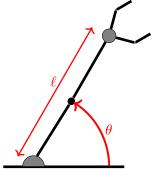
# Some control problems in linear dynamical systems

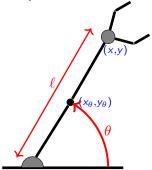
Amaury Pouly Joint work with Nathanaël Fijalkow, Joël Ouaknine, João Sousa-Pinto, James Worrell

Max Planck Institute for Software Systems (MPI-SWS)



#### Available actions:

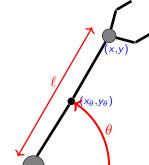
- ▶ rotate arm
- ► change arm length



Available actions:

- rotate arm
- change arm length

State:  $X = (x_{\theta}, y_{\theta}, x, y) \in \mathbb{R}^4$ 



#### Available actions:

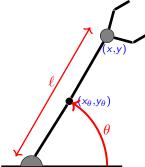
- rotate arm
- change arm length

State:  $X = (x_{\theta}, y_{\theta}, x, y) \in \mathbb{R}^4$ 

### Rotate arm (increase $\theta$ ):

$$\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x_{\theta} \\ y_{\theta} \end{bmatrix}' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_{\theta} \\ y_{\theta} \end{bmatrix}$$



#### Available actions:

- rotate arm
- change arm length

State:  $X = (x_{\theta}, y_{\theta}, x, y) \in \mathbb{R}^4$ 

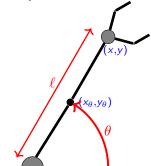
## Rotate arm (increase $\theta$ ):

$$\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x_{\theta} \\ y_{\theta} \end{bmatrix}' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_{\theta} \\ y_{\theta} \end{bmatrix}$$

## Change arm length (increase $\ell$ ):

$$\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} x_{\theta} \\ y_{\theta} \end{bmatrix}$$



#### Available actions:

- rotate arm
- change arm length
- $\rightarrow$  Switched linear system:

$$X' = AX$$

where  $A \in \{A_{rot}, A_{arm}\}$ .

State:  $X = (x_{\theta}, y_{\theta}, x, y) \in \mathbb{R}^4$ 

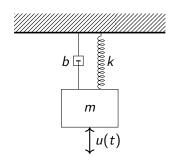
Rotate arm (increase  $\theta$ ):

$$\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x_{\theta} \\ y_{\theta} \end{bmatrix}' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_{\theta} \\ y_{\theta} \end{bmatrix}$$

Change arm length (increase  $\ell$ ):

$$\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} x_{\theta} \\ y_{\theta} \end{bmatrix}$$

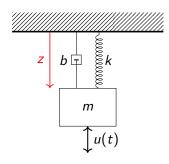


State:  $X = z \in \mathbb{R}$ 

Equation of motion:

$$mz'' = -kz - bz' + mg + u$$

Model with external input u(t)

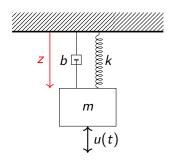


State:  $X = z \in \mathbb{R}$ 

Equation of motion:

$$mz'' = -kz - bz' + mg + u$$

Model with external input u(t)



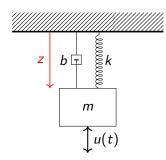
Model with external input u(t)

State: 
$$X = z \in \mathbb{R}$$

Equation of motion:

$$mz'' = -kz - bz' + mg + u$$

 $\rightarrow$  Affine but not first order



Model with external input u(t)

State: 
$$X = z \in \mathbb{R}$$

## Equation of motion:

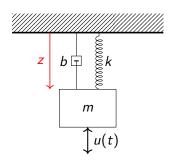
$$mz'' = -kz - bz' + mg + u$$

 $\rightarrow$  Affine but not first order

State: 
$$X = (z, z', 1) \in \mathbb{R}^3$$

#### Equation of motion:

$$\begin{bmatrix} z \\ z' \\ 1 \end{bmatrix}' = \begin{bmatrix} -\frac{k}{m}z - \frac{b}{m}z' + g + \frac{1}{m}u \\ 0 \end{bmatrix}$$



Model with external input u(t)

 $\rightarrow$  Linear time invariant system:

$$X' = AX + Bu$$

with some constraints on u.

State:  $X = z \in \mathbb{R}$ 

### Equation of motion:

$$mz'' = -kz - bz' + mg + u$$

 $\rightarrow$  Affine but not first order

State:  $X = (z, z', 1) \in \mathbb{R}^3$ 

#### Equation of motion:

$$\begin{bmatrix} z \\ z' \\ 1 \end{bmatrix}' = \begin{bmatrix} -\frac{k}{m}z - \frac{b}{m}z' + g + \frac{1}{m}u \\ 0 \end{bmatrix}$$

# Linear dynamical systems

#### Discrete case

$$x(n+1) = Ax(n)$$

- biology,
- software verification,
- probabilistic model checking,
- combinatorics,
- **....**

#### Continuous case

$$x'(t) = Ax(t)$$

- biology,
- physics,
- probabilistic model checking,
- electrical circuits,
- **.**..

## Typical questions

- reachability
- safety

# Linear dynamical systems

#### Discrete case

$$x(n+1) = Ax(n) + Bu(n)$$

- biology,
- software verification,
- probabilistic model checking,
- combinatorics,
- **>** ....

#### Continuous case

$$x'(t) = Ax(t) + Bu(t)$$

- biology,
- physics,
- probabilistic model checking,
- electrical circuits,
- **.**..

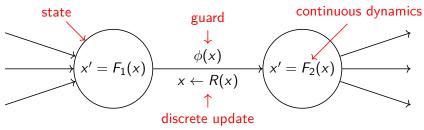
## Typical questions

- reachability
- safety
- controllability

# Hybrid/Cyber-physical systems



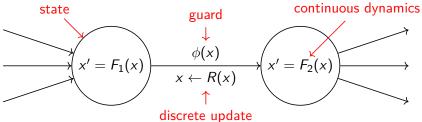
- physics: continuous dynamics
- electronics: discrete states



# Hybrid/Cyber-physical systems



- physics: continuous dynamics
- electronics: discrete states



#### Some classes:

- $ightharpoonup F_i(x) = 1$ : timed automata
- $ightharpoonup F_i(x) = c_i$ : rectangular hybrid automata
- $ightharpoonup F_i(x) = A_i x$ : linear hybrid automata

### Typical questions

- reachability
- safety
- controllability

Input:  $A, C \in \mathbb{Q}^{d \times d}$  matrices

Output:  $\exists n \in \mathbb{N}$  such that  $A^n = C$ ?

Example:  $\exists n \in \mathbb{N}$  such that

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & 100 \\ 0 & 1 \end{bmatrix} \quad ?$$

Input:  $A, C \in \mathbb{Q}^{d \times d}$  matrices

Output:  $\exists n \in \mathbb{N}$  such that  $A^n = C$ ?  $\checkmark$  Decidable (PTIME)

Example:  $\exists n \in \mathbb{N}$  such that

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & 100 \\ 0 & 1 \end{bmatrix} \quad ?$$

Input:  $A, C \in \mathbb{Q}^{d \times d}$  matrices

Output:  $\exists n \in \mathbb{N}$  such that  $A^n = C$ ?  $\checkmark$  Decidable (PTIME)

Input:  $A, B, C \in \mathbb{Q}^{d \times d}$  matrices

Output:  $\exists n, m \in \mathbb{N}$  such that  $A^n B^m = C$ ?

Example:  $\exists n, m \in \mathbb{N}$  such that

$$\begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}^n \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{bmatrix}^m = \begin{bmatrix} 1 & 60 \\ 0 & 1 \end{bmatrix} ?$$

Input:  $A, C \in \mathbb{Q}^{d \times d}$  matrices

Output:  $\exists n \in \mathbb{N}$  such that  $A^n = C$ ?  $\checkmark$  Decidable (PTIME)

Input:  $A, B, C \in \mathbb{Q}^{d \times d}$  matrices

Output:  $\exists n, m \in \mathbb{N}$  such that  $A^n B^m = C$ ?  $\checkmark$  Decidable

Example:  $\exists n, m \in \mathbb{N}$  such that

$$\begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}^n \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{bmatrix}^m = \begin{bmatrix} 1 & 60 \\ 0 & 1 \end{bmatrix} ?$$

Input:  $A, C \in \mathbb{Q}^{d \times d}$  matrices

Output:  $\exists n \in \mathbb{N}$  such that  $A^n = C$ ?  $\checkmark$  Decidable (PTIME)

Input:  $A, B, C \in \mathbb{Q}^{d \times d}$  matrices

Output:  $\exists n, m \in \mathbb{N}$  such that  $A^n B^m = C$ ?  $\checkmark$  Decidable

Input:  $A_1, \dots, A_k, C \in \mathbb{Q}^{d \times d}$  matrices

Output:  $\exists n_1, \ldots, n_k \in \mathbb{N}$  such that  $\prod_{i=1}^k A_i^{n_i} = C$ ?

Example:  $\exists n, m, p \in \mathbb{N}$  such that

$$\begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}^n \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{bmatrix}^m \begin{bmatrix} 2 & 5 \\ 0 & 1 \end{bmatrix}^p = \begin{bmatrix} 81 & 260 \\ 0 & 1 \end{bmatrix}?$$

Input:  $A, C \in \mathbb{Q}^{d \times d}$  matrices

Output:  $\exists n \in \mathbb{N}$  such that  $A^n = C$ ?  $\checkmark$  Decidable (PTIME)

Input:  $A, B, C \in \mathbb{Q}^{d \times d}$  matrices

Output:  $\exists n, m \in \mathbb{N}$  such that  $A^n B^m = C$ ?  $\checkmark$  Decidable

Input:  $A_1, \ldots, A_k, C \in \mathbb{Q}^{d \times d}$  matrices

Output:  $\exists n_1, \ldots, n_k \in \mathbb{N}$  such that  $\prod_{i=1}^k A_i^{n_i} = C$ ?

✓ Decidable if  $A_i$  commute × Undecidable in general

Example:  $\exists n, m, p \in \mathbb{N}$  such that

$$\begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}^n \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{bmatrix}^m \begin{bmatrix} 2 & 5 \\ 0 & 1 \end{bmatrix}^p = \begin{bmatrix} 81 & 260 \\ 0 & 1 \end{bmatrix}?$$

Input:  $A, C \in \mathbb{Q}^{d \times d}$  matrices

Output:  $\exists n \in \mathbb{N}$  such that  $A^n = C$ ?  $\checkmark$  Decidable (PTIME)

Input:  $A, B, C \in \mathbb{Q}^{d \times d}$  matrices

Output:  $\exists n, m \in \mathbb{N}$  such that  $A^n B^m = C$ ?  $\checkmark$  Decidable

Input:  $A_1, \dots, A_k, C \in \mathbb{Q}^{d \times d}$  matrices

Output:  $\exists n_1, \ldots, n_k \in \mathbb{N}$  such that  $\prod_{i=1}^k A_i^{n_i} = C$ ?

 $\checkmark$  Decidable if  $A_i$  commute  $\times$  Undecidable in general

Input:  $A_1, \ldots, A_k, C \in \mathbb{Q}^{d \times d}$  matrices

Output:  $C \in \langle \text{semi-group generated by } A_1, \dots, A_k \rangle$  ?

Semi-group:  $\langle A_1, \dots, A_k \rangle$  = all finite products of  $A_1, \dots, A_k$  Examples:

$$A_1 A_3 A_2$$
  $A_1 A_2 A_1 A_2$   $A_3^8 A_2 A_1^3 A_3^{42}$ 

```
Input: A, C \in \mathbb{O}^{d \times d} matrices
Output: \exists n \in \mathbb{N} such that A^n = C?
                                                            ✓ Decidable (PTIME)
Input: A, B, C \in \mathbb{Q}^{d \times d} matrices
Output: \exists n, m \in \mathbb{N} such that A^n B^m = C?
                                                                          ✓ Decidable
Input: A_1, \ldots, A_k, C \in \mathbb{Q}^{d \times d} matrices
Output: \exists n_1, \ldots, n_k \in \mathbb{N} such that \prod_{i=1}^k A_i^{n_i} = C?
   \checkmark Decidable if A_i commute \times Undecidable in general
Input: A_1, \ldots, A_k, C \in \mathbb{Q}^{d \times d} matrices
Output: C \in \langle \text{semi-group generated by } A_1, \dots, A_k \rangle?
   \checkmark Decidable if A_i commute \times Undecidable in general
Semi-group: \langle A_1, \dots, A_k \rangle = all finite products of A_1, \dots, A_k
Examples:
                      A_1A_3A_2 A_1A_2A_1A_2 A_3^8A_2A_1^3A_3^{42}
```

# Recap on linear differential equations

Let  $x : \mathbb{R}_+ \to \mathbb{R}^n$  function,  $A \in \mathbb{Q}^{n \times n}$  matrix

$$x(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} \qquad A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

#### Linear differential equation:

$$x'(t) = Ax(t) \qquad x(0) = x_0$$

# Recap on linear differential equations

Let  $x : \mathbb{R}_+ \to \mathbb{R}^n$  function,  $A \in \mathbb{Q}^{n \times n}$  matrix

$$x(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} \qquad A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

#### Linear differential equation:

$$x'(t) = Ax(t) \qquad x(0) = x_0$$

#### Examples:

$$x'(t) = 7x(t)$$

$$\begin{cases} x'_1(t) = x_2(t) \\ x'_2(t) = -x_1(t) \end{cases} \Leftrightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}' = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\Rightarrow x(t) = e^{7t}$$

$$\Rightarrow \begin{cases} x_1(t) = \sin(t) \\ x_2(t) = \cos(t) \end{cases}$$

# Recap on linear differential equations

Let  $x : \mathbb{R}_+ \to \mathbb{R}^n$  function,  $A \in \mathbb{Q}^{n \times n}$  matrix

$$x(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} \qquad A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

#### Linear differential equation:

$$x'(t) = Ax(t) \qquad x(0) = x_0$$

#### General solution form:

$$x(t) = \exp(At)x_0$$
 where  $\exp(M) = \sum_{n=0}^{\infty} \frac{M^n}{n!}$ 

Input: 
$$A, C \in \mathbb{Q}^{d \times d}$$
 matrices  
Output:  $\exists t \in \mathbb{R}$  such that  $e^{At} = C$  ?

Example:  $\exists t \in \mathbb{R}$  such that

$$\exp\left(\begin{bmatrix}1 & 1\\ 0 & 1\end{bmatrix}t\right) = \begin{bmatrix}1 & 100\\ 0 & 1\end{bmatrix} \quad ?$$

Input: 
$$A, C \in \mathbb{Q}^{d \times d}$$
 matrices Output:  $\exists t \in \mathbb{R}$  such that  $e^{At} = C$ ?  $\checkmark$  Decidable (PTIME)

Example:  $\exists t \in \mathbb{R}$  such that

$$\exp\left(\begin{bmatrix}1 & 1\\ 0 & 1\end{bmatrix}t\right) = \begin{bmatrix}1 & 100\\ 0 & 1\end{bmatrix} \quad ?$$

Input:  $A, C \in \mathbb{Q}^{d \times d}$  matrices

Output:  $\exists t \in \mathbb{R}$  such that  $e^{At} = C$  ?  $\checkmark$  Decidable (PTIME)

Input:  $A, B, C \in \mathbb{Q}^{d \times d}$  matrices

Output:  $\exists t, u \in \mathbb{N}$  such that  $e^{At}e^{Bu} = C$  ?

Example:  $\exists t, u \in \mathbb{R}$  such that

$$\exp\left(\begin{bmatrix}2 & 3\\ 0 & 1\end{bmatrix}t\right)\exp\left(\begin{bmatrix}\frac{1}{2} & \frac{1}{2}\\ 0 & 1\end{bmatrix}u\right) = \begin{bmatrix}1 & 60\\ 0 & 1\end{bmatrix} ?$$

Input:  $A, C \in \mathbb{Q}^{d \times d}$  matrices

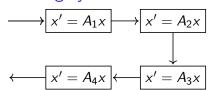
Output:  $\exists t \in \mathbb{R}$  such that  $e^{At} = C$ ?  $\checkmark$  Decidable (PTIME)

Input:  $A, B, C \in \mathbb{Q}^{d \times d}$  matrices

Output:  $\exists t, u \in \mathbb{N}$  such that  $e^{At}e^{Bu} = C$  ?  $\times$  Unknown

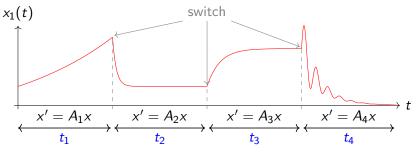
Example:  $\exists t, u \in \mathbb{R}$  such that

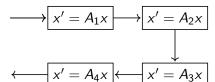
$$\exp\left(\begin{bmatrix}2 & 3\\ 0 & 1\end{bmatrix}t\right)\exp\left(\begin{bmatrix}\frac{1}{2} & \frac{1}{2}\\ 0 & 1\end{bmatrix}u\right) = \begin{bmatrix}1 & 60\\ 0 & 1\end{bmatrix} ?$$



#### Restricted hybrid system:

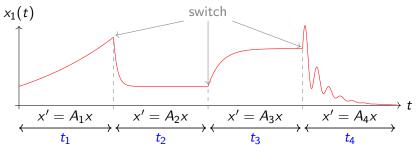
- linear dynamics
  - no guards (nondeterministic)
  - no discrete updates





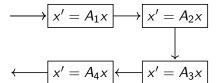
#### Restricted hybrid system:

- linear dynamics
  - no guards (nondeterministic)
  - no discrete updates



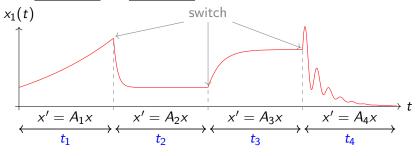
## Dynamics:

$$e^{A_4t_4}e^{A_3t_3}e^{A_2t_2}e^{A_1t_1}$$



#### Restricted hybrid system:

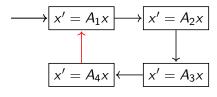
- linear dynamics
  - no guards (nondeterministic)
  - ▶ no discrete updates



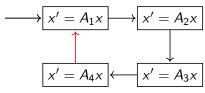
#### Problem:

$$e^{A_4t_4}e^{A_3t_3}e^{A_2t_2}e^{A_1t_1}=C$$
 ?

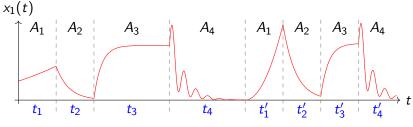
What we control:  $t_1, t_2, t_3, t_4 \in \mathbb{R}_+$ 



What about a loop?

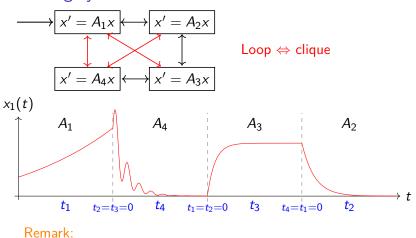


What about a loop?



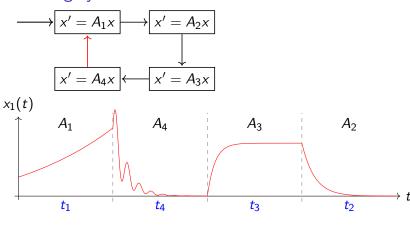
Dynamics:

$$e^{\mathcal{A}_4 t_4'} e^{\mathcal{A}_3 t_3'} e^{\mathcal{A}_2 t_2'} e^{\mathcal{A}_1 t_1'} e^{\mathcal{A}_4 t_4} e^{\mathcal{A}_3 t_3} e^{\mathcal{A}_2 t_2} e^{\mathcal{A}_1 t_1}$$



zero time dynamics  $(t_i = 0)$  are allowed

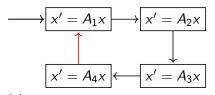
### Switching system

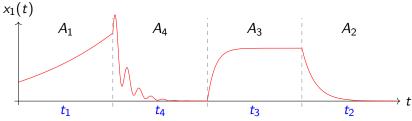


Dynamics:

any finite product of  $e^{A_i t} \sim \text{semigroup!}$ 

## Switching system





#### Problem:

$$C \in \mathcal{G}$$
 ?

where

 $\mathcal{G} = \langle \mathsf{semi}\text{-}\mathsf{group} \ \mathsf{generated} \ \mathsf{by} \ e^{A_i t} \ \mathsf{for} \ \mathsf{all} \ t \geqslant 0 
angle$ 

## Switching system: results

Input:  $A_1, \ldots, A_k, C \in \mathbb{Q}^{d \times d}$  matrices Output:  $\exists t_1, \ldots, t_k \geqslant 0$  such that

$$\prod_{i=1}^n e^{A_i t_i} = C \quad ?$$

Input:  $A_1, \ldots, A_k, C \in \mathbb{Q}^{d \times d}$  matrices Output:

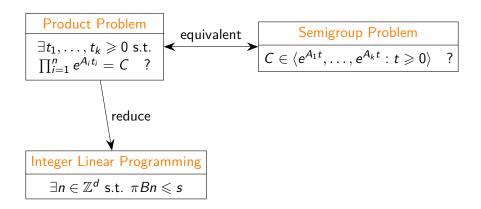
$$C \in \langle \text{semigroup generated by } e^{A_1 t}, \dots, e^{A_k t} : t \geqslant 0 \rangle$$
 ?

#### **Theorem**

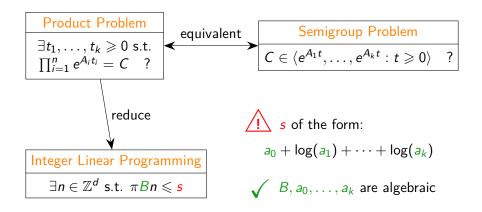
### Both problems are:

- ► Undecidable in general
- ▶ Decidable when all the A<sub>i</sub> commute

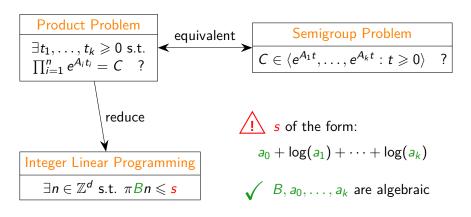
# Some words about the proof (commuting case)



# Some words about the proof (commuting case)



# Some words about the proof (commuting case)



How did we get from reals to integers with  $\pi$  ?

$$e^{it} = \alpha \quad \Leftrightarrow \quad t \in \log(\alpha) + 2\pi \mathbb{Z}$$

## Integer Linear Programming

 $\exists n \in \mathbb{Z}^d \text{ such that } \pi Bn \leqslant s \quad ?$  where s is a linear form in logarithms of algebraic numbers

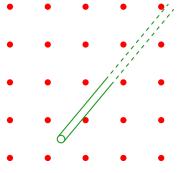
### Integer Linear Programming

 $\exists n \in \mathbb{Z}^d \text{ such that } \pi Bn \leqslant s$  ?

where s is a linear form in logarithms of algebraic numbers

Key ingredient: Diophantine approximations

▶ Finding integer points in cones: Kronecker's theorem



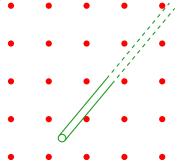
### Integer Linear Programming

 $\exists n \in \mathbb{Z}^d \text{ such that } \pi Bn \leqslant s$  ?

where s is a linear form in logarithms of algebraic numbers

Key ingredient: Diophantine approximations

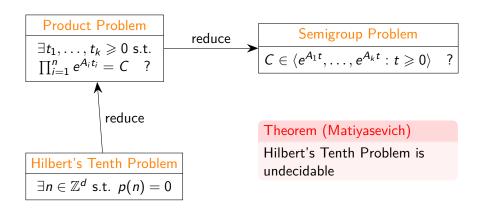
▶ Finding integer points in cones: Kronecker's theorem



Compare linear forms in logs: Baker's theorem

$$\sqrt{2} + \log \sqrt{3} - 3 \log \sqrt{7} \stackrel{?}{=} 1 + \log 9 - \log \sqrt[42]{666}$$

# Some words about the proof (general case)



### Discrete-time LTI system

Consider the system:

$$x(n+1) = Ax(n) + u(n)$$
  $x(n) \in \mathbb{R}^d$ 

where:

- $\triangleright$  x(0) and A are given (rational/algebraic coefficients)
- ▶  $u(n) \in \mathcal{U}$  the input/control set

### Discrete-time LTI system

Consider the system:

$$x(n+1) = Ax(n) + u(n)$$
  $x(n) \in \mathbb{R}^d$ 

#### where:

- $\triangleright$  x(0) and A are given (rational/algebraic coefficients)
- ▶  $u(n) \in \mathcal{U}$  the input/control set

### Controllability question

Given y, can we control x(0) to y in **finite time**?

$$\exists ? n \in \mathbb{N}, u(0), \ldots, u(n-1) \in \mathcal{U}, x(n) = y$$

### Discrete-time LTI system

Consider the system:

$$x(n+1) = Ax(n) + u(n)$$
  $x(n) \in \mathbb{R}^d$ 

#### where:

- $\triangleright$  x(0) and A are given (rational/algebraic coefficients)
- ▶  $u(n) \in \mathcal{U}$  the input/control set

### Controllability question

Given y, can we control x(0) to y in **finite time**?

$$\exists ? n \in \mathbb{N}, u(0), \ldots, u(n-1) \in \mathcal{U}, x(n) = y$$

Example: u(n) = user input  $\rightarrow \text{can we make the system do}$ what we want? Example: u(n) = external force  $\rightarrow \text{can the system reach a bad state?}$ 

### Complexity mostly depends on input space

$$x(n+1) = Ax(n) + u(n)$$
  $x(n) \in \mathbb{R}^d, u(n) \in \mathcal{U}$ 

Union of Polytopes Undecidable

Polytope Positivity-hard

Union of two Affine Spaces Skolem-hard

Decidable

Affine Spaces

Convex polytope + conditions

Given A, x(0) rationa/algebraic, consider:

$$x(n+1) = Ax(n)$$
  $x(n) \in \mathbb{R}^d$ 

Given A, x(0) rationa/algebraic, consider:

$$x(n+1) = Ax(n)$$
  $x(n) \in \mathbb{R}^d$ 

Skolem problem

Given  $b \in \mathbb{Q}^d$ , is there some n such that  $b^T x(n) = 0$ ?

Given A, x(0) rationa/algebraic, consider:

$$x(n+1) = Ax(n)$$
  $x(n) \in \mathbb{R}^d$ 

### Skolem problem

Given  $b \in \mathbb{Q}^d$ , is there some n such that  $b^T x(n) = 0$ ?

### Positivity problem

Given  $b \in \mathbb{Q}^d$ , is it true that for all n such that  $b^T x(n) \ge 0$ ?

Given A, x(0) rationa/algebraic, consider:

$$x(n+1) = Ax(n)$$
  $x(n) \in \mathbb{R}^d$ 

### Skolem problem

Given  $b \in \mathbb{Q}^d$ , is there some n such that  $b^T x(n) = 0$ ?

### Positivity problem

Given  $b \in \mathbb{Q}^d$ , is it true that for all n such that  $b^T x(n) \ge 0$ ?

- Related to some hard number theory problems
- ▶ not known to (un)decidable

## Some positive results

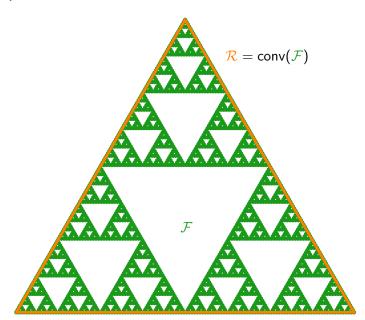
$$x(n+1) = Ax(n) + u(n)$$
  $x(n) \in \mathbb{R}^d, u(n) \in \mathcal{U}$ 

#### Theorem

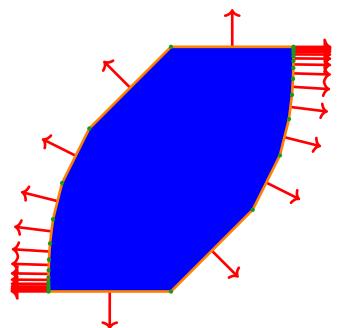
Controllability to a given y is **decidable** if  $\mathcal{U}$  is a **convex polytope** and A is **stable** + some spectral conditions.

Reduce to: decide if y belongs to the convex hull of a self-affine fractal: a convex hull with infinitely many edges

# Some positive results



# Some positive results



### Conclusion

- Linear and hybrid dynamical systems
- Motivated by verification, synthesis and controllability problems for cyber-physical systems
- ► (Un-)decidability results achieved with number-theoretic tools and integer linear programming