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Ordinary Differential Equations (ODEs)

t
y(t)y0

System of ODEs:
y1(0)= y0,1

...
yn(0)= y0,n


y ′1(t)= f1(y1(t), . . . , yn(t))

...
y ′n(t)= fn(y1(t), . . . , yn(t))

More compactly:

y(0) = y0 y ′(t) = f (y(t))



Context and Motivation Results Conclusion

Computability
Let I = [0,a[ and f ∈ C0(Rn). Assume y ∈ C1(I,Rd ) satisfies
∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)). (1)

Can we compute y(t)± 2−n for all t ∈ I and n ∈ N ?

• existence: Peano theorem
• uniqueness: assumption on y or f
• computability: assume f is computable

Theorem (Collins and Graça)

If f is computable and (1) has a unique solution, then it is com-
putable over its maximum interval of life I.

Theorem (Buescu, Campagnolo and Graça)

Computing I (or deciding if I is bounded) is undecidable, even if
f is a polynomial.
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Empirical approach to complexity

Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is Lipschitz continuous and computable.

• Non-rigorous: guaranteed (linear) complexity, result can be
wrong
→ Unsatisfactory

• Rigorous: guaranteed result, benchmark complexity
→ See NEXT TALK

Useful in practice, not that much in theory.
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Nonuniform complexity-theoretic approach
Assume y : [0,1]→ Rn satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y

PTIME arbitrary computable
PTIME + Lipschitz PSPACE-hard PSPACE

PTIME + C1 PSPACE-hard PSPACE
PTIME + Ck , k > 2 CH-hard PSPACE
PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yn(0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yn−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]
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Nonuniform complexity: limitation

Example:

f PTIME analytic ⇒ y PTIME ⇒ y(t)± 2−n in time Ank

But:

• “Hides” some of the complexity: A,k could be arbitrarily
horrible depending on the dimension and f .

• Nonconstructive: might be a different algrithm for each f , or
depend on uncomputable constants.
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Uniform (operator) complexity approach
Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is .... Prove that y(t)± 2−n can be
computed in time:

T (t ,n,Kd ,Kf )

where
• Kd : depends on the dimension d
• Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T
computable arbitrary computable

PTIME + analytic arbitrary computable
PTIME + polynomial arbitrary computable

PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f .
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Parametrized complexity approach

Goal: Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rn → Rn is nice. Prove that y(t)± 2−n can be
computed in time:

poly(t ,n,Kd ,Kf ,Ky (t))

where

• Kd : depends on the dimension d
• Kf : depends on f and its representation
• Ky : is a reasonable parameter of y , ideally unknown to the

algorithm (i.e. not part of the input)
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t

y(t)

y0

• Bounding-box: M(t)
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Interesting parameters

t

y(t)

y0

M(t)

• Bounding-box: M(t)

• Length of the curve:
∫ t

0 ‖y
′(u)‖du
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Main Result
Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = p(y(t)),

where p : Rn → Rn is vector of multivariate polynomials.
Theorem (Our work)

Assuming t ∈ I, computing y(t)± 2−n takes time:

poly(deg p, log Σp,n, `(t0, t))d

where:

• Σp: sum of absolute value of coefficients of p
• `(t0, t): “length” of y over [t0, t ]

`(t0, t) =

∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

Note: the algorithm can find `(0, t) automatically
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Euler method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈ y(t) + hy ′(t) ; ỹ i+1 = ỹ i + hp(ỹ i)
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Taylor method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Lemma: y (k)(t) = Pk (y(t)) = poly(y(t))

Order K , time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈
K∑

j=0

hj

j!
y (j)(t) ; ỹ i+1 =

K∑
j=0

hj

j!
Pk (ỹ i)

• Fixed order K : theoretically not enough
• Variable order K : choose K depending on i ,p,n and ỹ i

What about h ?
• Fixed h: wasteful
• Adaptive h: choose h depending on i ,p,n and ỹ i
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Choice of the parameters

Choice of h based on an effective lower bound on radius of
convergence of the Taylor series:

Lemma: If y ′ = p(y), α = max(1, ‖y0‖), k = deg(p),
M = (k − 1)Σpαk−1 then:∥∥∥y (k)(t)− Pk (y(t))

∥∥∥ 6
α(Mt)k

1−Mt

Choose Mt ≈ 1
2 :

• t ≈ 1
M : adaptive step size

• local error ≈ (Mt)k ≈ 2−k : order gives the number of
correct bits

I spare you the analysis of the global error !



Context and Motivation Results Conclusion

Choice of the parameters

Choice of h based on an effective lower bound on radius of
convergence of the Taylor series:

Lemma: If y ′ = p(y), α = max(1, ‖y0‖), k = deg(p),
M = (k − 1)Σpαk−1 then:∥∥∥y (k)(t)− Pk (y(t))

∥∥∥ 6
α(Mt)k

1−Mt

Choose Mt ≈ 1
2 :

• t ≈ 1
M : adaptive step size

• local error ≈ (Mt)k ≈ 2−k : order gives the number of
correct bits

I spare you the analysis of the global error !



Context and Motivation Results Conclusion

Choice of the parameters

Choice of h based on an effective lower bound on radius of
convergence of the Taylor series:

Lemma: If y ′ = p(y), α = max(1, ‖y0‖), k = deg(p),
M = (k − 1)Σpαk−1 then:∥∥∥y (k)(t)− Pk (y(t))

∥∥∥ 6
α(Mt)k

1−Mt

Choose Mt ≈ 1
2 :

• t ≈ 1
M : adaptive step size

• local error ≈ (Mt)k ≈ 2−k : order gives the number of
correct bits

I spare you the analysis of the global error !



Context and Motivation Results Conclusion

Conclusion

• Polynomial complexity for polynomial ODEs, parametrized
by the length of the curve

• (Not this talk) This kind of ODE is P-complete
• Polynomial ODEs: good compromise between power and

tractability

Future work:
• Extend PIVP solving to more general ODEs
• Study the case when the length grows very slowly or is

bounded:∫ t

0

∥∥y ′(u)
∥∥du VS

∫ t

0
max(1,

∥∥y ′(u)
∥∥)du
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Questions ?

• Do you have any questions ?
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