Solvability of Matrix-Exponential Equations

Joël Ouaknine, Amaury Pouly, João Sousa-Pinto, James Worrell

University of Oxford

Linear dynamical systems

Discrete case

$$x(n+1) = Ax(n)$$

- biology,
- software verification,
- probabilistic model checking,
- combinatorics,

Typical questions

- reachability
- safety
- controllability

Continuous case

$$x'(t) = Ax(t)$$

- biology,
- physics,
- probabilistic model checking,
- electrical circuits,
 - **.**..

Input: $A, C \in \mathbb{Q}^{d \times d}$ matrices Output: $\exists n \in \mathbb{N}$ such that $A^n = C$?

Example: $\exists n \in \mathbb{N}$ such that

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & 100 \\ 0 & 1 \end{bmatrix} ?$$

Input: $A, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists n \in \mathbb{N}$ such that $A^n = C$? \checkmark Decidable (PTIME)

Example: $\exists n \in \mathbb{N}$ such that

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & 100 \\ 0 & 1 \end{bmatrix} ?$$

Input: $A, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists n \in \mathbb{N}$ such that $A^n = C$? \checkmark Decidable (PTIME)

Input: $A, B, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists n, m \in \mathbb{N}$ such that $A^n B^m = C$?

Example: $\exists n, m \in \mathbb{N}$ such that

$$\begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}^n \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{bmatrix}^m = \begin{bmatrix} 1 & 60 \\ 0 & 1 \end{bmatrix} ?$$

Input: $A, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists n \in \mathbb{N}$ such that $A^n = C$? \checkmark Decidable (PTIME)

Input: $A, B, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists n, m \in \mathbb{N}$ such that $A^n B^m = C$? \checkmark Decidable

Example: $\exists n, m \in \mathbb{N}$ such that

$$\begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}^n \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{bmatrix}^m = \begin{bmatrix} 1 & 60 \\ 0 & 1 \end{bmatrix} \quad ?$$

Input: $A, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists n \in \mathbb{N}$ such that $A^n = C$? \checkmark Decidable (PTIME)

Input: $A, B, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists n, m \in \mathbb{N}$ such that $A^n B^m = C$? \checkmark Decidable

Input: $A_1, \ldots, A_k, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists n_1, \ldots, n_k \in \mathbb{N}$ such that $\prod_{i=1}^k A_i^{n_i} = C$?

Example: $\exists n, m, p \in \mathbb{N}$ such that

$$\begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}^n \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{bmatrix}^m \begin{bmatrix} 2 & 5 \\ 0 & 1 \end{bmatrix}^p = \begin{bmatrix} 81 & 260 \\ 0 & 1 \end{bmatrix}?$$

Input: $A, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists n \in \mathbb{N}$ such that $A^n = C$? \checkmark Decidable (PTIME)

Input: $A, B, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists n, m \in \mathbb{N}$ such that $A^n B^m = C$? \checkmark Decidable

Input: $A_1, \ldots, A_k, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists n_1, \ldots, n_k \in \mathbb{N}$ such that $\prod_{i=1}^k A_i^{n_i} = C$?

 \checkmark Decidable if A_i commute \times Undecidable in general

Example: $\exists n, m, p \in \mathbb{N}$ such that

$$\begin{bmatrix}2&3\\0&1\end{bmatrix}^n\begin{bmatrix}\frac{1}{2}&\frac{1}{2}\\0&1\end{bmatrix}^m\begin{bmatrix}2&5\\0&1\end{bmatrix}^p=\begin{bmatrix}81&260\\0&1\end{bmatrix}?$$

Input: $A, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists n \in \mathbb{N}$ such that $A^n = C$? \checkmark Decidable (PTIME)

Input: $A, B, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists n, m \in \mathbb{N}$ such that $A^n B^m = C$? \checkmark Decidable

Input: $A_1, \ldots, A_k, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists n_1, \ldots, n_k \in \mathbb{N}$ such that $\prod_{i=1}^k A_i^{n_i} = C$?

✓ Decidable if A_i commute × Undecidable in general

Input: $A_1, \dots, A_k, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $C \in \langle \text{semi-group generated by } A_1, \dots, A_k \rangle$?

Semi-group: $\langle A_1, \dots, A_k \rangle$ = all finite products of A_1, \dots, A_k Examples:

 $A_1A_3A_2$ $A_1A_2A_1A_2$ $A_3^8A_2A_1^3A_3^{42}$

Input: $A, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists n \in \mathbb{N}$ such that $A^n = C$? \checkmark Decidable (PTIME)

Input: $A, B, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists n, m \in \mathbb{N}$ such that $A^n B^m = C$? \checkmark Decidable

Input: $A_1, \ldots, A_k, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists n_1, \ldots, n_k \in \mathbb{N}$ such that $\prod_{i=1}^k A_i^{n_i} = C$?

 \checkmark Decidable if A_i commute \times Undecidable in general

Input: $A_1, \ldots, A_k, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $C \in \langle \text{semi-group generated by } A_1, \dots, A_k \rangle$?

 \checkmark Decidable if A_i commute \times Undecidable in general

Semi-group: $\langle A_1, \dots, A_k \rangle$ = all finite products of A_1, \dots, A_k Examples:

$$A_1A_3A_2$$
 $A_1A_2A_1A_2$ $A_3^8A_2A_1^3A_3^{42}$

Let $x : \mathbb{R}_+ \to \mathbb{R}^n$ function, $A \in \mathbb{Q}^{n \times n}$ matrix

$$x(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} \qquad A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

Linear differential equation:

$$x'(t) = Ax(t) \qquad x(0) = x_0$$

Let $x : \mathbb{R}_+ \to \mathbb{R}^n$ function, $A \in \mathbb{Q}^{n \times n}$ matrix

$$x(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} \qquad A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

Linear differential equation:

$$x'(t) = Ax(t) \qquad x(0) = x_0$$

Examples:

Let $x : \mathbb{R}_+ \to \mathbb{R}^n$ function, $A \in \mathbb{Q}^{n \times n}$ matrix

$$x(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} \qquad A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

Linear differential equation:

$$x'(t) = Ax(t) \qquad x(0) = x_0$$

Examples:

$$x'(t) = 7x(t)$$

$$\begin{cases} x'_1(t) = x_2(t) \\ x'_2(t) = -x_1(t) \end{cases} \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}' = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\Rightarrow x(t) = e^{7t}$$

$$\Rightarrow \begin{cases} x_1(t) = \sin(t) \\ x_2(t) = \cos(t) \end{cases}$$

Let $x : \mathbb{R}_+ \to \mathbb{R}^n$ function, $A \in \mathbb{Q}^{n \times n}$ matrix

$$x(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} \qquad A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

Linear differential equation:

$$x'(t) = Ax(t) \qquad x(0) = x_0$$

General solution form:

$$x(t) = \exp(At)x_0$$
 where $\exp(M) = \sum_{n=0}^{\infty} \frac{M^n}{n!}$

Input: $A, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists t \in \mathbb{R}$ such that $e^{At} = C$?

Example: $\exists t \in \mathbb{R}$ such that

$$\exp\left(\begin{bmatrix}1 & 1\\ 0 & 1\end{bmatrix}t\right) = \begin{bmatrix}1 & 100\\ 0 & 1\end{bmatrix} ?$$

Input:
$$A, C \in \mathbb{Q}^{d \times d}$$
 matrices Output: $\exists t \in \mathbb{R}$ such that $e^{At} = C$? \checkmark Decidable (PTIME)

Example: $\exists t \in \mathbb{R}$ such that

$$\exp\left(\begin{bmatrix}1 & 1\\ 0 & 1\end{bmatrix}t\right) = \begin{bmatrix}1 & 100\\ 0 & 1\end{bmatrix} ?$$

Input: $A, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists t \in \mathbb{R}$ such that $e^{At} = C$? \checkmark Decidable (PTIME)

Input: $A, B, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists t, u \in \mathbb{N}$ such that $e^{At}e^{Bu} = C$?

Example: $\exists t, u \in \mathbb{R}$ such that

$$\exp\left(\begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix} t\right) \exp\left(\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{bmatrix} u\right) = \begin{bmatrix} 1 & 60 \\ 0 & 1 \end{bmatrix} ?$$

Input: $A, C \in \mathbb{Q}^{d \times d}$ matrices

Output: $\exists t \in \mathbb{R}$ such that $e^{At} = C$? \checkmark Decidable (PTIME)

Input: $A, B, C \in \mathbb{Q}^{d \times d}$ matrices

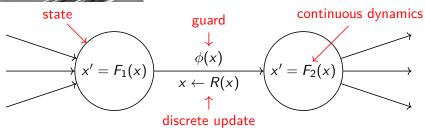
Output: $\exists t, u \in \mathbb{N}$ such that $e^{At}e^{Bu} = C$? \times Unknown

Example: $\exists t, u \in \mathbb{R}$ such that

$$\exp\left(\begin{bmatrix}2 & 3\\0 & 1\end{bmatrix}t\right)\exp\left(\begin{bmatrix}\frac{1}{2} & \frac{1}{2}\\0 & 1\end{bmatrix}u\right) = \begin{bmatrix}1 & 60\\0 & 1\end{bmatrix} ?$$

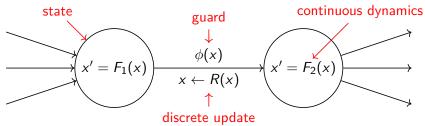
Hybrid/Cyber-physical systems

- physics: continuous dynamics
- electronics: discrete states



Hybrid/Cyber-physical systems

- physics: continuous dynamics
- electronics: discrete states

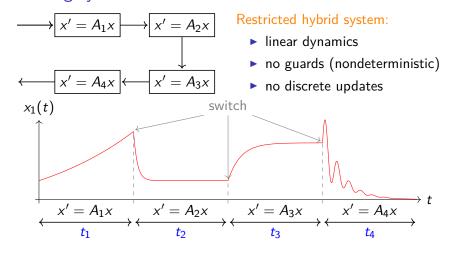


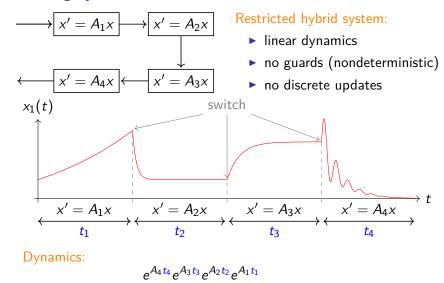
Some classes:

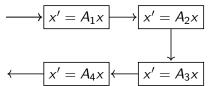
- $ightharpoonup F_i(x) = 1$: timed automata
- $ightharpoonup F_i(x) = c_i$: rectangular hybrid automata
- $ightharpoonup F_i(x) = A_i x$: linear hybrid automata

Typical questions

- reachability
- safety
- controllability

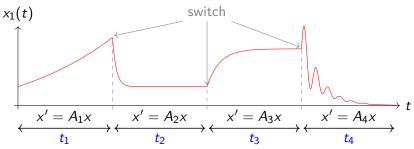






Restricted hybrid system:

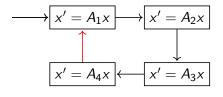
- linear dynamics
- no guards (nondeterministic)
- no discrete updates



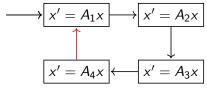
Problem:

$$e^{A_4t_4}e^{A_3t_3}e^{A_2t_2}e^{A_1t_1} = C$$
 ?

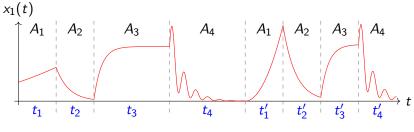
What we control: $t_1, t_2, t_3, t_4 \in \mathbb{R}_+$



What about a loop?

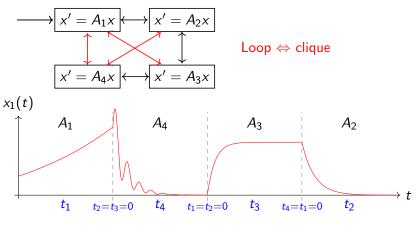


What about a loop?



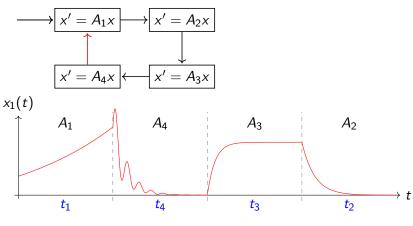
Dynamics:

$$e^{A_4t_4'}e^{A_3t_3'}e^{A_2t_2'}e^{A_1t_1'}e^{A_4t_4}e^{A_3t_3}e^{A_2t_2}e^{A_1t_1}$$



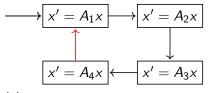
Remark:

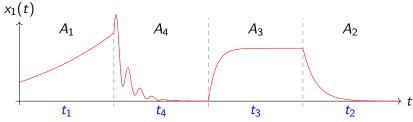
zero time dynamics $(t_i = 0)$ are allowed



Dynamics:

any finite product of $e^{A_i t} \sim \text{semigroup!}$





Problem:

$$C \in \mathcal{G}$$
 ?

where

$$\mathcal{G} = \langle \text{semi-group generated by } e^{A_i t} \text{ for all } t \geqslant 0 \rangle$$

Main results

Input: $A_1, \ldots, A_k, C \in \mathbb{Q}^{d \times d}$ matrices Output: $\exists t_1, \ldots, t_k \geqslant 0$ such that

$$\prod_{i=1}^{n} e^{A_i t_i} = C \quad ?$$

Input: $A_1, \ldots, A_k, C \in \mathbb{Q}^{d \times d}$ matrices Output:

tput.

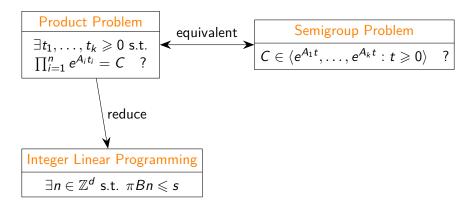
$$C \in \langle \text{semigroup generated by } e^{A_1 t}, \dots, e^{A_k t} : t \geqslant 0 \rangle$$
 ?

Theorem

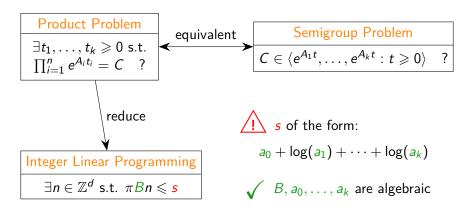
Both problems are:

- ► Undecidable in general
- ▶ Decidable when all the A_i commute

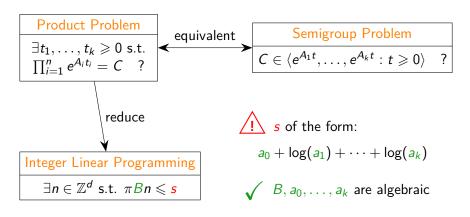
Some words about the proof (commuting case)



Some words about the proof (commuting case)



Some words about the proof (commuting case)



How did we get from reals to integers with
$$\pi$$
 ?

$$e^{it} = \alpha \Leftrightarrow t \in \log(\alpha) + 2\pi\mathbb{Z}$$

Integer Linear Programming

 $\exists n \in \mathbb{Z}^d \text{ such that } \pi B n \leqslant s \quad ?$ where s is a linear form in logarithms of algebraic numbers

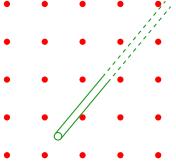
Integer Linear Programming

 $\exists n \in \mathbb{Z}^d \text{ such that } \pi B n \leqslant s$?

where s is a linear form in logarithms of algebraic numbers

Key ingredient: Diophantine approximations

▶ Finding integer points in cones: Kronecker's theorem



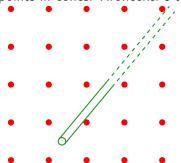
Integer Linear Programming

 $\exists n \in \mathbb{Z}^d \text{ such that } \pi B n \leqslant s$?

where s is a linear form in logarithms of algebraic numbers

Key ingredient: Diophantine approximations

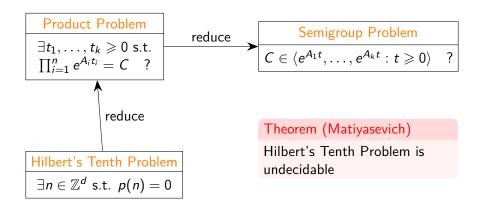
▶ Finding integer points in cones: Kronecker's theorem



Compare linear forms in logs: Baker's theorem

$$\sqrt{2} + \log \sqrt{3} - 3 \log \sqrt{7} \stackrel{?}{=} 1 + \log 9 - \log \sqrt[42]{666}$$

Some words about the proof (general case)



Conclusion

- Continuous extension of discrete matrix power problems studied by Lipton, Cai, Potapov, ...
- Motivated by verification, synthesis and controllability problems for cyber-physical systems
- (Un-)decidability results achieved with number-theoretic tools and integer linear programming