$

Polynomial Initial Value Problem

Linear hybrid automata

Piecewise Affine System (2)

f discontinuous

$$f(x) = \begin{cases} 2x & \text{if } x \in [0, \frac{1}{2}[\\ 2x - 1 & \text{if } x \in [\frac{1}{2}, 1] \end{cases}$$

 \rightarrow Our case

Polynomial Initial Value Problem

Linear hybrid automata

Piecewise Affine System (2)

 \rightarrow Our case

f discontinuous

$$f(x) = \begin{cases} 2x & \text{if } x \in [0, \frac{1}{2}[\\ 2x - 1 & \text{if } x \in [\frac{1}{2}, 1] \end{cases}$$

→ Quite different

Polynomial Initial Value Problem

Linear hybrid automata

Example

Polynomial Initial Value Problem

Example

Trajectory		
0	1 2	 1
	-	

Polynomial Initial Value Problem

Example

Polynomial Initial Value Problem

Example

Polynomial Initial Value Problem

Example

Polynomial Initial Value Problem

Example

Linear hybrid automata

Trajectory $f^{[3]}(x)$ | 0 $f^{[2]}(x) = \frac{1}{2} x$ f(x) 1 x = 0.5625f(x) = 0.875 $f^{[2]}(x) = 0.25$ $f^{[3]}(x) = 0.5$

Polynomial Initial Value Problem

Linear hybrid automata

Example

Polynomial Initial Value Problem

Linear hybrid automata

Example

Function

$$f(x) = egin{cases} 2x & ext{if } x \in [0, rac{1}{2}] \ 2 - 2x & ext{if } x \in [rac{1}{2}, 1] \end{cases}$$

Polynomial Initial Value Problem

Linear hybrid automata

Example

Tr

n

Function

$$f(x) = egin{cases} 2x & ext{if } x \in [0, rac{1}{2}] \ 2 - 2x & ext{if } x \in [rac{1}{2}, 1] \end{cases}$$

ajectory			
f ^[5] (x)	f ^[3] (x))	$f^{[4]}(x)$
$f^{[2]}(x)$	$\frac{1}{2}$ X		<i>f</i> (<i>x</i>) 1
x	= 0.56	625	
f(x)	= 0.87	75	
$f^{[2]}(x)$	= 0.25	5	
$f^{[3]}(x)$	= 0.5		
$f^{[4]}(x)$	= 1		
$f^{[n]}(x)$	= 0	n≥	5

Polynomial Initial Value Problem

Linear hybrid automata

Function

$$f(x) = \begin{cases} 2x & \text{if } x \in [0, \frac{1}{2}] \\ 2 - 2x & \text{if } x \in [\frac{1}{2}, 1] \end{cases}$$

Remark

0

0

Trajectory depends on the binary expansion of x

0.2 0.4 0.6 0.8

Polynomial Initial Value Problem

Linear hybrid automata

Existings Results

Problem: REACH-REGION

• Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine

Linear hybrid automata

Existings Results

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R₀, R: convex regions of [0, 1]^d

Linear hybrid automata

Existings Results

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R₀, R: convex regions of [0, 1]^d
- Question: $\exists x \in R_0, \exists t \in \mathbb{N}, f^{[t]}(x) \in R$?

Linear hybrid automata

Existings Results

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R₀, R: convex regions of [0, 1]^d
- Question: $\exists x \in R_0, \exists t \in \mathbb{N}, f^{[t]}(x) \in R$?

Linear hybrid automata

Existings Results

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R₀, R: convex regions of [0, 1]^d
- Question: $\exists x \in R_0, \exists t \in \mathbb{N}, f^{[t]}(x) \in R$?

Linear hybrid automata

Existings Results

Problem: REACH-REGION

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R₀, R: convex regions of [0, 1]^d
- Question: $\exists x \in R_0, \exists t \in \mathbb{N}, f^{[t]}(x) \in R$?

Theorem (Koiran, Cosnard, Garzon)

REACH-REGION is undecidable for $d \ge 2$

Proof (Idea)

Simulate a Turing Machine and reduce from halting problem.

Linear hybrid automata

Existings Results

Problem: REACH-REGION

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R₀, R: convex regions of [0, 1]^d
- Question: $\exists x \in R_0, \exists t \in \mathbb{N}, f^{[t]}(x) \in R$?

Theorem (Koiran, Cosnard, Garzon)

REACH-REGION is undecidable for $d \ge 2$

Proof (Idea)

Simulate a Turing Machine and reduce from halting problem.

Open Problem

Decidability for d = 1, even for two intervals.

Linear hybrid automata

Existings Results

Problem: CONTROL-REGION

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R₀, R: convex regions of [0, 1]^d
- Question: $\forall x \in \mathbb{R}_0, \exists t \in \mathbb{N}, f^{[t]}(x) \in \mathbb{R}$?

Theorem (Blondel, Bournez, Koiran, Tsitsiklis)				
CONTROL-REGION is undecidable for $d \ge 2$				
Proof (Idea)				
Harder simulation of a Turing Ma- chine				
Open Problem				
Decidability for $d = 1$, even for two intervals.				

Polynomial Initial Value Problem

Our Results

Linear hybrid automata

Problem: REACH-REGION-TIME

• Input: $f: [0,1]^d \rightarrow [0,1]^d$ continuous, piecewise affine

Polynomial Initial Value Problem

Linear hybrid automata

Our Results

Problem: REACH-REGION-TIME

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R_0, R : convex regions of $[0, 1]^d$, $T \in \mathbb{N}$ in unary
Polynomial Initial Value Problem

Linear hybrid automata

Our Results

Problem: REACH-REGION-TIME

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R_0, R : convex regions of $[0, 1]^d$, $T \in \mathbb{N}$ in unary
- Question: $\exists x \in R_0, \exists t \leq T, f^{[t]}(x) \in R$?

Polynomial Initial Value Problem

Linear hybrid automata

Our Results

Problem: REACH-REGION-TIME

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R_0, R : convex regions of $[0, 1]^d$, $T \in \mathbb{N}$ in unary
- Question: $\exists x \in R_0, \exists t \leq T, f^{[t]}(x) \in R$?

Theorem

REACH-REGION-TIME is NP-complete for $d \ge 2$

Polynomial Initial Value Problem

Linear hybrid automata

Our Results

Problem: REACH-REGION-TIME

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R_0, R : convex regions of $[0, 1]^d$, $T \in \mathbb{N}$ in unary
- Question: $\exists x \in R_0, \exists t \leq T, f^{[t]}(x) \in R$?

Theorem

REACH-REGION-TIME is NP-complete for $d \ge 2$

Open Problem

Complexity for d = 1.

Polynomial Initial Value Problem

Linear hybrid automata

Our Results

Problem: CONTROL-REGION-TIME

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R_0, R : convex regions of $[0, 1]^d$, $T \in \mathbb{N}$ in unary
- Question: $\forall x \in R_0, \exists t \leq T, f^{[t]}(x) \in R$?

Theorem

CONTROL-REGION-TIME is coNP-complete for $d \ge 2$

Open Problem

Complexity for d = 1.

Polynomial Initial Value Problem

Linear hybrid automata

REACH-REGION-TIME is in NP

Proof. Given f, R_0 , $R = R_n$ and T:

Proof.

Given f, R_0 , $R = R_n$ and T:

• Guess reach time $t \leq T$

 \leftarrow Nondeterministic poly (NP)

Proof.

- Guess reach time $t \leq T \leftarrow \text{Nondeterministic poly (NP)}$
- Guess sequence of regions $r_1, \ldots, r_{t-1} \leftarrow NP$

Proof.

- Guess reach time $t \leq T \leftarrow \text{Nondeterministic poly (NP)}$
- Guess sequence of regions $r_1, \ldots, r_{t-1} \leftarrow NP$
- Guess starting point $x \in \mathbb{Q}^d$ of polynomial size $\leftarrow \mathsf{NP}$

Proof.

- Guess reach time $t \leq T \leftarrow \text{Nondeterministic poly (NP)}$
- Guess sequence of regions $r_1, \ldots, r_{t-1} \leftarrow NP$
- Guess starting point $x \in \mathbb{Q}^d$ of polynomial size $\leftarrow \mathsf{NP}$
- Check that $f^{[i]}(x) \in R_{r_i}$ for all $i \in \{0, \ldots, t\}$:

Proof.

- Guess reach time $t \leq T \leftarrow \text{Nondeterministic poly (NP)}$
- Guess sequence of regions $r_1, \ldots, r_{t-1} \leftarrow NP$
- Guess starting point $x \in \mathbb{Q}^d$ of polynomial size $\leftarrow \mathsf{NP}$
- Check that $f^{[i]}(x) \in R_{r_i}$ for all $i \in \{0, ..., t\}$: $f^{[i]}(x) \in R_{r_i} \Leftrightarrow M_{r_i}(C_i x + d_i) \leq v_i \leftarrow \text{Polynomial size}$

Proof.

- Guess reach time $t \leq T \leftarrow \text{Nondeterministic poly (NP)}$
- Guess sequence of regions $r_1, \ldots, r_{t-1} \leftarrow NP$
- Guess starting point $x \in \mathbb{Q}^d$ of polynomial size $\leftarrow \mathsf{NP}$
- Check that $f^{[i]}(x) \in R_{r_i}$ for all $i \in \{0, ..., t\}$: $f^{[i]}(x) \in R_{r_i} \Leftrightarrow M_{r_i}(C_i x + d_i) \leq v_i \leftarrow \text{Polynomial size}$
- Accept if all systems are satisfied

Proof.

Given f, R_0 , $R = R_n$ and T:

- Guess reach time $t \leq T \leftarrow \text{Nondeterministic poly (NP)}$
- Guess sequence of regions $r_1, \ldots, r_{t-1} \leftarrow \mathsf{NP}$
- Guess starting point $x \in \mathbb{Q}^d$ of polynomial size $\leftarrow \mathsf{NP}$
- Check that $f^{[i]}(x) \in R_{r_i}$ for all $i \in \{0, ..., t\}$: $f^{[i]}(x) \in R_{r_i} \Leftrightarrow M_{r_i}(C_i x + d_i) \leq v_i \leftarrow \text{Polynomial size}$
- Accept if all systems are satisfied

Works because:

Every satisfiable rational linear system $Ax \leq b$ has a rational solution of polynomial size.

Linear hybrid automata

REACH-REGION-TIME is NP-hard

Reduce from:

Problem SUBSET-SUM

- Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$
- Question: $\exists I \subseteq \{1, \ldots, n\}, \sum_{i \in I} A_i = B$?

Linear hybrid automata

REACH-REGION-TIME is NP-hard

Reduce from:

Problem SUBSET-SUM

- Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$
- Question: $\exists I \subseteq \{1, \ldots, n\}, \sum_{i \in I} A_i = B$?
- · Carefully chosen: simplest we could find, already "affine"

Linear hybrid automata

REACH-REGION-TIME is NP-hard

Reduce from:

Problem SUBSET-SUM

- Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$
- Question: $\exists I \subseteq \{1, \ldots, n\}, \sum_{i \in I} A_i = B$?
- · Carefully chosen: simplest we could find, already "affine"
- Still reduction is very tricky

- Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$
- Question: $\exists I \subseteq \{1, \ldots, n\}, \sum_{i \in I} A_i = B$?

- Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$
 - Question: $\exists I \subseteq \{1, \ldots, n\}, \sum_{i \in I} A_i = B$?

Each point (x, y) encodes a triple (σ, i, I) :

- σ : current sum, *i*: current index
- *I*: subset of {1,...,*n*}

- Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$
- Question: $\exists I \subseteq \{1, \ldots, n\}, \sum_{i \in I} A_i = B$?

Each point (x, y) encodes a triple (σ, i, I) :

- σ : current sum, *i*: current index
- *I*: subset of {1,...,*n*}

One step of *f* on (encoded) (σ , *i*, *l*) does:

- $\sigma \mapsto \sigma + A_i$ if $i \in I$, otherwise unchanged
- $i \mapsto i + 1$ and $I \mapsto I \setminus \{i\}$

- Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$
- Question: $\exists I \subseteq \{1, \ldots, n\}, \sum_{i \in I} A_i = B$?

Each point (x, y) encodes a triple (σ, i, I) :

- *σ*: current sum, *i*: current index
- *I*: subset of {1,...,*n*}

One step of *f* on (encoded) (σ , *i*, *l*) does:

- $\sigma \mapsto \sigma + A_i$ if $i \in I$, otherwise unchanged
- $i \mapsto i + 1$ and $I \mapsto I \setminus \{i\}$

Initial points:

- σ = 0 and i = 1
- *I*: any possible subset of $\{1, \ldots, n\}$

- Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$
- Question: $\exists I \subseteq \{1, \ldots, n\}, \sum_{i \in I} A_i = B$?

Each point (x, y) encodes a triple (σ, i, I) :

- *σ*: current sum, *i*: current index
- *I*: subset of {1,...,*n*}

One step of f on (encoded) (σ , i, I) does:

- $\sigma \mapsto \sigma + A_i$ if $i \in I$, otherwise unchanged
- $i \mapsto i + 1$ and $I \mapsto I \setminus \{i\}$

Initial points:

- *σ* = 0 and *i* = 1
- *I*: any possible subset of $\{1, \ldots, n\}$

Example with $A_1 = 42, A_2 = 13$ and $A_3 = 7$: (0, 1, {1,3}) \mapsto

- Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$
- Question: $\exists I \subseteq \{1, \ldots, n\}, \sum_{i \in I} A_i = B$?

Each point (x, y) encodes a triple (σ, i, I) :

- σ : current sum, *i*: current index
- *I*: subset of {1,...,*n*}

One step of f on (encoded) (σ , i, I) does:

- $\sigma \mapsto \sigma + A_i$ if $i \in I$, otherwise unchanged
- $i \mapsto i + 1$ and $I \mapsto I \setminus \{i\}$

Initial points:

- *σ* = 0 and *i* = 1
- *I*: any possible subset of $\{1, \ldots, n\}$

Example with $A_1 = 42, A_2 = 13$ and $A_3 = 7$: (0, 1, {1,3}) \mapsto (42, 2, {3}) \mapsto

- Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$
 - Question: $\exists I \subseteq \{1, \ldots, n\}, \sum_{i \in I} A_i = B$?

Each point (x, y) encodes a triple (σ, i, I) :

- σ : current sum, *i*: current index
- *I*: subset of {1,...,*n*}

One step of f on (encoded) (σ , i, I) does:

- $\sigma \mapsto \sigma + A_i$ if $i \in I$, otherwise unchanged
- $i \mapsto i + 1$ and $I \mapsto I \setminus \{i\}$

Initial points:

- *σ* = 0 and *i* = 1
- *I*: any possible subset of $\{1, \ldots, n\}$

Example with $A_1 = 42, A_2 = 13$ and $A_3 = 7$: (0, 1, {1,3}) \mapsto (42, 2, {3}) \mapsto (42, 3, {3}) \mapsto

- Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$
- Question: $\exists I \subseteq \{1, \ldots, n\}, \sum_{i \in I} A_i = B$?

Each point (x, y) encodes a triple (σ, i, I) :

- σ : current sum, *i*: current index
- *I*: subset of {1,...,*n*}

One step of f on (encoded) (σ , i, I) does:

- $\sigma \mapsto \sigma + A_i$ if $i \in I$, otherwise unchanged
- $i \mapsto i + 1$ and $I \mapsto I \setminus \{i\}$

Initial points:

- *σ* = 0 and *i* = 1
- *I*: any possible subset of $\{1, \ldots, n\}$

Example with $A_1 = 42, A_2 = 13$ and $A_3 = 7$: (0, 1, {1,3}) \mapsto (42, 2, {3}) \mapsto (42, 3, {3}) \mapsto (49, 4, \emptyset)

Problem SUBSET-SUM

- Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$
- Question: $\exists I \subseteq \{1, \ldots, n\}, \sum_{i \in I} A_i = B$?

Each point (x, y) encodes a triple (σ, i, I) :

$$x = i2^{-k} + \sigma 2^{-\ell}$$
 $y = \sum_{i \in I} 2^{-i}$

Problem SUBSET-SUM

- Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$
- Question: $\exists I \subseteq \{1, \ldots, n\}, \sum_{i \in I} A_i = B$?

Each point (x, y) encodes a triple (σ, i, I) :

$$x = i2^{-k} + \sigma 2^{-\ell}$$
 $y = \sum_{i \in I} 2^{-i}$

Tricky reduction:

• Initial points: (0, 1, I) where $I \subseteq \{1, \ldots, n\}$

Problem SUBSET-SUM

- Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$
- Question: $\exists I \subseteq \{1, \ldots, n\}, \sum_{i \in I} A_i = B$?

Each point (x, y) encodes a triple (σ, i, I) :

$$x = i2^{-k} + \sigma 2^{-\ell}$$
 $y = \sum_{i \in I} 2^{-i}$

Tricky reduction:

- Initial points: (0, 1, I) where $I \subseteq \{1, \ldots, n\}$
- Encoded initial points: $(2^{-k}, q2^{-n})$ where $q \in \{0, ..., 2^n 1\}$ Not a convex region !

Problem SUBSET-SUM

- Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$
- Question: $\exists I \subseteq \{1, \ldots, n\}, \sum_{i \in I} A_i = B$?

Each point (x, y) encodes a triple (σ, i, I) :

$$x = i2^{-k} + \sigma 2^{-\ell}$$
 $y = \sum_{i \in I} 2^{-i}$

Tricky reduction:

- Initial points: (0, 1, I) where $I \subseteq \{1, \ldots, n\}$
- Encoded initial points: $(2^{-k}, q2^{-n})$ where $q \in \{0, ..., 2^n 1\}$ Not a convex region !
- Relaxed initial region: {2^{-k}} × [0, 1]
 Contains "strange" points

Polynomial Initial Value Problem

Linear hybrid automata

Ok, the actual proof is slightly more complicated...

Polynomial Initial Value Problem

Linear hybrid automata

...horribly more complicated

Polynomial Initial Value Problem

Conclusion

Linear hybrid automata

Polynomial Initial Value Problem

Conclusion

Linear hybrid automata

Reachability in piecewise affine systems:

• Undecidable for $d \ge 2$

Polynomial Initial Value Problem

Conclusion

Linear hybrid automata

- Undecidable for $d \ge 2$
- NP-complete for $d \ge 2$ (bounded time variant)

Polynomial Initial Value Problem

Conclusion

Linear hybrid automata

- Undecidable for $d \ge 2$
- NP-complete for $d \ge 2$ (bounded time variant)
- Open problem for d = 1

Polynomial Initial Value Problem

Conclusion

Linear hybrid automata

- Undecidable for $d \ge 2$
- NP-complete for $d \ge 2$ (bounded time variant)
- Open problem for d = 1
- Tricky reduction for the worst case

Polynomial Initial Value Problem

Conclusion

Linear hybrid automata

- Undecidable for $d \ge 2$
- NP-complete for $d \ge 2$ (bounded time variant)
- Open problem for d = 1
- Tricky reduction for the worst case
- Tells us nothing about practical instances

Polynomial Initial Value Problem

Linear hybrid automata

Ordinary Differential Equation

Initial Value Problem

$$y(t_0) = y_0$$
 $y'(t) = f(y(t))$ $\forall t \in I$

where $y : I \to \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}^d$
Linear hybrid automata

Ordinary Differential Equation

Initial Value Problem

$$y(t_0) = y_0$$
 $y'(t) = f(y(t))$ $\forall t \in I$

where $y: I \to \mathbb{R}^n$ and $f: \mathbb{R}^n \to \mathbb{R}^d$

Some problems:

• Compute $y(t) \pm 2^{-n}$ for any $t \in I$ and $n \in \mathbb{N}$

Linear hybrid automata

Ordinary Differential Equation

Initial Value Problem

$$y(t_0) = y_0$$
 $y'(t) = f(y(t))$ $\forall t \in I$

where $y: I \to \mathbb{R}^n$ and $f: \mathbb{R}^n \to \mathbb{R}^d$

Some problems:

Compute y(t) ± 2⁻ⁿ for any t ∈ I and n ∈ N
 ⇒ Hard even for C[∞] polytime computable f

Linear hybrid automata

Ordinary Differential Equation

Initial Value Problem

$$y(t_0) = y_0$$
 $y'(t) = f(y(t))$ $\forall t \in I$

where $y: I \to \mathbb{R}^n$ and $f: \mathbb{R}^n \to \mathbb{R}^d$

Some problems:

- Compute y(t) ± 2⁻ⁿ for any t ∈ I and n ∈ N
 ⇒ Hard even for C[∞] polytime computable f
- Does y(t) intersect a region R for some t ∈ I ? Is I (maximum interval of life) bounded ? Compute I ?

Linear hybrid automata

Ordinary Differential Equation

Initial Value Problem

$$y(t_0) = y_0$$
 $y'(t) = f(y(t))$ $\forall t \in I$

where $y: I \to \mathbb{R}^n$ and $f: \mathbb{R}^n \to \mathbb{R}^d$

Some problems:

- Compute y(t) ± 2⁻ⁿ for any t ∈ I and n ∈ N
 ⇒ Hard even for C[∞] polytime computable f
- Does y(t) intersect a region R for some t ∈ I ? Is I (maximum interval of life) bounded ? Compute I ?
- Find attractors. Characterize them. Compute basin of attraction.

Linear hybrid automata

Ordinary Differential Equation

Initial Value Problem

$$y(t_0) = y_0$$
 $y'(t) = f(y(t))$ $\forall t \in I$

where $y: I \to \mathbb{R}^n$ and $f: \mathbb{R}^n \to \mathbb{R}^d$

Some problems:

- Compute y(t) ± 2⁻ⁿ for any t ∈ I and n ∈ N
 ⇒ Hard even for C[∞] polytime computable f
- Does y(t) intersect a region R for some t ∈ I ? Is I (maximum interval of life) bounded ? Compute I ?
- Find attractors. Characterize them. Compute basin of attraction. ⇒ Usually undecidable even when restricted to computable and C[∞] or analytic *f*, even in fixed and low (2 or 3) dimension

Linear hybrid automata

Ordinary Differential Equation

Initial Value Problem

$$y(t_0) = y_0$$
 $y'(t) = f(y(t))$ $\forall t \in I$

where $y: I \to \mathbb{R}^n$ and $f: \mathbb{R}^n \to \mathbb{R}^d$

Some problems:

- Compute y(t) ± 2⁻ⁿ for any t ∈ l and n ∈ N
 ⇒ Hard even for C[∞] polytime computable f
- Does y(t) intersect a region R for some t ∈ I ? Is I (maximum interval of life) bounded ? Compute I ?
- Find attractors. Characterize them. Compute basin of attraction. ⇒ Usually undecidable even when restricted to computable and C[∞] or analytic *f*, even in fixed and low (2 or 3) dimension

Is there a more restricted and tractable class of ODEs ?

Linear hybrid automata

Polynomial Initial Value Problem

Polynomial Initial Value Problem

$$y(t_0) = y_0$$
 $y'(t) = p(y(t))$ $\forall t \in I$

where $y : I \to \mathbb{R}^n$ and p vector of polynomials

Linear hybrid automata

Polynomial Initial Value Problem

Polynomial Initial Value Problem

$$y(t_0) = y_0$$
 $y'(t) = p(y(t))$ $\forall t \in I$

where $y : I \to \mathbb{R}^n$ and p vector of polynomials

Example

$$y(0) = 1$$
 $y'(t) = y(t)$ \rightsquigarrow $y(t) = \exp(t)$

Linear hybrid automata

Polynomial Initial Value Problem

Polynomial Initial Value Problem

$$y(t_0) = y_0$$
 $y'(t) = p(y(t))$ $\forall t \in I$

where $y : I \to \mathbb{R}^n$ and p vector of polynomials

Example

$$y(0) = 1$$
 $y'(t) = y(t)$ \rightsquigarrow $y(t) = \exp(t)$

$$\begin{cases} s(0)=0 \\ c(0)=1 \end{cases} \quad \begin{cases} s'(t)=c(t) \\ c'(t)=-s(t) \end{cases} \sim \quad \begin{cases} s(t)=\sin(t) \\ c(t)=\cos(t) \end{cases}$$

Linear hybrid automata

 $1 + t^2$

Polynomial Initial Value Problem

Polynomial Initial Value Problem

$$y(t_0) = y_0$$
 $y'(t) = p(y(t))$ $\forall t \in I$

where $y : I \to \mathbb{R}^n$ and p vector of polynomials

Example

$$y(0) = 1$$
 $y'(t) = y(t)$ \rightsquigarrow $y(t) = \exp(t)$

Polynomial Initial Value Problem

Linear hybrid automata

Some problems

• Decide if *I* (maximum interval of life) is bounded: still undecidable

Polynomial Initial Value Problem

Linear hybrid automata

Some problems

- Decide if *I* (maximum interval of life) is bounded: still undecidable
- Compute $y(t) \pm 2^{-n}$: P-complete^{*}

Polynomial Initial Value Problem

Linear hybrid automata

Some problems

- Decide if *I* (maximum interval of life) is bounded: still undecidable
- Compute $y(t) \pm 2^{-n}$: P-complete^{*}

Motivation:

 Simplest nontrivial class: between linear (easy) and analytic (hard)

Polynomial Initial Value Problem

Linear hybrid automata

Some problems

- Decide if *I* (maximum interval of life) is bounded: still undecidable
- Compute $y(t) \pm 2^{-n}$: P-complete^{*}

Motivation:

- Simplest nontrivial class: between linear (easy) and analytic (hard)
- Captures the General Purpose Analog Computer (GPAC): realistic model of computation
- Contains many interesting systems (most of Newton physics)

Polynomial Initial Value Problem

Linear hybrid automata

Quick recap on GPAC

• by Claude Shanon (1941)

Polynomial Initial Value Problem

Linear hybrid automata

Quick recap on GPAC

- by Claude Shanon (1941)
- · idealization of an analog computer: Differential Analyzer

Polynomial Initial Value Problem

Linear hybrid automata

Quick recap on GPAC

- by Claude Shanon (1941)
- · idealization of an analog computer: Differential Analyzer
- circuit built from:

 $\begin{matrix} k \\ - k \end{matrix}$ A constant unit

An adder unit

Polynomial Initial Value Problem

Linear hybrid automata

Quick recap on GPAC

- by Claude Shanon (1941)
- idealization of an analog computer: Differential Analyzer
- circuit built from:

k - kA constant unit

An adder unit

 $\begin{array}{c}
 u \\
 v \\
 \hline
\end{array} \int \int u \, dv$ An integrator unit

Theorem

y is generated by a GPAC iff it is a component of a PIVP

Polynomial Initial Value Problem

It exists !

Linear hybrid automata

Polynomial Initial Value Problem

Linear hybrid automata

GPAC: examples

Example (One variable, linear system)

$$t \xrightarrow{f} e^t \begin{cases} y' = y \\ y(0) = 1 \end{cases}$$

Polynomial Initial Value Problem

Linear hybrid automata

GPAC: examples

Example (One variable, linear system)

$$t \longrightarrow e^{t} \quad \begin{cases} y' = y \\ y(0) = 1 \end{cases}$$

Example (One variable, nonlinear system)

Polynomial Initial Value Problem

Linear hybrid automata

GPAC: examples

Example (One variable, linear system)

$$t \longrightarrow e^{t} \quad \begin{cases} y' = y \\ y(0) = 1 \end{cases}$$

Example (Two variable, nonlinear system)

Linear hybrid automata

Solving PIVP over unbounded domain

Assume that $y : I \to \mathbb{R}^d$ satisfies:

$$y(t_0) = y_0$$
 $y'(t) = p(y(t))$ $\forall t \in I$

Assume that $y : I \to \mathbb{R}^d$ satisfies:

$$y(t_0) = y_0$$
 $y'(t) = p(y(t))$ $\forall t \in I$

Theorem (Previously known)

If *I* is compact then *y* is polynomial time computable over *I*:

Assume that $y : I \to \mathbb{R}^d$ satisfies:

$$y(t_0) = y_0$$
 $y'(t) = p(y(t))$ $\forall t \in I$

Theorem (Previously known)

If *I* is compact then *y* is polynomial time computable over *I*: computing $y(t) \pm 2^{-n}$ takes time poly(*n*) (*n* unary)

Assume that $y : I \to \mathbb{R}^d$ satisfies:

$$y(t_0) = y_0$$
 $y'(t) = p(y(t))$ $\forall t \in I$

Theorem (Previously known)

If *I* is compact then *y* is polynomial time computable over *I*: computing $y(t) \pm 2^{-n}$ takes time poly(*n*) (*n* unary)

Issues with this:

Doesn't work for unbounded /

Assume that $y : I \to \mathbb{R}^d$ satisfies:

$$y(t_0) = y_0$$
 $y'(t) = p(y(t))$ $\forall t \in I$

Theorem (Previously known)

If *I* is compact then *y* is polynomial time computable over *I*: computing $y(t) \pm 2^{-n}$ takes time poly(*n*) (*n* unary)

Issues with this:

- Doesn't work for unbounded I
- How does the complexity depend on y₀, d, p, I?

Theorem (Our work)

Computing $y(t) \pm 2^{-n}$ takes time:

 $\mathsf{poly}(\deg p, \log \|y_0\|, \log \Sigma p, n, \ell(t_0, t))^d$

where:

Theorem (Our work)

Computing $y(t) \pm 2^{-n}$ takes time:

```
\mathsf{poly}(\deg p, \log \|y_0\|, \log \Sigma p, n, \ell(t_0, t))^d
```

where:

Σp: sum of absolute value of coefficients of p

Theorem (Our work)

Computing $y(t) \pm 2^{-n}$ takes time:

```
\mathsf{poly}(\deg p, \log \|y_0\|, \log \Sigma p, n, \ell(t_0, t))^d
```

where:

- Σp: sum of absolute value of coefficients of p
- ℓ(t₀, t): "length" of *y* over [t₀, t]

Theorem (Our work)

Computing $y(t) \pm 2^{-n}$ takes time:

$$\mathsf{poly}(\deg p, \log \|y_0\|, \log \Sigma p, n, \ell(t_0, t))^d$$

where:

- Σp: sum of absolute value of coefficients of p
- $\ell(t_0, t)$: "length" of *y* over [t_0, t]

$$\ell(t_0, t) = \int_{t_0}^t \max(1, ||y'(u)||) du$$

Theorem (Our work)

Computing $y(t) \pm 2^{-n}$ takes time:

$$\mathsf{poly}(\deg p, \log \|y_0\|, \log \Sigma p, n, \ell(t_0, t))^d$$

where:

- Σp: sum of absolute value of coefficients of p
- ℓ(t₀, t): "length" of y over [t₀, t]

$$\ell(t_0, t) = \int_{t_0}^t \max(1, \|y'(u)\|) du$$

Notes:

• also works if p has PTIME computable coefficients (like π)

Theorem (Our work)

Computing $y(t) \pm 2^{-n}$ takes time:

$$\mathsf{poly}(\deg p, \log \|y_0\|, \log \Sigma p, n, \ell(t_0, t))^d$$

where:

- Σp: sum of absolute value of coefficients of p
- ℓ(t₀, t): "length" of y over [t₀, t]

$$\ell(t_0, t) = \int_{t_0}^t \max(1, ||y'(u)||) du$$

Notes:

- also works if p has PTIME computable coefficients (like π)
- the algorithm can find $\ell(t_0, t)$ automagically

Polynomial Initial Value Problem

Linear hybrid automata

Proof details

• Standard numerical analysis technique: Taylor series

Linear hybrid automata

Proof details

- Standard numerical analysis technique: Taylor series
- Throw in adaptive steps, variable order

Linear hybrid automata

Proof details

- Standard numerical analysis technique: Taylor series
- Throw in adaptive steps, variable order
- Mix with incremental refinement, stop criterion and tricky analysis
Polynomial Initial Value Problem

Linear hybrid automata

Proof details

- Standard numerical analysis technique: Taylor series
- Throw in adaptive steps, variable order
- Mix with incremental refinement, stop criterion and tricky analysis

Linear hybrid automata

Interesting (practical ?) consequences

Method	Max. Order	Number of steps
Fixed ω	$\omega-1$	$\mathcal{O}\left(L^{\frac{\omega+1}{\omega-1}}\varepsilon^{-\frac{1}{\omega-1}} ight)$

where
$$L \approx \int_0^t \max(1, \|y'(u)\|) du$$

Interesting (practical ?) consequences

Method	Max. Order	Number of steps
Fixed ω	$\omega - 1$	$\mathcal{O}\left(L^{\frac{\omega+1}{\omega-1}}\varepsilon^{-\frac{1}{\omega-1}}\right)$
Euler ($\omega=$ 2)	1	$\mathcal{O}\left(\frac{L^3}{\varepsilon}\right)$

where
$$L \approx \int_0^t \max(1, \|y'(u)\|) du$$

Linear hybrid automata

Interesting (practical ?) consequences

Method	Max. Order	Number of steps
Fixed ω	$\omega - 1$	$\mathcal{O}\left(L^{\frac{\omega+1}{\omega-1}}\varepsilon^{-\frac{1}{\omega-1}}\right)$
Euler ($\omega=$ 2)	1	$\mathcal{O}\left(\frac{L^3}{\varepsilon}\right)$
Taylor2 ($\omega=$ 3)	2	$\mathcal{O}\left(\frac{L^2}{\sqrt{\varepsilon}}\right)$

where
$$L \approx \int_0^t \max(1, \|y'(u)\|) du$$

Linear hybrid automata

Interesting (practical ?) consequences

Method	Max. Order	Number of steps
Fixed ω	$\omega-1$	$\mathcal{O}\left(L^{\frac{\omega+1}{\omega-1}}\varepsilon^{-\frac{1}{\omega-1}}\right)$
Euler ($\omega=$ 2)	1	$\mathcal{O}\left(\frac{L^3}{\varepsilon}\right)$
Taylor2 ($\omega=$ 3)	2	$\mathcal{O}\left(\frac{L^2}{\sqrt{\varepsilon}}\right)$
Taylor4 ($\omega=$ 5)	4	$\mathcal{O}\left(\frac{L^{3/2}}{4\sqrt{\varepsilon}}\right)$

where
$$L \approx \int_0^t \max(1, \|y'(u)\|) du$$

Linear hybrid automata

Interesting (practical ?) consequences

Method	Max. Order	Number of steps
Fixed ω	$\omega-1$	$\mathcal{O}\left(L^{\frac{\omega+1}{\omega-1}}\varepsilon^{-\frac{1}{\omega-1}}\right)$
Euler ($\omega=$ 2)	1	$\mathcal{O}\left(\frac{L^3}{\varepsilon}\right)$
Taylor2 ($\omega=$ 3)	2	$\mathcal{O}\left(\frac{L^2}{\sqrt{\varepsilon}}\right)$
Taylor4 ($\omega=$ 5)	4	$\mathcal{O}\left(\frac{L^{3/2}}{4\sqrt{\varepsilon}}\right)$
Smart $\left(\omega = 1 + \log rac{L}{arepsilon} ight)$	log $\frac{L}{\varepsilon}$	$\mathcal{O}(L^{\sim 1})$

where
$$L \approx \int_0^t \max(1, \|y'(u)\|) du$$

Interesting (practical ?) consequences

Method	Max. Order	Number of steps
Fixed ω	$\omega-1$	$\mathcal{O}\left(L^{\frac{\omega+1}{\omega-1}}\varepsilon^{-\frac{1}{\omega-1}} ight)$
Euler ($\omega=$ 2)	1	$\mathcal{O}\left(\frac{L^3}{\varepsilon}\right)$
Taylor2 ($\omega=$ 3)	2	$\mathcal{O}\left(\frac{L^2}{\sqrt{\varepsilon}}\right)$
Taylor4 ($\omega=$ 5)	4	$\mathcal{O}\left(\frac{L^{3/2}}{4\sqrt{\varepsilon}}\right)$
Smart $\left(\omega = 1 + \log rac{L}{arepsilon} ight)$	log $\frac{L}{\varepsilon}$	$\mathcal{O}\left(L^{\sim 1}\right)$
Taylor ∞ ($\omega=\infty$)	∞	$\mathcal{O}\left(L ight)$

where
$$L \approx \int_0^t \max(1, \|y'(u)\|) du$$

Interesting (practical ?) consequences

Method	Max. Order	Number of steps
Fixed ω	$\omega-1$	$\mathcal{O}\left(L^{\frac{\omega+1}{\omega-1}}\varepsilon^{-\frac{1}{\omega-1}}\right)$
Euler ($\omega=$ 2)	1	$\mathcal{O}\left(\frac{L^3}{\varepsilon}\right)$
Taylor2 ($\omega=$ 3)	2	$\mathcal{O}\left(\frac{L^2}{\sqrt{\varepsilon}}\right)$
Taylor4 ($\omega=$ 5)	4	$\mathcal{O}\left(\frac{L^{3/2}}{4\sqrt{\varepsilon}}\right)$
Smart $(\omega = 1 + \log \frac{L}{\varepsilon})$	log $\frac{L}{\varepsilon}$	$\mathcal{O}(L^{\sim 1})$
Taylor ∞ ($\omega=\infty$)	∞	$\mathcal{O}\left(L ight)$
Variable	$\mathcal{O}\left(\log \frac{L}{\varepsilon}\right)$	$\mathcal{O}\left(L ight)$
where $L \approx$	$\int_0^t \max(1, \ y\)$	′(u))du

Linear hybrid automata

Characterization of Turing polynomial time

Definition: $\mathcal{L} \subseteq \{0, 1\}^*$ is polytime-recognizable iff for all *w*:

Definition: $\mathcal{L} \subseteq \{0, 1\}^*$ is polytime-recognizable iff for all *w*:

$$y(0) = q(\psi(w))$$
 $y' = p(y)$ $\psi(w) = \sum_{i=1}^{|w|} w_i 2^{-i}$

satisfies:

Definition: $\mathcal{L} \subseteq \{0, 1\}^*$ is polytime-recognizable iff for all *w*:

$$y(0) = q(\psi(w))$$
 $y' = p(y)$ $\psi(w) = \sum_{i=1}^{m} w_i 2^{-i}$

Definition: $\mathcal{L} \subseteq \{0, 1\}^*$ is polytime-recognizable iff for all *w*:

$$y(0) = q(\psi(w))$$
 $y' = p(y)$ $\psi(w) = \sum_{i=1}^{|w|} w_i 2^{-i}$

1. if $y_1(t) \ge 1$ then $w \in \mathcal{L}$

111/

Characterization of Turing polynomial time

Definition: $\mathcal{L} \subseteq \{0, 1\}^*$ is polytime-recognizable iff for all *w*:

$$y(0) = q(\psi(w))$$
 $y' = p(y)$ $\psi(w) = \sum_{i=1}^{m} w_i 2^{-i}$

2. if $y_1(t) \leqslant -1$ then $w \notin \mathcal{L}$

111/

Characterization of Turing polynomial time

Definition: $\mathcal{L} \subseteq \{0, 1\}^*$ is polytime-recognizable iff for all *w*:

$$y(0) = q(\psi(w))$$
 $y' = p(y)$ $\psi(w) = \sum_{i=1}^{|w|} w_i 2^{-i}$

3. if $\ell(t) \ge \operatorname{poly}(|w|)$ then $|y_1(t)| \ge 1$

Definition: $\mathcal{L} \subseteq \{0, 1\}^*$ is polytime-recognizable iff for all *w*:

$$y(0) = q(\psi(w))$$
 $y' = p(y)$ $\psi(w) = \sum_{i=1}^{|w|} w_i 2^{-i}$

4. $\ell(t) \ge t$

111/

Characterization of Turing polynomial time

Definition: $\mathcal{L} \subseteq \{0, 1\}^*$ is polytime-recognizable iff for all *w*:

$$y(0) = q(\psi(w))$$
 $y' = p(y)$ $\psi(w) = \sum_{i=1}^{m} w_i 2^{-i}$

Polynomial Initial Value Problem

Linear hybrid automata

PIVP hardness

Corollary

The following problem is *P*-complete: **Input:** $y_0 \in \mathbb{Q}^d$, $\Upsilon \in \mathbb{N}$ in unary, *p* polynomial

Polynomial Initial Value Problem

Linear hybrid automata

PIVP hardness

Corollary

The following problem is *P*-complete: **Input:** $y_0 \in \mathbb{Q}^d$, $\Upsilon \in \mathbb{N}$ in unary, *p* polynomial **Assumption:** $\exists y : [0, 1] \to \mathbb{R}^d$ s.t. $y(0) = y_0$, y' = p(y) and $\|y(t)\| \leq \Upsilon$

Polynomial Initial Value Problem

Linear hybrid automata

PIVP hardness

Corollary

The following problem is *P*-complete: **Input:** $y_0 \in \mathbb{Q}^d$, $\Upsilon \in \mathbb{N}$ in unary, *p* polynomial **Assumption:** $\exists y : [0,1] \to \mathbb{R}^d$ s.t. $y(0) = y_0$, y' = p(y) and $\|y(t)\| \leq \Upsilon$ **Assumption:** $y(1) \ge 1$ or $y(1) \le -1$

Polynomial Initial Value Problem

Linear hybrid automata

PIVP hardness

Corollary

The following problem is *P*-complete: **Input:** $y_0 \in \mathbb{Q}^d$, $\Upsilon \in \mathbb{N}$ in unary, *p* polynomial **Assumption:** $\exists y : [0,1] \to \mathbb{R}^d$ s.t. $y(0) = y_0$, y' = p(y) and $\|y(t)\| \leq \Upsilon$ **Assumption:** $y(1) \ge 1$ or $y(1) \le -1$ **Decide:** $y(1) \ge 1$?

Linear hybrid automata

Proof gem: iteration with differential equations

Goal

Iterate \tilde{f} with a PIVP: $y(n) \approx \tilde{f}^{[n]}([x])$

Linear hybrid automata

Proof gem: iteration with differential equations

Goal

Iterate \tilde{f} with a PIVP: $y(n) \approx \tilde{f}^{[n]}([x])$

Idea (dimension one): $\tilde{f} : \mathbb{R} \to \mathbb{R}$

Proof gem: iteration with differential equations

Goal

Iterate \tilde{f} with a PIVP: $y(n) \approx \tilde{f}^{[n]}([x])$

Idea (dimension one): $\tilde{f} : \mathbb{R} \to \mathbb{R}$

Proof gem: iteration with differential equations

Goal

Iterate \tilde{f} with a PIVP: $y(n) \approx \tilde{f}^{[n]}([x])$

Idea (dimension one): $\tilde{f} : \mathbb{R} \to \mathbb{R}$

Proof gem: iteration with differential equations

Goal

Iterate \tilde{f} with a PIVP: $y(n) \approx \tilde{f}^{[n]}([x])$

Idea (dimension one): $\tilde{f} : \mathbb{R} \to \mathbb{R}$

Polynomial Initial Value Problem

Conclusion

Linear hybrid automata

- Polynomial ODEs: good compromise between power and tractability
- Point to region reachability with condition: P-complete

Polynomial Initial Value Problem

Conclusion

Linear hybrid automata

- Polynomial ODEs: good compromise between power and tractability
- Point to region reachability with condition: P-complete

Future work:

- Extend PIVP solving to more general ODEs
- More general reachability
- Study practical complexity of PIVP solving
- Other measures of complexity
- More efficient algorithm for systems with more properties ?

Polynomial Initial Value Problem

Linear hybrid automata

Linear Hybrid Automata

- Finite number of control states
- Each state has a linear continuous dynamic: x' = Ax
- Nondeterministic transitions between states (no guards)

Polynomial Initial Value Problem

Linear hybrid automata

Small math recap

The solution to a linear system of differential equations

$$x(0) = x_0, \qquad x'(t) = Ax(t)$$

Polynomial Initial Value Problem

Linear hybrid automata

Small math recap

The solution to a linear system of differential equations

$$x(0) = x_0, \qquad x'(t) = Ax(t)$$

is given by:

$$x(t) = x_0 e^{At}$$

where the exponential of matrices is given by

$$\exp(M) = \sum_{n=0}^{\infty} \frac{M^n}{n!}.$$

Polynomial Initial Value Problem

Linear hybrid automata

Problems

Reachability:

- Point to point (Orbit problem)
- Point to region (Hitting problem)
- Escape problem

Polynomial Initial Value Problem

Linear hybrid automata

Problems

Reachability:

- Point to point (Orbit problem)
- Point to region (Hitting problem)
- Escape problem

Transformation:

• What kind of transformations can be achieved ?

Polynomial Initial Value Problem

Linear hybrid automata

Matrix-Exponential Problems

Given *algebraic* matrices A_1, \ldots, A_k, C .

Linear hybrid automata

Matrix-Exponential Problems

Given *algebraic* matrices A_1, \ldots, A_k, C .

Definition (Matrix-Exponential Problem)

Decide if there exists $t_1, \ldots, t_k \ge 0$ such that:

$$\prod_{i=1}^{k} e^{A_i t_i} = C.$$

Linear hybrid automata

Matrix-Exponential Semigroup Prolem

Given *algebraic* matrices A_1, \ldots, A_k, C .

NOTE: equivalent to a complete graph

Linear hybrid automata

Matrix-Exponential Semigroup Prolem

Given *algebraic* matrices A_1, \ldots, A_k, C .

NOTE: equivalent to a complete graph

Definition (Matrix-Exponential Semigroup Problem)

Decide if *C* belongs to the semigroup generated by:

$$\{\exp(A_it):t\geq 0, i=1,\ldots,k\}.$$
Piecewise Affine Systems

Polynomial Initial Value Problem

Results:

Linear hybrid automata

Theorem (Commutative case)

If the matrices A_1, \ldots, A_k commute, Matrix-Exponential and Matrix-Exponential Semigroup problems are equivalent and decidable.

Piecewise Affine Systems

Polynomial Initial Value Problem

Linear hybrid automata

Theorem (Commutative case)

If the matrices A_1, \ldots, A_k commute, Matrix-Exponential and Matrix-Exponential Semigroup problems are equivalent and decidable.

Theorem (General case)

In general, Matrix-Exponential and Matrix-Exponential Semigroup problems are undecidable. Piecewise Affine Systems

Polynomial Initial Value Problem

Questions?

Linear hybrid automata

• Do you have any questions ?