Results

Conclusion

Rigorous numerical computation of polynomial differential equations over unbounded domains

Amaury Pouly Joint work with O. Bournez and D. Graça

November 11th, 2015

Results

Conclusion

Context and Motivation

Results

Conclusion

Results

Conclusion

Ordinary Differential Equations (ODEs)

System of ODEs:

$$\begin{cases} y_1(0) = y_{0,1} \\ \vdots \\ y_n(0) = y_{0,n} \end{cases} \qquad \begin{cases} y'_1(t) = f_1(y_1(t), \dots, y_n(t)) \\ \vdots \\ y'_n(t) = f_n(y_1(t), \dots, y_n(t)) \end{cases}$$

More compactly:

 $y(0) = y_0$ y'(t) = f(y(t))

Let I = [0, a[and $f \in C^0(\mathbb{R}^n)$. Assume $y \in C^1(I, \mathbb{R}^d)$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)).$ (1)

Can we compute $y(t) \pm 2^{-n}$ for all $t \in I$ and $n \in \mathbb{N}$?

Let I = [0, a[and $f \in C^0(\mathbb{R}^n)$. Assume $y \in C^1(I, \mathbb{R}^d)$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)).$ (1)

Can we compute $y(t) \pm 2^{-n}$ for all $t \in I$ and $n \in \mathbb{N}$?

- existence: Peano theorem
- uniqueness: assumption on y or f
- computability: assume f is computable

Let I = [0, a[and $f \in C^0(\mathbb{R}^n)$. Assume $y \in C^1(I, \mathbb{R}^d)$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)).$ (1)

Can we compute $y(t) \pm 2^{-n}$ for all $t \in I$ and $n \in \mathbb{N}$?

- existence: Peano theorem
- uniqueness: assumption on y or f
- computability: assume f is computable

Theorem (Collins and Graça)

If f is computable and (1) has a unique solution, then it is computable over its maximum interval of life I.

Let I = [0, a[and $f \in C^0(\mathbb{R}^n)$. Assume $y \in C^1(I, \mathbb{R}^d)$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)).$ (1)

Can we compute $y(t) \pm 2^{-n}$ for all $t \in I$ and $n \in \mathbb{N}$?

- existence: Peano theorem
- uniqueness: assumption on y or f
- computability: assume f is computable

Theorem (Collins and Graça)

If f is computable and (1) has a unique solution, then it is computable over its maximum interval of life I.

Theorem (Buescu, Campagnolo and Graça)

Computing *I* (or deciding if *I* is bounded) is undecidable, even if *f* is a polynomial.

Assume $y : [0, 1] \rightarrow \mathbb{R}^n$ satisfies $\forall t \in [0, 1]$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz continuous and computable.

Assume $y : [0, 1] \rightarrow \mathbb{R}^n$ satisfies $\forall t \in [0, 1]$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz continuous and computable.

- Non-rigorous: guaranteed (linear) complexity, result can be wrong
 - $\rightarrow \text{Unsatisfactory}$

Assume $y : [0, 1] \rightarrow \mathbb{R}^n$ satisfies $\forall t \in [0, 1]$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz continuous and computable.

- Non-rigorous: guaranteed (linear) complexity, result can be wrong
 - $\rightarrow \text{Unsatisfactory}$
- Rigorous: guaranteed result, benchmark complexity → See NEXT TALK

Assume $y : [0, 1] \rightarrow \mathbb{R}^n$ satisfies $\forall t \in [0, 1]$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz continuous and computable.

- Non-rigorous: guaranteed (linear) complexity, result can be wrong
 - $\rightarrow \text{Unsatisfactory}$
- Rigorous: guaranteed result, benchmark complexity
 → See NEXT TALK

Useful in practice, not that much in theory.

$$y(0) = 0,$$
 $y'(t) = f(y(t)).$

Assumption on *f* Lower bound on *y* Upper bound on *y*

$$y(0) = 0,$$
 $y'(t) = f(y(t)).$

Assumption on f	Lower bound on y	Upper bound on y
PTIME	arbitrary	computable

$$y(0) = 0,$$
 $y'(t) = f(y(t)).$

Assumption on f	Lower bound on y	Upper bound on y
PTIME	arbitrary	computable
PTIME + Lipschitz	PSPACE-hard	PSPACE

$$y(0) = 0,$$
 $y'(t) = f(y(t)).$

Assumption on f	Lower bound on y	Upper bound on y
PTIME	arbitrary	computable
PTIME + Lipschitz	PSPACE-hard	PSPACE
PTIME + C^1	PSPACE-hard	PSPACE

y(0) = 0, y'(t) = f(y(t)).

Assumption on f	Lower bound on y	Upper bound on y
PTIME	arbitrary	computable
PTIME + Lipschitz	PSPACE-hard	PSPACE
PTIME + C^1	PSPACE-hard	PSPACE
PTIME + $C^k, k \ge 2$	CH-hard	PSPACE

$$y(0) = 0,$$
 $y'(t) = f(y(t)).$

Assumption on f	Lower bound on y	Upper bound on y
PTIME	arbitrary	computable
PTIME + Lipschitz	PSPACE-hard	PSPACE
PTIME + C^1	PSPACE-hard	PSPACE
$PTIME + C^k, k \ge 2$	CH-hard	PSPACE
PTIME + analytic	—	PTIME

$$y(0) = 0,$$
 $y'(t) = f(y(t)).$

Assumption on f	Lower bound on y	Upper bound on y
PTIME	arbitrary	computable
PTIME + Lipschitz	PSPACE-hard	PSPACE
PTIME + C^1	PSPACE-hard	PSPACE
PTIME + $C^k, k \ge 2$	CH-hard	PSPACE
PTIME + analytic	—	PTIME

But those results can be deceiving...

$$\begin{cases} y_1(0) = 1 \\ y_2(0) = 1 \\ \vdots \\ y_n(0) = 1 \end{cases} \qquad \begin{cases} y'_1 = y_1 \\ y'_2 = y_1 y_2 \\ \vdots \\ y'_n = y_{n-1} y_n \end{cases} \rightarrow$$

$$y(t) = \mathcal{O}\left(e^{e^{-\int_{-}^{e^{t}}}}\right)$$

y is PTIME over [0, 1]

Results

Conclusion

Nonuniform complexity: limitation

Example:

f PTIME analytic \Rightarrow *y* PTIME \Rightarrow *y*(*t*) $\pm 2^{-n}$ in time *An^k*

But:

Nonuniform complexity: limitation

Example:

f PTIME analytic \Rightarrow *y* PTIME \Rightarrow *y*(*t*) $\pm 2^{-n}$ in time *An^k*

But:

• "Hides" some of the complexity: A,k *could* be arbitrarily horrible depending on the dimension and *f*.

Nonuniform complexity: limitation

Example:

f PTIME analytic \Rightarrow *y* PTIME \Rightarrow *y*(*t*) $\pm 2^{-n}$ in time *An^k*

But:

- "Hides" some of the complexity: A,k *could* be arbitrarily horrible depending on the dimension and *f*.
- Nonconstructive: might be a different algrithm for each *f*, or depend on uncomputable constants.

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Prove that $y(t) \pm 2^{-n}$ can be computed in time:

 $T(t, n, K_d, K_f)$

- K_d: depends on the dimension d
- K_f: depends on f and its representation

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Prove that $y(t) \pm 2^{-n}$ can be computed in time:

 $T(t, n, K_d, K_f)$

where

- K_d: depends on the dimension d
- K_f: depends on f and its representation

Assumption on f Lower bound on T Upper bound on T

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Prove that $y(t) \pm 2^{-n}$ can be computed in time:

 $T(t, n, K_d, K_f)$

- K_d: depends on the dimension d
- K_f: depends on f and its representation

Assumption on f	Lower bound on T	Upper bound on T
computable	arbitrary	computable

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Prove that $y(t) \pm 2^{-n}$ can be computed in time:

 $T(t, n, K_d, K_f)$

- K_d: depends on the dimension d
- K_f: depends on f and its representation

Assumption on f	Lower bound on T	Upper bound on T
computable	arbitrary	computable
PTIME + analytic	arbitrary	computable

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Prove that $y(t) \pm 2^{-n}$ can be computed in time:

 $T(t, n, K_d, K_f)$

- K_d: depends on the dimension d
- K_f: depends on f and its representation

Assumption on f	Lower bound on T	Upper bound on T
computable	arbitrary	computable
PTIME + analytic	arbitrary	computable
PTIME + polynomial	arbitrary	computable

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Prove that $y(t) \pm 2^{-n}$ can be computed in time:

 $T(t, n, K_d, K_f)$

- K_d: depends on the dimension d
- K_f: depends on f and its representation

Assumption on f	Lower bound on T	Upper bound on T
computable	arbitrary	computable
PTIME + analytic	arbitrary	computable
PTIME + polynomial	arbitrary	computable
PTIME + linear	—	exponential?

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is Prove that $y(t) \pm 2^{-n}$ can be computed in time:

 $T(t, n, K_d, K_f)$

where

- *K_d*: depends on the dimension *d*
- K_f: depends on f and its representation

Assumption on f	Lower bound on T	Upper bound on T
computable	arbitrary	computable
PTIME + analytic	arbitrary	computable
PTIME + polynomial	arbitrary	computable
PTIME + linear	—	exponential?

Problem: we cannot predict the behaviour of *y* based on *f*.

Parametrized complexity approach

Goal: Assume $y : I \to \mathbb{R}^d$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is nice. Prove that $y(t) \pm 2^{-n}$ can be computed in time:

 $poly(t, n, K_d, K_f, K_y(t))$

Parametrized complexity approach

Goal: Assume $y : I \to \mathbb{R}^d$ satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = f(y(t)),$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is nice. Prove that $y(t) \pm 2^{-n}$ can be computed in time:

 $poly(t, n, K_d, K_f, K_y(t))$

- K_d : depends on the dimension d
- K_f : depends on f and its representation
- *K_y*: is a reasonable parameter of *y*, ideally unknown to the algorithm (i.e. not part of the input)

Results

Conclusion

Interesting parameters

Results

Conclusion

Interesting parameters

• Bounding-box: *M*(*t*)

Results

Conclusion

Interesting parameters

• Bounding-box: *M*(*t*)

Results

Conclusion

Interesting parameters

- Bounding-box: M(t)
- Length of the curve: $\int_0^t \|y'(u)\| du$

Main Result

Assume
$$y : I \to \mathbb{R}^d$$
 satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = p(y(t)),$

where $p : \mathbb{R}^n \to \mathbb{R}^n$ is vector of multivariate polynomials.

Theorem (Our work)

Assuming $t \in I$, computing $y(t) \pm 2^{-n}$ takes time:

 $poly(deg p, log \Sigma p, n, \ell(t_0, t))^d$

Main Result

Assume
$$y : I \to \mathbb{R}^d$$
 satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = p(y(t)),$

where $p : \mathbb{R}^n \to \mathbb{R}^n$ is vector of multivariate polynomials.

Theorem (Our work)

Assuming $t \in I$, computing $y(t) \pm 2^{-n}$ takes time:

 $poly(deg p, log \Sigma p, n, \ell(t_0, t))^d$

where:

Σp: sum of absolute value of coefficients of p

Main Result

Assume
$$y : I \to \mathbb{R}^d$$
 satisfies $\forall t \in I$:

$$y(0) = 0,$$
 $y'(t) = p(y(t)),$

where $p : \mathbb{R}^n \to \mathbb{R}^n$ is vector of multivariate polynomials.

Theorem (Our work)

Assuming $t \in I$, computing $y(t) \pm 2^{-n}$ takes time:

 $poly(deg p, log \Sigma p, n, \ell(t_0, t))^d$

where:

- Σp: sum of absolute value of coefficients of p
- ℓ(t₀, t): "length" of *y* over [t₀, t]

$$\ell(t_0, t) = \int_0^t \max(1, ||y'(u)||) du$$

Note: the algorithm can find $\ell(0, t)$ automatically

Results

Conclusion

Euler method

$$y(0) = 0$$
 $y'(t) = p(y(t))$ $t \in I$

Conclusion

Taylor method

$$y(0)=0$$
 $y'(t)=p(y(t))$ $t\in I$
Lemma: $y^{(k)}(t)=P_k(y(t))={
m poly}(y(t))$

$$y(0) = 0$$
 $y'(t) = p(y(t))$ $t \in I$

Lemma: $y^{(k)}(t) = P_k(y(t)) = poly(y(t))$

$$y(t+h) \approx \sum_{j=0}^{K} \frac{h^{j}}{j!} y^{(j)}(t) \quad \rightsquigarrow \quad \tilde{y}^{i+1} = \sum_{j=0}^{K} \frac{h^{j}}{j!} P_{k}(\tilde{y}^{i})$$

$$y(0) = 0$$
 $y'(t) = p(y(t))$ $t \in I$

Lemma: $y^{(k)}(t) = P_k(y(t)) = poly(y(t))$

Order *K*, time step *h*, discretize compute $\tilde{y}^i \approx y(ih)$:

$$y(t+h) \approx \sum_{j=0}^{K} \frac{h^{j}}{j!} y^{(j)}(t) \quad \rightsquigarrow \quad \tilde{y}^{i+1} = \sum_{j=0}^{K} \frac{h^{j}}{j!} P_{k}(\tilde{y}^{i})$$

• Fixed order K: theoretically not enough

$$y(0) = 0$$
 $y'(t) = p(y(t))$ $t \in I$

Lemma: $y^{(k)}(t) = P_k(y(t)) = poly(y(t))$

$$y(t+h) \approx \sum_{j=0}^{K} \frac{h^{j}}{j!} y^{(j)}(t) \quad \rightsquigarrow \quad \tilde{y}^{i+1} = \sum_{j=0}^{K} \frac{h^{j}}{j!} P_{k}(\tilde{y}^{i})$$

- Fixed order K: theoretically not enough
- Variable order K: choose K depending on *i*, *p*, *n* and \tilde{y}^i

$$y(0) = 0$$
 $y'(t) = p(y(t))$ $t \in I$

Lemma: $y^{(k)}(t) = P_k(y(t)) = poly(y(t))$

$$y(t+h) \approx \sum_{j=0}^{K} \frac{h^{j}}{j!} y^{(j)}(t) \quad \rightsquigarrow \quad \tilde{y}^{i+1} = \sum_{j=0}^{K} \frac{h^{j}}{j!} P_{k}(\tilde{y}^{i})$$

- Fixed order K: theoretically not enough
- Variable order *K*: choose *K* depending on *i*, *p*, *n* and \tilde{y}^i What about *h* ?
 - Fixed h: wasteful

$$y(0) = 0$$
 $y'(t) = p(y(t))$ $t \in I$

Lemma: $y^{(k)}(t) = P_k(y(t)) = poly(y(t))$

$$y(t+h) \approx \sum_{j=0}^{K} \frac{h^{j}}{j!} y^{(j)}(t) \quad \rightsquigarrow \quad \tilde{y}^{i+1} = \sum_{j=0}^{K} \frac{h^{j}}{j!} P_{k}(\tilde{y}^{i})$$

- Fixed order K: theoretically not enough
- Variable order *K*: choose *K* depending on *i*, *p*, *n* and \tilde{y}^i What about *h* ?
 - Fixed h: wasteful
 - Adaptive h: choose h depending on i, p, n and ỹⁱ

Choice of the parameters

Choice of *h* based on an effective lower bound on radius of convergence of the Taylor series:

Lemma: If y' = p(y), $\alpha = \max(1, ||y_0||)$, $k = \deg(p)$, $M = (k - 1)\Sigma p \alpha^{k-1}$ then:

$$\left\| \boldsymbol{y}^{(k)}(t) - \boldsymbol{P}_{k}(\boldsymbol{y}(t)) \right\| \leq \frac{\alpha(Mt)^{k}}{1 - Mt}$$

Choice of the parameters

Choice of *h* based on an effective lower bound on radius of convergence of the Taylor series:

Lemma: If y' = p(y), $\alpha = \max(1, ||y_0||)$, $k = \deg(p)$, $M = (k - 1)\Sigma p \alpha^{k-1}$ then:

$$\left\| \boldsymbol{y}^{(k)}(t) - \boldsymbol{P}_{k}(\boldsymbol{y}(t)) \right\| \leq \frac{\alpha(Mt)^{k}}{1 - Mt}$$

Choose $Mt \approx \frac{1}{2}$:

- $t \approx \frac{1}{M}$: adaptive step size
- local error ≈ (*Mt*)^k ≈ 2^{-k}: order gives the number of correct bits

Choice of the parameters

Choice of *h* based on an effective lower bound on radius of convergence of the Taylor series:

Lemma: If y' = p(y), $\alpha = \max(1, ||y_0||)$, $k = \deg(p)$, $M = (k - 1)\Sigma p \alpha^{k-1}$ then:

$$\left\| \boldsymbol{y}^{(k)}(t) - \boldsymbol{P}_{k}(\boldsymbol{y}(t)) \right\| \leq \frac{\alpha(Mt)^{k}}{1 - Mt}$$

Choose $Mt \approx \frac{1}{2}$:

- $t \approx \frac{1}{M}$: adaptive step size
- local error ≈ (*Mt*)^k ≈ 2^{-k}: order gives the number of correct bits

I spare you the analysis of the global error !

Results

Conclusion

Conclusion

- Polynomial complexity for polynomial ODEs, parametrized by the length of the curve
- (Not this talk) This kind of ODE is P-complete
- Polynomial ODEs: good compromise between power and tractability

Results

Conclusion

Conclusion

- Polynomial complexity for polynomial ODEs, parametrized by the length of the curve
- (Not this talk) This kind of ODE is P-complete
- Polynomial ODEs: good compromise between power and tractability

Future work:

- Extend PIVP solving to more general ODEs
- Study the case when the length grows very slowly or is bounded:

$$\int_0^t \|y'(u)\| \, du \qquad \text{VS} \qquad \int_0^t \max(1, \|y'(u)\|) \, du$$

Results

Conclusion

• Do you have any questions ?