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Example: 2D robot

State: X = (xg, yp,x,y) € R?

(x,y)
Rotate arm (increase 6):
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Available actions: Yo | _1 0_ BG

» rotate arm

Change arm length (increase /):
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» change arm length



Example: 2D robot

Available actions:

> rotate arm
» change arm length

— Switched linear system:

X' = AX
where A € {Arot, Aarm}-

State: X = (xg, yp,x,y) € R?

Rotate arm (increase 6):
- 4
x| |0 =1 |x
vl 11 0]y

Yo | 10| |y

Change arm length (increase /):

-l
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Example: mass-spring-damper system

SIIIIIII SIS SIS
PIIIIII I 7777077770007 77277777770 tate = Z € R
P11 .

Y1717 777 777777777777777777

Equation of motion:

mz" = —kz — bz + mg + u

Model with external input u(t)
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Example: mass-spring-damper system

Model with external input u(t)

State: X =z€ R
Equation of motion:
mz" = —kz — bz + mg + u

— Affine but not first order

State: X = (z,2/,1) € R?

Equation of motion:
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Example: mass-spring-damper system

SIIIIIIIIII SIS SIS
PIIIIII I 7777077770007 77277777770 tate = Z € R
P11 .

I I 777777777777777777777

Equation of motion:

mz" = —kz — bz + mg + u

— Affine but not first order

State: X = (z,2/,1) € R3
Model with external input u(t)

— Linear time invariant system: Equation of motion:
/
X' = AX + Bu z Z
/ k b s 1
) ) zZ| = |——z—=-Z +g+—-u
with some constraints on u. 1 m m 0 §Fm



Linear dynamical systems

Discrete case

x(n+1) = Ax(n)

v

biology,

» software verification,

v

probabilistic model
checking,

» combinatorics,

> ..

Typical questions
> reachability

> safety

Continuous case

X'(t) = Ax(t)

v

biology,

v

physics,

v

probabilistic model
checking,

v

electrical circuits,
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Linear dynamical systems

Discrete case
x(n+1) = Ax(n)+Bu(n)

> biology,
» software verification,

> probabilistic model
checking,

» combinatorics,

> ..

Typical questions
> reachability
> safety

> controllability

Continuous case
x'(t) = Ax(t)+Bu(t)

> biology,

» physics,

» probabilistic model
checking,

» electrical circuits,
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Hybrid /Cyber-physical systems

» physics: continuous dynamics

» electronics: discrete states

guard continuous dynamics

1
¢(x)
x < R(x)

4

discrete update
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Hybrid/Cyber-physical systems

guard continuous dynamics

1
¢(x)
x < R(x)

4

discrete update

Some classes: Typical questions
» Fi(x) = 1: timed automata > reachability
» Fi(x) = c¢;i: rectangular hybrid automata > safety
» Fi(x) = Aix: linear hybrid automata » controllability

5/19



Related work in the discrete case

Input: A, C € Q9% matrices
Output: dn € N such that A”=C 7

Example: 3n € N such that

1 11" [1 100
0 1] ~|o 1

] ?
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Related work in the discrete case

Input: A, C € Q9% matrices
Output: dn € N such that A”=C 7

Input: A, B, C € Q9%9 matrices
Output: dn, m € N such that A"B™ =

Example: 3n, m € N such that

Bk

= Nl

-

v Decidable (PTIME)

c 7

160?
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Related work in the discrete case

Input: A, C € Q9% matrices
Output: 3n € N such that A" =C 7 v Decidable (PTIME)

Input: A, B, C € Q9%9 matrices
Output: dn, m € N such that A"B™ = C 7 v' Decidable

Input: A, ..., Ak, C € Q9> matrices
Output: 3ny,..., nx € N such that Hf-;l All=C 7

dn, m, p € N such that

2 3]"[§ %7 [2 5]"_[s1 260],
o 1| {0 1| |0 1] “Jo 1|’
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Related work in the discrete case

Input: A, C € Q9% matrices
Output: 3n € N such that A" =C 7 v Decidable (PTIME)

Input: A, B, C € Q9%9 matrices
Output: dn, m € N such that A"B™ = C 7 v' Decidable
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Input: Ag,...,Ax, C € Q99 matrices
Output: C € (semi-group generated by Ay, ..., Ax) 7
v' Decidable if A; commute X Undecidable in general

Semi-group: (A1, ..., Ak) = all finite products of A;, ..., Ak
Examples:

ALAzAr  A1ArAL A, ASALAAY?
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Recap on linear differential equations
Let x : Ry — R" function, A € Q™" matrix

x1(t) air - aAn
=] : | A=
Xn(t) dnl - dnn

Linear differential equation:

X'(t) = Ax(t) x(0) = xo
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Recap on linear differential equations
Let x : Ry — R" function, A € Q™" matrix

x1(t) air -+ din
x(t)=| : A=
Xn(t) dnl °°° ann
Linear differential equation:

X'(t) = Ax(t) x(0) = xo

Examples:

(t) = 7x(t) A=) . [x] _
) (t)

Tt

~> X(t) =€ ~ {Xl(t) sin(t)




Recap on linear differential equations
Let x : Ry — R" function, A € Q™" matrix

x1(t) air - aAn
x(t)=1 : A=

Xn(t) dnl °°° ann

Linear differential equation:
X'(t) = Ax(t) x(0) = xo
General solution form:
x(t) = exp(At)xg
[e.e] Mn

where exp(M) = Z
n=0

nl
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Related work in the continuous case

Input: A, C € Q9% matrices
Output: 3t € R such that et = C ?

Example: 3t € R such that

(- 2
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Related work in the continuous case

Input: A, C € Q9% matrices
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Related work in the continuous case

Input: A, C € Q9% matrices
Output: 3t € R such that et = C ?

Input: A, B, C € Q9%9 matrices
Output: 3t,u € N such that e’teB! = C

Example: 3t, u € R such that

ol (19

?

v Decidable (PTIME)
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Related work in the continuous case

Input: A, C € Q9% matrices
Output: 3t € R such that eA* = C 7 v Decidable (PTIME)

Input: A, B, C € Q9%9 matrices
Output: 3t, u € N such that eMteBV = C ? x Unknown

Example: 3t, u € R such that

ol (s -6 %)
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Switching system

— X = Ax s x' = Aox Restricted hybrid system:
> linear dynamics
4 » no guards (nondeterministic)
X = Agx ¢ x' = Asx » no discrete updates
x1(t) switch
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Switching system

— X = Ax s x' = Aox Restricted hybrid system:
> linear dynamics
4 » no guards (nondeterministic)
X = Agx ¢ x' = Asx » no discrete updates
x1(t) switch

eA4t4 eA3t3 eA2 tr eA1 t1 — C ?

What we control: t1, tp, t3,ta € R



Switching system

— x' = A1x

A

~

x' = Aox

What about a loop ?

A

x' = Agx x' = Asx
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Switching system

— x' = A1x

X
|
>
N
X

What about a loop ?

Dynamics:

Aty oA3t; A2t AL JAata Asts JAotr JALT
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Switching system

X\
Il
>
]
x

— x' = A1x

>< Loop < clique

x' = Agx [+ x' = Asx
x1(t)
A; Ay l Az : Az
: ‘ l t
11 tHh=t=0 W t=t=0 13 u=t=0 D
Remark:

zero time dynamics (t; = 0) are allowed
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Switching system

— x' = A1x > x' = Aox
x' = Agx |¢ x' = Asx
x1(t)
A; Ay l Az : Az
t1 ‘ ts t3 ‘ t
Dynamics:

any finite product of et~  semigroup!
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Switching system

— x' = A1x > x' = Aox
x' = Agx |¢ x' = Asx
x1(t)
A; Ay l Az : Az
: : t
t1 ta t3 t
Problem:
cCeg 7
where

G = (semi-group generated by e?' for all t > 0)
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Switching system: results
Input: Ag,..., A, C € Q99 matrices
Output: Jty,..., tx = 0 such that

ﬁ Nt =C 7
i=1

Input: Ag,...,Ax, C € Q99 matrices
Output:

C € (semigroup generated by eMt Mt > 0 ?

Theorem
Both problems are:
» Undecidable in general

» Decidable when all the A; commute
11/19



Some words about the proof (commuting case)

Product Problem

equivalent
< AN

Semigroup Problem

Eltl,...,tk}OS.t. < I

;7:1 eAiti == C ?

reduce

Integer Linear Programming

dneZst. nBn<s

CeleMt ... eM:t>0)

?
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Some words about the proof (commuting case)

Product Problem ) :
equivalent Semigroup Problem
Jt1,...,tx > 0s.t. |< >
A1t Akt . ?
?:]_eAiti:C ? CE(e 7...,e t>0> !
reduce
A s of the form:

ao + log(a -+ log(a
Integer Linear Programming 0 g(a1) + g(ax)

IneZ9st. n1Bn<s \/ B, ag,...,ax are algebraic

How did we get from reals to integers with 7 ?

et =a & tclog(a)+2rZ

12/19



Integer Linear Programming

dn € 79 such that 1Bn < s ?

where s is a linear form in logarithms of algebraic numbers
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Integer Linear Programming

Jn € Z9 such that 7Bn <s 7

where s is a linear form in logarithms of algebraic numbers

Key ingredient: Diophantine approximations
» Finding integer points in cones: Kronecker's theorem
° g

° ° ° o,
7 7
¢ 7
7 7
¢ 7
¢ 7/
° ° ° o,’,) @
7z 7/
¢ 7/
7 7
7 7
4
° ° ° ° °
° ° ° °
° ° ° ° °
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Integer Linear Programming

Jn € Z9 such that 7Bn <s 7

where s is a linear form in logarithms of algebraic numbers

Key ingredient: Diophantine approximations
» Finding integer points in cones: Kronecker's theorem
° g

° ° ° o,
7 7
¢ 7
7 7
¢ 7
¢ 7/
° ° ° o,’,) @
7z 7/
¢ 7/
7 7
7 7
4
° ° ° ° °
° ° ° °
° ° ° ° °

» Compare linear forms in logs: Baker's theorem

V2 +logv3—3logV7 £ 1+log9— log /666
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Some words about the proof (general case)

Product Problem

reduce

Y

Semigroup Problem

Jty, ..., te = 0s.t.

;7:1 eAiti == C ?

reduce

Hilbert's Tenth Problem

InezZ9st. p(n)=0

Ce(eMt ... eM:t>0)

?

Theorem (Matiyasevich)

Hilbert's Tenth Problem is
undecidable

14 /19



Discrete-time LTI system

Consider the system:
x(n+1) = Ax(n) + u(n) x(n) € RY

where:
» x(0) and A are given (rational/algebraic coefficients)
» u(n) € U/ the
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Discrete-time LTI system
Consider the system:
x(n+1) = Ax(n) + u(n) x(n) € RY

where:
» x(0) and A are given (rational/algebraic coefficients)
» u(n) € U/ the input/control set

Controllability question

Given y, can we control x(0) to y in finite time?
I?2n e N, u(0),...,u(n—1) e, x(n) =y
Example: u(n) = user input Example: u(n) = external force

— can we make the system do — can the system reach a bad
what we want? state?

15/19



Complexity mostly depends on input space

x(n+1) = Ax(n) + u(n) x(n) € RY, u(n) € U

Union of Polytopes Undecidable

Union of two Affine Spaces Skolem-hard

Decidable

16/19



Hardness in linear dynamical systems
Given A, x(0) rationa/algebraic, consider:

x(n+1) = Ax(n) x(n) € R?
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Hardness in linear dynamical systems
Given A, x(0) rationa/algebraic, consider:
x(n+1) = Ax(n) x(n) € R?

Skolem problem

Given b € Q, is there some n such that b7 x(n) = 0?

Positivity problem

Given b € Q, is it true that for all n such that b7 x(n) > 0?

» Related to some hard problems

» not known to (un)decidable
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Some positive results

x(n+1) = Ax(n) + u(n) x(n) € RY u(n) €
Theorem

Controllability to a given y is decidable if // is a convex polytope
and A is stable + some spectral conditions.

decide if y belongs to the convex hull of a self-affine
fractal: a convex hull with

18 /19



Some positive results




Some positive results




Conclusion

» Linear and hybrid dynamical systems

» Motivated by verification, synthesis and controllability
problems for cyber-physical systems

» (Un-)decidability results achieved with number-theoretic tools
and integer linear programming
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