Continuous models of computation: computability, complexity, universality

Amaury Pouly

Joint work with Olivier Bournez and Daniel Graça

29 january 2018

Characterization of P using differential equations

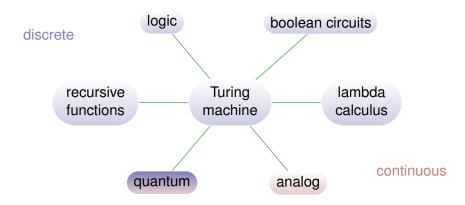
Universal differential equation

Chemical Reaction Networks

Digital vs analog computers

Digital vs analog computers

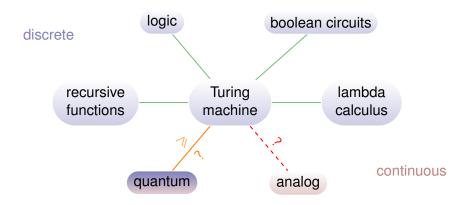
Computability



Church Thesis

All reasonable models of computation are equivalent.

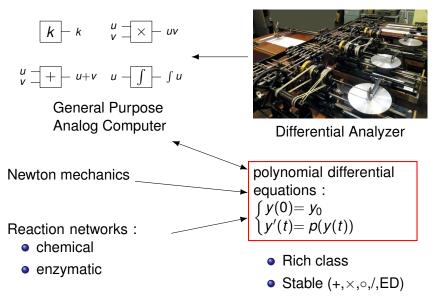
Complexity



Effective Church Thesis

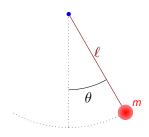
All reasonable models of computation are equivalent for complexity.

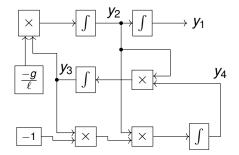
Polynomial Differential Equations



No closed-form solution

Example of dynamical system





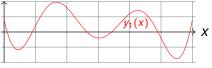
$$\ddot{\theta} + rac{g}{\ell}\sin(\theta) = 0$$

$$\begin{cases} y'_{1} = y_{2} \\ y'_{2} = -\frac{g}{l}y_{3} \\ y'_{3} = y_{2}y_{4} \\ y'_{4} = -y_{2}y_{3} \end{cases} \Leftrightarrow \begin{cases} y_{1} = \theta \\ y_{2} = \dot{\theta} \\ y_{3} = \sin(\theta) \\ y_{4} = \cos(\theta) \end{cases}$$

Generable functions

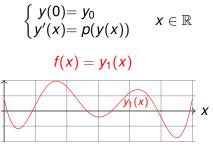
$$egin{cases} y(0)=y_0\ y'(x)=
ho(y(x)) \ & x\in\mathbb{R} \end{cases}$$

$$f(x)=y_1(x)$$



Shannon's notion

Generable functions



Shannon's notion

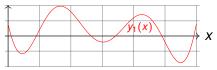
 $\sin,\cos,\exp,\log,\ldots$

Strictly weaker than Turing machines [Shannon, 1941]

Generable functions

$$\left\{egin{array}{ll} y(0)=y_0 \ y'(x)=p(y(x)) \end{array}
ight. x\in \mathbb{R}$$

$$f(x) = y_1(x)$$



Shannon's notion

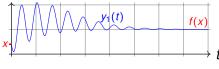
 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \dots$

Strictly weaker than Turing machines [Shannon, 1941]

Computable

$$egin{cases} y(0) = q(x) & x \in \mathbb{R} \ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{cases}$$

$$f(x) = \lim_{t\to\infty} y_1(t)$$

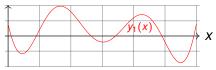


Modern notion

Generable functions

$$\left\{egin{array}{ll} y(0)=y_0 \ y'(x)=p(y(x)) \end{array}
ight. x\in\mathbb{R}$$

$$f(x) = y_1(x)$$



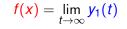
Shannon's notion

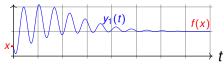
 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \dots$

Strictly weaker than Turing machines [Shannon, 1941]

Computable

$$egin{cases} y(0) = q(x) & x \in \mathbb{R} \ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{cases}$$





Modern notion

 $\sin, \cos, \exp, \log, \Gamma, \zeta, \dots$

Turing powerful [Bournez et al., 2007]

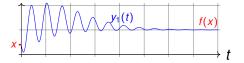
Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x$

$$y(0) = (x, 0, ..., 0)$$
 $y'(t) = p(y(t))$

satisfies $|f(x) - y_1(t)| \leq y_2(t)$ et $y_2(t) \xrightarrow[t \to \infty]{} 0$.



 $y_1(t) \xrightarrow[t \to \infty]{} f(x)$ $y_2(t) = \text{error bound}$

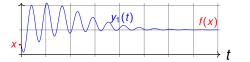
Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x$

$$y(0) = (x, 0, ..., 0)$$
 $y'(t) = p(y(t))$

satisfies $|f(x) - y_1(t)| \leq y_2(t)$ et $y_2(t) \xrightarrow[t \to \infty]{} 0$.



$$y_1(t) \xrightarrow[t \to \infty]{} f(x)$$

 $y_2(t) = \text{error bound}$

Theorem (Bournez et al, 2007)

 $f : [a, b] \rightarrow \mathbb{R}$ computable \Leftrightarrow f computable by GPAC

• Turing machines : T(x) = number of steps to compute on x

• Turing machines : T(x) = number of steps to compute on x

• GPAC : time contraction problem

Tentative definition

 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq e^{-\mu}$

y(0) = (x, 0, ..., 0) y' = p(y)

• Turing machines : T(x) = number of steps to compute on x

• GPAC : time contraction problem

Tentative definition

 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq e^{-\mu}$

$$y(0) = (x, 0, \dots, 0) \qquad y' = p(y)$$

$$z(t) = y(e^{t})$$

• Turing machines : T(x) = number of steps to compute on x

• GPAC : time contraction problem

Tentative definition

 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq e^{-\mu}$

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

$$Z(t) = y(e^{t})$$

$$w(t) = y(e^{e^t})$$



- Turing machines : T(x) = number of steps to compute on x
- GPAC : time contraction problem \rightarrow open problem

Tentative definition

 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq e^{-\mu}$

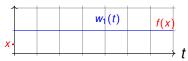
$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

Problem

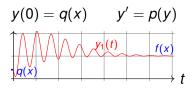
All functions have constant time complexity.

$$z(t) = y(e^{t})$$

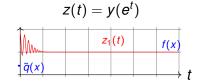
$$w(t) = y(e^{e^t})$$



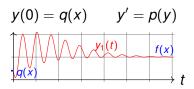
Time-space correlation of the GPAC



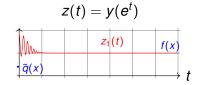
 \sim



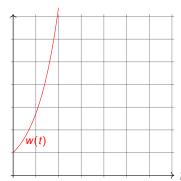
Time-space correlation of the GPAC



 \sim

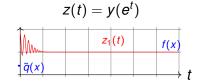


extra component : $w(t) = e^t$



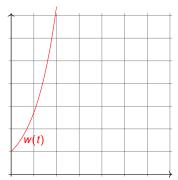
Time-space correlation of the GPAC

$$y(0) = q(x) \qquad y' = p(y)$$



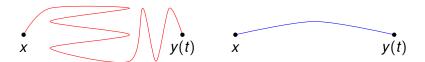
Observation

Time scaling costs "space". → Time complexity for the GPAC must involve time and space ! extra component : $w(t) = e^t$



Complexity of solving polynomial ODEs

$$y(0) = x$$
 $y'(t) = p(y(t))$



Complexity of solving polynomial ODEs

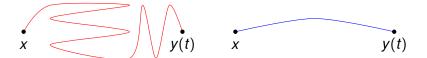
$$y(0) = x$$
 $y'(t) = p(y(t))$

Theorem (TCS 2016)

If y(t) exists, one can compute p, q such that $\left|\frac{p}{q} - y(t)\right| \leq 2^{-n}$ in time

poly(size of
$$x$$
 and $p, n, \ell(t)$)

where
$$\ell(t) = \int_0^t \max(1, ||y(u)||)^{\deg(p)} du \approx \text{length of the curve}$$



length of the curve = complexity = ressource

Definition : $\mathcal{L} \in \mathsf{ANALOG-PTIME} \Leftrightarrow \exists p \text{ polynomial}, \forall \text{ word } w$

$$y(0) = (\psi(w), |w|, 0, ..., 0) \qquad y' = p(y) \qquad \psi(w) = \sum_{i=1}^{|w|} w_i 2^{-i}$$

Definition : $\mathcal{L} \in \mathsf{ANALOG-PTIME} \Leftrightarrow \exists p \text{ polynomial}, \forall \text{ word } w$

satisfies

• if
$$y_1(t) \ge 1$$
 then $w \in \mathcal{L}$

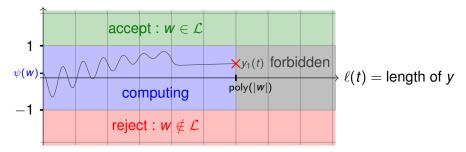
Definition : $\mathcal{L} \in \mathsf{ANALOG-PTIME} \Leftrightarrow \exists p \text{ polynomial}, \forall \text{ word } w$

satisfies

2 if
$$y_1(t) \leq -1$$
 then $w \notin \mathcal{L}$

Definition : $\mathcal{L} \in \mathsf{ANALOG-PTIME} \Leftrightarrow \exists p \text{ polynomial}, \forall \text{ word } w$

$$y(0) = (\psi(w), |w|, 0, ..., 0)$$
 $y' = p(y)$ $\psi(w) = \sum_{i=1}^{|w|} w_i 2^{-i}$



satisfies

3 if
$$\ell(t) \ge \operatorname{poly}(|w|)$$
 then $|y_1(t)| \ge 1$

. .

Definition : $\mathcal{L} \in \mathsf{ANALOG-PTIME} \Leftrightarrow \exists p \text{ polynomial}, \forall \text{ word } w$

$$y(0) = (\psi(w), |w|, 0, ..., 0) \qquad y' = p(y) \qquad \psi(w) = \sum_{i=1}^{|w|} w_i 2^{-i}$$

Theorem (JoC 2016; ICALP 2016)

r

 $\mathsf{PTIME} = \mathsf{ANALOG} \cdot \mathsf{PTIME}$

Definition : $f : [a, b] \to \mathbb{R}$ in ANALOG-P_R $\Leftrightarrow \exists p$ polynomial, $\forall x \in [a, b]$ y(0) = (x, 0, ..., 0) y' = p(y)

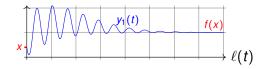


Definition : $f : [a, b] \rightarrow \mathbb{R}$ in ANALOG-P_R $\Leftrightarrow \exists p$ polynomial, $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

satisfies :

«length increases with time»



Definition : $f : [a, b] \rightarrow \mathbb{R}$ in ANALOG-P_R $\Leftrightarrow \exists p$ polynomial, $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

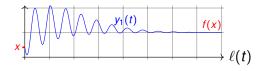
satisfies :

•
$$|y_1(t) - f(x)| \leq 2^{-\ell(t)}$$

«greater length \Rightarrow greater precision»

2 $\ell(t) \ge t$

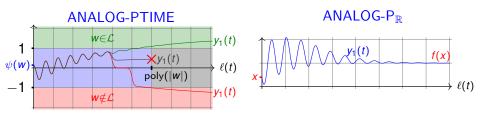
«length increases with time»



Theorem (JoC 2016; ICALP 2016)

 $f : [a, b] \rightarrow \mathbb{R}$ computable in polynomial time $\Leftrightarrow f \in \mathsf{ANALOG-P}_{\mathbb{R}}$.

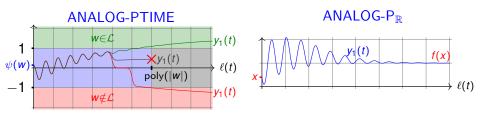
Summary



Theorem (JoC 2016; ICALP 2016)

- $\mathcal{L} \in \mathsf{PTIME}$ of and only if $\mathcal{L} \in \mathsf{ANALOG}\text{-}\mathsf{PTIME}$
- $f : [a, b] \rightarrow \mathbb{R}$ computable in polynomial time $\Leftrightarrow f \in \mathsf{ANALOG-P}_{\mathbb{R}}$
- Analog complexity theory based on length
- Time of Turing machine ⇔ length of the GPAC
- Purely continuous characterization of PTIME

Summary



Theorem (JoC 2016; ICALP 2016)

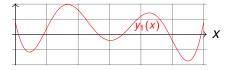
- $\mathcal{L} \in \mathsf{PTIME}$ of and only if $\mathcal{L} \in \mathsf{ANALOG}\operatorname{-PTIME}$
- $f : [a, b] \rightarrow \mathbb{R}$ computable in polynomial time $\Leftrightarrow f \in \mathsf{ANALOG-P}_{\mathbb{R}}$
- Analog complexity theory based on length
- Time of Turing machine ⇔ length of the GPAC
- Purely continuous characterization of PTIME
- Only rational coefficients needed (JACM 2017)

Universal differential equations

Generable functions

Computable functions

(t)



subclass of analytic functions

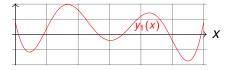
any computable function

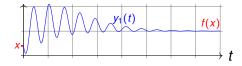
f(x)

Universal differential equations

Generable functions

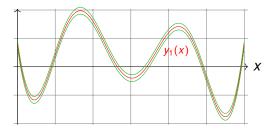
Computable functions



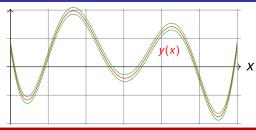


subclass of analytic functions

any computable function



Universal differential algebraic equation (DAE)



Theorem (Rubel, 1981)

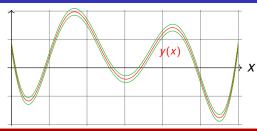
For any continuous functions *f* and ε , there exists $y : \mathbb{R} \to \mathbb{R}$ solution to

$$3y'^{4}y''y''''^{2} -4y'^{4}y'''^{2}y'''' + 6y'^{3}y''^{2}y'''y'''' + 24y'^{2}y''^{4}y'''' -12y'^{3}y''y'''^{3} - 29y'^{2}y''^{3}y'''^{2} + 12y''^{7} = 0$$

such that $\forall t \in \mathbb{R}$,

$$|\mathbf{y}(t) - f(t)| \leq \varepsilon(t).$$

Universal differential algebraic equation (DAE)



Theorem (Rubel, 1981)

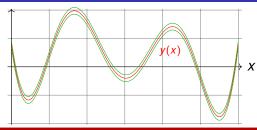
There exists a **fixed** polynomial *p* and $k \in \mathbb{N}$ such that for any continuous functions *f* and ε , there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y, y', \ldots, y^{(k)}) = 0$$

such that $\forall t \in \mathbb{R}$,

$$|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$$

Universal differential algebraic equation (DAE)



Theorem (Rubel, 1981)

There exists a **fixed** polynomial *p* and $k \in \mathbb{N}$ such that for any continuous functions *f* and ε , there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y, y', \ldots, y^{(k)}) = 0$$

such that $\forall t \in \mathbb{R}$,

$$|\mathbf{y}(t) - f(t)| \leq \varepsilon(t).$$

Problem : this is «weak» result.

The solution y is not unique, even with added initial conditions :

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel's proof to work !

The solution y is not unique, even with added initial conditions :

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

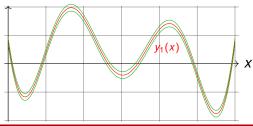
In fact, this is fundamental for Rubel's proof to work !

- Rubel's statement : this DAE is universal
- More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y' = p(y)? Note : explicit polynomial ODE \Rightarrow unique solution

Universal initial value problem (IVP)



Notes :

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

Theorem (ICALP 2017)

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha, \qquad y'(t) = p(y(t))$$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t)-f(t)|\leqslant \varepsilon(t).$$

Note : α is usually transcendental, but computable from *f* and ε

Definition : a reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example :

Definition : a reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example :

Assumption : law of mass action

$$\sum_{i} a_{i} y_{i} \xrightarrow{k} \sum_{i} b_{i} y_{i} \rightsquigarrow f(y) = k \prod_{i} y_{i}^{a_{i}}$$

Definition : a reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example :

Assumption : law of mass action

$$\sum_{i} a_{i} y_{i} \xrightarrow{k} \sum_{i} b_{i} y_{i} \quad \rightsquigarrow \quad f(y) = k \prod_{i} y_{i}^{a_{i}}$$

Semantics :

- discrete
- differential
- stochastic

Definition : a reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example :

Assumption : law of mass action

$$\sum_{i} a_{i} y_{i} \xrightarrow{k} \sum_{i} b_{i} y_{i} \quad \rightsquigarrow \quad f(y) = k \prod_{i} y_{i}^{a_{i}}$$

Semantics :

- discrete
- $\bullet \text{ differential} \rightarrow$
- stochastic

$$y'_i = \sum_{\text{reaction } R} (b^R_i - a^R_i) f^R(y)$$

Definition : a reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example :

Assumption : law of mass action

$$\sum_{i} a_{i} y_{i} \xrightarrow{k} \sum_{i} b_{i} y_{i} \quad \rightsquigarrow \quad f(y) = k \prod_{i} y_{i}^{a_{i}}$$

Semantics :

- discrete
- $\bullet \text{ differential} \rightarrow$
- stochastic

$$y'_i = \sum_{\text{reaction } R} (b^R_i - a^R_i) k^R \prod_j y^{a_j}_j$$

- CRNs with differential semantics and mass action law = polynomial ODEs
- polynomial ODEs are Turing complete

- CRNs with differential semantics and mass action law = polynomial ODEs
- polynomial ODEs are Turing complete

CRNs are Turing complete?

CRNs are Turing complete? Two "slight" problems :

- concentrations cannot be negative ($y_i < 0$)
- arbitrary reactions are not realistic

CRNs are Turing complete? Two "slight" problems :

- concentrations cannot be negative $(y_i < 0)$
- arbitrary reactions are not realistic

easy to solvewhat is realistic?

CRNs are Turing complete? Two "slight" problems :

- concentrations cannot be negative $(y_i < 0)$
- arbitrary reactions are not realistic

easy to solvewhat is realistic?

Definition : a reaction is **elementary** if it has at most two reactants \Rightarrow can be implemented with DNA, RNA or proteins

CRNs are Turing complete? Two "slight" problems :

- concentrations cannot be negative $(y_i < 0)$
- arbitrary reactions are not realistic

easy to solvewhat is realistic?

Definition : a reaction is **elementary** if it has at most two reactants \Rightarrow can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

$$ay + bz \xrightarrow{k} \cdots \qquad \rightsquigarrow \qquad f(y, z) = ky^a z^b$$

CRNs are Turing complete ? Two "slight" problems :

- concentrations cannot be negative $(y_i < 0)$
- arbitrary reactions are not realistic

easy to solvewhat is realistic?

Definition : a reaction is **elementary** if it has at most two reactants \Rightarrow can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

$$ay + bz \xrightarrow{k} \cdots \qquad \rightsquigarrow \qquad f(y, z) = ky^a z^b$$

Theorem (Folklore)

Every polynomial ODE can be rewritten as a quadratic ODE.

Definition : a reaction is **elementary** if it has at most two reactants \Rightarrow can be implemented with DNA, RNA or proteins

Elementary reactions correspond to quadratic ODEs :

$$ay + bz \xrightarrow{k} \cdots \qquad \rightsquigarrow \qquad f(y, z) = ky^a z^b$$

Theorem (CMSB, joint work with François Fages, Guillaume Le Gulude)

Elementary mass-action-law reaction system on finite universes of molecules are Turing-complete under the differential semantics.

Notes :

- proof preserves polynomial length
- In fact the following elementary reactions suffice :

$$y' = p(y)$$

$$\int ?$$

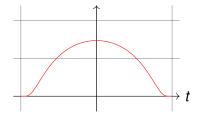
$$y' = p(y) + e(t)$$

- Reaction networks :
 - chemical
 - enzymatic

- ► Finer time complexity (linear)
- Nondeterminism
- Robustness
- « Space» complexity
- Other models
- Stochastic

• Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise.

It satisfies
$$(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$$

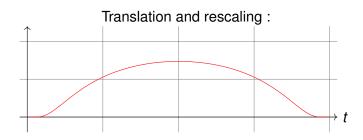


• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$$

• For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

$$\begin{array}{rcr} 3{y'}^4{y''}{y'''}^2 & -4{y'}^4{y''}^2{y'''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y'''}'\\ & -12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0 \end{array}$$



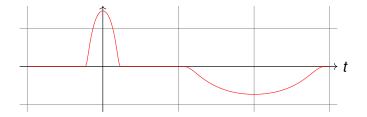
• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$$

• For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y'''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y''''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

• Can glue together arbitrary many such pieces



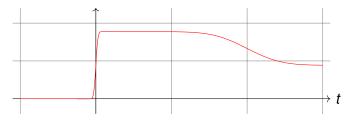
• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$$

• For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

- Can glue together arbitrary many such pieces
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear



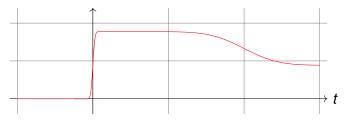
• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$$

• For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

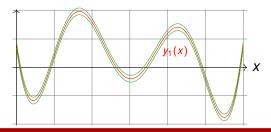
 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

- Can glue together arbitrary many such pieces
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear



Conclusion : Rubel's equation allows any piecewise pseudo-linear functions, and those are **dense in** C^0

Universal DAE revisited



Theorem

There exists a **fixed** polynomial *p* and $k \in \mathbb{N}$ such that for any continuous functions *f* and ε , there exists $\alpha_0, \ldots, \alpha_k \in \mathbb{R}$ such that

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

has a unique analytic solution and this solution satisfies such that

 $|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$