
Context and Motivation Results Conclusion

Rigorous numerical computation of
polynomial differential equations over

unbounded domains

Amaury Pouly
Joint work with O. Bournez and D. Graça

November 11th, 2015

Context and Motivation Results Conclusion

Outline

Context and Motivation

Results

Conclusion

Context and Motivation Results Conclusion

Ordinary Differential Equations (ODEs)

t
y(t)y0

System of ODEs:
y1(0)= y0,1

...
yn(0)= y0,n


y ′1(t)= f1(y1(t), . . . , yn(t))

...
y ′n(t)= fn(y1(t), . . . , yn(t))

More compactly:

y(0) = y0 y ′(t) = f (y(t))

Context and Motivation Results Conclusion

Computability
Let I = [0,a[and f ∈ C0(Rn). Assume y ∈ C1(I,Rd) satisfies
∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)). (1)

Can we compute y(t)± 2−n for all t ∈ I and n ∈ N ?

• existence: Peano theorem
• uniqueness: assumption on y or f
• computability: assume f is computable

Theorem (Collins and Graça)

If f is computable and (1) has a unique solution, then it is com-
putable over its maximum interval of life I.

Theorem (Buescu, Campagnolo and Graça)

Computing I (or deciding if I is bounded) is undecidable, even if
f is a polynomial.

Context and Motivation Results Conclusion

Computability
Let I = [0,a[and f ∈ C0(Rn). Assume y ∈ C1(I,Rd) satisfies
∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)). (1)

Can we compute y(t)± 2−n for all t ∈ I and n ∈ N ?
• existence: Peano theorem
• uniqueness: assumption on y or f
• computability: assume f is computable

Theorem (Collins and Graça)

If f is computable and (1) has a unique solution, then it is com-
putable over its maximum interval of life I.

Theorem (Buescu, Campagnolo and Graça)

Computing I (or deciding if I is bounded) is undecidable, even if
f is a polynomial.

Context and Motivation Results Conclusion

Computability
Let I = [0,a[and f ∈ C0(Rn). Assume y ∈ C1(I,Rd) satisfies
∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)). (1)

Can we compute y(t)± 2−n for all t ∈ I and n ∈ N ?
• existence: Peano theorem
• uniqueness: assumption on y or f
• computability: assume f is computable

Theorem (Collins and Graça)

If f is computable and (1) has a unique solution, then it is com-
putable over its maximum interval of life I.

Theorem (Buescu, Campagnolo and Graça)

Computing I (or deciding if I is bounded) is undecidable, even if
f is a polynomial.

Context and Motivation Results Conclusion

Computability
Let I = [0,a[and f ∈ C0(Rn). Assume y ∈ C1(I,Rd) satisfies
∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)). (1)

Can we compute y(t)± 2−n for all t ∈ I and n ∈ N ?
• existence: Peano theorem
• uniqueness: assumption on y or f
• computability: assume f is computable

Theorem (Collins and Graça)

If f is computable and (1) has a unique solution, then it is com-
putable over its maximum interval of life I.

Theorem (Buescu, Campagnolo and Graça)

Computing I (or deciding if I is bounded) is undecidable, even if
f is a polynomial.

Context and Motivation Results Conclusion

Empirical approach to complexity

Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Lipschitz continuous and computable.

• Non-rigorous: guaranteed (linear) complexity, result can be
wrong
→ Unsatisfactory

• Rigorous: guaranteed result, benchmark complexity
→ See NEXT TALK

Useful in practice, not that much in theory.

Context and Motivation Results Conclusion

Empirical approach to complexity

Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Lipschitz continuous and computable.
• Non-rigorous: guaranteed (linear) complexity, result can be

wrong
→ Unsatisfactory

• Rigorous: guaranteed result, benchmark complexity
→ See NEXT TALK

Useful in practice, not that much in theory.

Context and Motivation Results Conclusion

Empirical approach to complexity

Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Lipschitz continuous and computable.
• Non-rigorous: guaranteed (linear) complexity, result can be

wrong
→ Unsatisfactory

• Rigorous: guaranteed result, benchmark complexity
→ See NEXT TALK

Useful in practice, not that much in theory.

Context and Motivation Results Conclusion

Empirical approach to complexity

Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Lipschitz continuous and computable.
• Non-rigorous: guaranteed (linear) complexity, result can be

wrong
→ Unsatisfactory

• Rigorous: guaranteed result, benchmark complexity
→ See NEXT TALK

Useful in practice, not that much in theory.

Context and Motivation Results Conclusion

Nonuniform complexity-theoretic approach
Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y

PTIME arbitrary computable
PTIME + Lipschitz PSPACE-hard PSPACE

PTIME + C1 PSPACE-hard PSPACE
PTIME + Ck , k > 2 CH-hard PSPACE
PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yn(0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yn−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

Context and Motivation Results Conclusion

Nonuniform complexity-theoretic approach
Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y
PTIME arbitrary computable

PTIME + Lipschitz PSPACE-hard PSPACE
PTIME + C1 PSPACE-hard PSPACE

PTIME + Ck , k > 2 CH-hard PSPACE
PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yn(0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yn−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

Context and Motivation Results Conclusion

Nonuniform complexity-theoretic approach
Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y
PTIME arbitrary computable

PTIME + Lipschitz PSPACE-hard PSPACE

PTIME + C1 PSPACE-hard PSPACE
PTIME + Ck , k > 2 CH-hard PSPACE
PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yn(0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yn−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

Context and Motivation Results Conclusion

Nonuniform complexity-theoretic approach
Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y
PTIME arbitrary computable

PTIME + Lipschitz PSPACE-hard PSPACE
PTIME + C1 PSPACE-hard PSPACE

PTIME + Ck , k > 2 CH-hard PSPACE
PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yn(0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yn−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

Context and Motivation Results Conclusion

Nonuniform complexity-theoretic approach
Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y
PTIME arbitrary computable

PTIME + Lipschitz PSPACE-hard PSPACE
PTIME + C1 PSPACE-hard PSPACE

PTIME + Ck , k > 2 CH-hard PSPACE

PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yn(0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yn−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

Context and Motivation Results Conclusion

Nonuniform complexity-theoretic approach
Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y
PTIME arbitrary computable

PTIME + Lipschitz PSPACE-hard PSPACE
PTIME + C1 PSPACE-hard PSPACE

PTIME + Ck , k > 2 CH-hard PSPACE
PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yn(0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yn−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

Context and Motivation Results Conclusion

Nonuniform complexity-theoretic approach
Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y
PTIME arbitrary computable

PTIME + Lipschitz PSPACE-hard PSPACE
PTIME + C1 PSPACE-hard PSPACE

PTIME + Ck , k > 2 CH-hard PSPACE
PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yn(0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yn−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

Context and Motivation Results Conclusion

Nonuniform complexity: limitation

Example:

f PTIME analytic ⇒ y PTIME ⇒ y(t)± 2−n in time Ank

But:

• “Hides” some of the complexity: A,k could be arbitrarily
horrible depending on the dimension and f .

• Nonconstructive: might be a different algrithm for each f , or
depend on uncomputable constants.

Context and Motivation Results Conclusion

Nonuniform complexity: limitation

Example:

f PTIME analytic ⇒ y PTIME ⇒ y(t)± 2−n in time Ank

But:
• “Hides” some of the complexity: A,k could be arbitrarily

horrible depending on the dimension and f .

• Nonconstructive: might be a different algrithm for each f , or
depend on uncomputable constants.

Context and Motivation Results Conclusion

Nonuniform complexity: limitation

Example:

f PTIME analytic ⇒ y PTIME ⇒ y(t)± 2−n in time Ank

But:
• “Hides” some of the complexity: A,k could be arbitrarily

horrible depending on the dimension and f .
• Nonconstructive: might be a different algrithm for each f , or

depend on uncomputable constants.

Context and Motivation Results Conclusion

Uniform (operator) complexity approach
Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Prove that y(t)± 2−n can be
computed in time:

T (t ,n,Kd ,Kf)

where
• Kd : depends on the dimension d
• Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T
computable arbitrary computable

PTIME + analytic arbitrary computable
PTIME + polynomial arbitrary computable

PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f .

Context and Motivation Results Conclusion

Uniform (operator) complexity approach
Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Prove that y(t)± 2−n can be
computed in time:

T (t ,n,Kd ,Kf)

where
• Kd : depends on the dimension d
• Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T

computable arbitrary computable
PTIME + analytic arbitrary computable

PTIME + polynomial arbitrary computable
PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f .

Context and Motivation Results Conclusion

Uniform (operator) complexity approach
Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Prove that y(t)± 2−n can be
computed in time:

T (t ,n,Kd ,Kf)

where
• Kd : depends on the dimension d
• Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T
computable arbitrary computable

PTIME + analytic arbitrary computable
PTIME + polynomial arbitrary computable

PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f .

Context and Motivation Results Conclusion

Uniform (operator) complexity approach
Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Prove that y(t)± 2−n can be
computed in time:

T (t ,n,Kd ,Kf)

where
• Kd : depends on the dimension d
• Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T
computable arbitrary computable

PTIME + analytic arbitrary computable

PTIME + polynomial arbitrary computable
PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f .

Context and Motivation Results Conclusion

Uniform (operator) complexity approach
Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Prove that y(t)± 2−n can be
computed in time:

T (t ,n,Kd ,Kf)

where
• Kd : depends on the dimension d
• Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T
computable arbitrary computable

PTIME + analytic arbitrary computable
PTIME + polynomial arbitrary computable

PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f .

Context and Motivation Results Conclusion

Uniform (operator) complexity approach
Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Prove that y(t)± 2−n can be
computed in time:

T (t ,n,Kd ,Kf)

where
• Kd : depends on the dimension d
• Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T
computable arbitrary computable

PTIME + analytic arbitrary computable
PTIME + polynomial arbitrary computable

PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f .

Context and Motivation Results Conclusion

Uniform (operator) complexity approach
Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Prove that y(t)± 2−n can be
computed in time:

T (t ,n,Kd ,Kf)

where
• Kd : depends on the dimension d
• Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T
computable arbitrary computable

PTIME + analytic arbitrary computable
PTIME + polynomial arbitrary computable

PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f .

Context and Motivation Results Conclusion

Parametrized complexity approach

Goal: Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is nice. Prove that y(t)± 2−n can be
computed in time:

poly(t ,n,Kd ,Kf ,Ky (t))

where

• Kd : depends on the dimension d
• Kf : depends on f and its representation
• Ky : is a reasonable parameter of y , ideally unknown to the

algorithm (i.e. not part of the input)

Context and Motivation Results Conclusion

Parametrized complexity approach

Goal: Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is nice. Prove that y(t)± 2−n can be
computed in time:

poly(t ,n,Kd ,Kf ,Ky (t))

where
• Kd : depends on the dimension d
• Kf : depends on f and its representation
• Ky : is a reasonable parameter of y , ideally unknown to the

algorithm (i.e. not part of the input)

Context and Motivation Results Conclusion

Interesting parameters

t

y(t)

y0

• Bounding-box: M(t)

Context and Motivation Results Conclusion

Interesting parameters

t

y(t)

y0

M(t)

• Bounding-box: M(t)

Context and Motivation Results Conclusion

Interesting parameters

t

y(t)

y0

M(t)

• Bounding-box: M(t)

Context and Motivation Results Conclusion

Interesting parameters

t

y(t)

y0

M(t)

• Bounding-box: M(t)

• Length of the curve:
∫ t

0 ‖y
′(u)‖du

Context and Motivation Results Conclusion

Main Result
Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = p(y(t)),

where p : Rn → Rn is vector of multivariate polynomials.
Theorem (Our work)

Assuming t ∈ I, computing y(t)± 2−n takes time:

poly(deg p, log Σp,n, `(t0, t))d

where:

• Σp: sum of absolute value of coefficients of p
• `(t0, t): “length” of y over [t0, t]

`(t0, t) =

∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

Note: the algorithm can find `(0, t) automatically

Context and Motivation Results Conclusion

Main Result
Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = p(y(t)),

where p : Rn → Rn is vector of multivariate polynomials.
Theorem (Our work)

Assuming t ∈ I, computing y(t)± 2−n takes time:

poly(deg p, log Σp,n, `(t0, t))d

where:
• Σp: sum of absolute value of coefficients of p

• `(t0, t): “length” of y over [t0, t]

`(t0, t) =

∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

Note: the algorithm can find `(0, t) automatically

Context and Motivation Results Conclusion

Main Result
Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = p(y(t)),

where p : Rn → Rn is vector of multivariate polynomials.
Theorem (Our work)

Assuming t ∈ I, computing y(t)± 2−n takes time:

poly(deg p, log Σp,n, `(t0, t))d

where:
• Σp: sum of absolute value of coefficients of p
• `(t0, t): “length” of y over [t0, t]

`(t0, t) =

∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

Note: the algorithm can find `(0, t) automatically

Context and Motivation Results Conclusion

Euler method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈ y(t) + hy ′(t) ; ỹ i+1 = ỹ i + hp(ỹ i)

Context and Motivation Results Conclusion

Taylor method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Lemma: y (k)(t) = Pk (y(t)) = poly(y(t))

Order K , time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈
K∑

j=0

hj

j!
y (j)(t) ; ỹ i+1 =

K∑
j=0

hj

j!
Pk (ỹ i)

• Fixed order K : theoretically not enough
• Variable order K : choose K depending on i ,p,n and ỹ i

What about h ?
• Fixed h: wasteful
• Adaptive h: choose h depending on i ,p,n and ỹ i

Context and Motivation Results Conclusion

Taylor method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Lemma: y (k)(t) = Pk (y(t)) = poly(y(t))

Order K , time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈
K∑

j=0

hj

j!
y (j)(t) ; ỹ i+1 =

K∑
j=0

hj

j!
Pk (ỹ i)

• Fixed order K : theoretically not enough
• Variable order K : choose K depending on i ,p,n and ỹ i

What about h ?
• Fixed h: wasteful
• Adaptive h: choose h depending on i ,p,n and ỹ i

Context and Motivation Results Conclusion

Taylor method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Lemma: y (k)(t) = Pk (y(t)) = poly(y(t))

Order K , time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈
K∑

j=0

hj

j!
y (j)(t) ; ỹ i+1 =

K∑
j=0

hj

j!
Pk (ỹ i)

• Fixed order K : theoretically not enough

• Variable order K : choose K depending on i ,p,n and ỹ i

What about h ?
• Fixed h: wasteful
• Adaptive h: choose h depending on i ,p,n and ỹ i

Context and Motivation Results Conclusion

Taylor method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Lemma: y (k)(t) = Pk (y(t)) = poly(y(t))

Order K , time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈
K∑

j=0

hj

j!
y (j)(t) ; ỹ i+1 =

K∑
j=0

hj

j!
Pk (ỹ i)

• Fixed order K : theoretically not enough
• Variable order K : choose K depending on i ,p,n and ỹ i

What about h ?
• Fixed h: wasteful
• Adaptive h: choose h depending on i ,p,n and ỹ i

Context and Motivation Results Conclusion

Taylor method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Lemma: y (k)(t) = Pk (y(t)) = poly(y(t))

Order K , time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈
K∑

j=0

hj

j!
y (j)(t) ; ỹ i+1 =

K∑
j=0

hj

j!
Pk (ỹ i)

• Fixed order K : theoretically not enough
• Variable order K : choose K depending on i ,p,n and ỹ i

What about h ?
• Fixed h: wasteful

• Adaptive h: choose h depending on i ,p,n and ỹ i

Context and Motivation Results Conclusion

Taylor method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Lemma: y (k)(t) = Pk (y(t)) = poly(y(t))

Order K , time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈
K∑

j=0

hj

j!
y (j)(t) ; ỹ i+1 =

K∑
j=0

hj

j!
Pk (ỹ i)

• Fixed order K : theoretically not enough
• Variable order K : choose K depending on i ,p,n and ỹ i

What about h ?
• Fixed h: wasteful
• Adaptive h: choose h depending on i ,p,n and ỹ i

Context and Motivation Results Conclusion

Choice of the parameters

Choice of h based on an effective lower bound on radius of
convergence of the Taylor series:

Lemma: If y ′ = p(y), α = max(1, ‖y0‖), k = deg(p),
M = (k − 1)Σpαk−1 then:∥∥∥y (k)(t)− Pk (y(t))

∥∥∥ 6
α(Mt)k

1−Mt

Choose Mt ≈ 1
2 :

• t ≈ 1
M : adaptive step size

• local error ≈ (Mt)k ≈ 2−k : order gives the number of
correct bits

I spare you the analysis of the global error !

Context and Motivation Results Conclusion

Choice of the parameters

Choice of h based on an effective lower bound on radius of
convergence of the Taylor series:

Lemma: If y ′ = p(y), α = max(1, ‖y0‖), k = deg(p),
M = (k − 1)Σpαk−1 then:∥∥∥y (k)(t)− Pk (y(t))

∥∥∥ 6
α(Mt)k

1−Mt

Choose Mt ≈ 1
2 :

• t ≈ 1
M : adaptive step size

• local error ≈ (Mt)k ≈ 2−k : order gives the number of
correct bits

I spare you the analysis of the global error !

Context and Motivation Results Conclusion

Choice of the parameters

Choice of h based on an effective lower bound on radius of
convergence of the Taylor series:

Lemma: If y ′ = p(y), α = max(1, ‖y0‖), k = deg(p),
M = (k − 1)Σpαk−1 then:∥∥∥y (k)(t)− Pk (y(t))

∥∥∥ 6
α(Mt)k

1−Mt

Choose Mt ≈ 1
2 :

• t ≈ 1
M : adaptive step size

• local error ≈ (Mt)k ≈ 2−k : order gives the number of
correct bits

I spare you the analysis of the global error !

Context and Motivation Results Conclusion

Conclusion

• Polynomial complexity for polynomial ODEs, parametrized
by the length of the curve

• (Not this talk) This kind of ODE is P-complete
• Polynomial ODEs: good compromise between power and

tractability

Future work:
• Extend PIVP solving to more general ODEs
• Study the case when the length grows very slowly or is

bounded:∫ t

0

∥∥y ′(u)
∥∥du VS

∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

Context and Motivation Results Conclusion

Conclusion

• Polynomial complexity for polynomial ODEs, parametrized
by the length of the curve

• (Not this talk) This kind of ODE is P-complete
• Polynomial ODEs: good compromise between power and

tractability

Future work:
• Extend PIVP solving to more general ODEs
• Study the case when the length grows very slowly or is

bounded:∫ t

0

∥∥y ′(u)
∥∥du VS

∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

Context and Motivation Results Conclusion

Questions ?

• Do you have any questions ?

	Context and Motivation
	Results
	Conclusion

