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Examples: while loop, Markov chain

Bull
market

Bear
market

Stagnant
market

0.9 0.8
0.075

0.050.25
0.025 0.25

0.15

State: X = (pbull ,pbear ,pstag) ∈ [0,1]3

Transitions:

A =

 0.9 0.15 0.25
0.075 0.8 0.25
0.025 0.05 0.5


→ Linear dynamical system

Xn+1 = AXn

Linear loop

pbull := 0
pbear := 1
pstag := 0
while pbull ⩽ 1/2 do pbull

pbear
pstag

 := A

 pbull
pbear
pstag


The loop terminates if and
only if the probability of a bull
market is > 1/2.
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Example: mass-spring-damper system

m

kb

u(t)

z

with external input u(t).

State: X = z ∈ R

Equation of motion:

mz ′′ = −kz − bz ′ + mg

+ u

→ Affine but not first order

State: X = (z, z ′,1) ∈ R3

Equation of motion:z
z ′

1

′

=

 z ′

− k
m z − b

m z ′ + g
0



+

0
1
m
0

u

Can be used to model a car suspension.
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Linear dynamical systems

Discrete case

x(n + 1) = Ax(n)

▶ biology,
▶ software verification,
▶ probabilistic model checking,
▶ combinatorics,
▶ ....

Continuous case

x ′(t) = Ax(t)

▶ biology,
▶ physics,
▶ probabilistic model checking,
▶ electrical circuits,
▶ ....

Typical questions

▶ reachability
▶ safety

▶ controllability

▶ optimal control
▶ feedback control
▶ ...
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More complicated programs

Linear loop with if

x := 2−10

y := 1
while y ⩾ x do

if y ⩾ 2x then[
x
y

]
:=

[
2 0
1 4

] [
x
y

]
else[

x
y

]
:=

[
2 3
−3 7

] [
x
y

]

;

Nondeterminic loop

x := 2−10

y := 1
while true do

non deterministically do[
x
y

]
:=

[
2 0
1 4

] [
x
y

]
or [

x
y

]
:=

[
2 3
−3 7

] [
x
y

]
Very challenging to analyze!
▶ reachability is undecidable
▶ invariant* synthesis also hard

Overapproximate behaviours
▶ reachability still undecidable
▶ invariant synthesis possible
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Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

▶ (2) is an invariant: it holds at every
step

▶ (2) implies the guard is true
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Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition
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Why Invariants?

I
S

BAD!

The classical approach to the verification of temporal safety
properties of programs requires the construction of inductive
invariants [...]. Automation of this construction is the main
challenge in program verification.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko
Invariant Synthesis for Combined Theories, 2007
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Affine programs

▶ Nondeterministic branching (no guards)
▶ All assignments are affine
▶ Allow nondeterministic assignments (x := ∗)

1 2

3

f1
f2

f3

f4f5

▶ Can overapproximate complex programs
▶ Covers existing formalisms:

finite, probabilistic, quantum, quantitative automata
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RC circuit

OPEN

I CLOSED IR

R

VR

VC
Q

C
V

switch

t

İ = 0
İR = − 1

RC IR
V̇R = − 1

C IR
Q̇ = IR
V̇C = 1

C IR

OPEN

İ = − 1
RC IR

İR = − 1
RC IR

V̇R = − 1
C IR

Q̇ = IR
V̇C = 1

C IR

CLOSED
I := 1

R (V−VC)

IR := 1
R (V−VC)

VR :=V−VC

I :=0

IR :=− 1
R VC

VR :=−VC
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İ = 0
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İR = − 1
RC IR

V̇R = − 1
C IR

Q̇ = IR
V̇C = 1

C IR

CLOSED
I := 1

R (V−VC)

IR := 1
R (V−VC)

VR :=V−VC

I :=0

IR :=− 1
R VC

VR :=−VC

11 / 101



Switching systems

x ′ = A1x x ′ = A2x

x ′ = A3xx ′ = A4x

Restricted hybrid system:
▶ linear dynamics
▶ no guards (nondeterministic)
▶ no discrete updates

switchx(t)

t
x ′ = A1x

t1

x ′ = A2x

t2

x ′ = A3x

t3

x ′ = A4x

t4

▶ reachability also undecidable
▶ invariant synthesis possible
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Going hybrid: a bouncing ball

x

y

ẋ = vx
ẏ = vy
v̇x = 0
v̇y = −g
ṫ = 1

t := 0
x := 0
y := h

vx := c
vy := 0

vy := −vy
▶ affine program: collision
+ linear differential equation: mechanics
= linear hybrid automaton

Invariants:
▶ vx = c
▶ x = tc
▶ v2

y + 2g(y − h) = 0

recover conservation
of energy!
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ṫ = 1

t := 0
x := 0
y := h

vx := c
vy := 0

vy := −vy
▶ affine program: collision
+ linear differential equation: mechanics
= linear hybrid automaton

Invariants:
▶ vx = c
▶ x = tc
▶ v2

y + 2g(y − h) = 0

recover conservation
of energy!

13 / 101



Linear Hybrid Automata

▶ Nondeterministic branching (no guards)
▶ All assignments are affine
▶ Linear differential equations in each location

ẋ =2y−x

ẏ =x−y Ẋ = AX

Ẋ = BX

x := 3x − 7y + 1
f2

f3

f4f5

▶ More general than affine programs
▶ More general than linear differential equations

14 / 101



Linear Hybrid Automata

▶ Nondeterministic branching (no guards)
▶ All assignments are affine
▶ Linear differential equations in each location
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Which invariants?

Intervals

Octagons Polyhedrons

Affine/linear sets Algebraic sets =
polynomial equalities

Semialgebraic sets

⩽

⩽

⩽
⩽

⩽

⩽
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Linear system with rounding

Rounding: ⌊·⌉ = round to nearest integer

A =

[
cos θ − sin θ
sin θ cos θ

]
∈ Q2×2,

⌊(
x
y

)⌉
=

(
⌊x⌉
⌊y⌉

)

Problem: given X0 ∈ Q2, define Xn+1 = ⌊AXn⌉

▶ is reachability decidable ?
▶ is (Xn)n eventually periodic?

▶ what does the reachable set
look like?

r = 10, θ = π/42 r = 10, θ = 20.4π
10 r = 15, θ = π/91 r = 20, θ = π/14

Open problems! Only known for a few specific values of θ.
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Linear dynamical systems are ubiquitous...

... and lead to very interesting mathematics!
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Interesting related mathematics

▶ Linear recurrent sequences (LRS)

xn+k = ak−1an+k−1 + · · ·+ x0xn

Fibonacci: Fn+2 = Fn+1 + Fn

▶ Skolem/Positivity problem (Open for more than 70 years!)
decide if a given LRS has a zero/is always positive

▶ Exponential polynomials:

f (t) = P1(t)eλ1t + · · ·+ Pn(t)eλnt

Examples: polynomials, et , sin(t), t2 sin(t)− e−t

▶ Continuous Skolem/Positivity (Also open)
decide if an exponential polynomial has a zero/is always positive

Reachability often harder/reduces to of these problems!
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Algebraic numbers and conjectures

Algebraic number: root of polynomial with integer coefficients
Transcendental number: not algebraic, e.g. e, π

Theorem (Gelfond–Schneider theorem)

If a,b are algebraic numbers with a ̸= 0,1 and b irrational, then (any
value of) ab transcendental.

Example: 2
√

2 is transcendental.

Why is this related to reachability?
▶ target is usually rational/algebraic
▶ reachability creates constraints between numbers

Example: given a,b ∈ Q, P ∈ Q[X ] polynomial, find t such that

P(t) = a and et = b ; impossible unless t = 0

Biggest open question in this field: Schanuel’s conjecture
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Transcendental number theory

Many problems boil down to diophantine equations/approximations:
▶ Finding integer points in cones: Kronecker’s theorem

▶ Compare linear forms in logarithms: Baker’s theorem
√

2 + log
√

3− 3 log
√

7 ?
= 1 + log 9− log

42
√

666
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(Semi-)group theory

Finitely generated matrix semigroup:
A1, . . . ,Ak ∈ Qn×n generate a semigroup S = ⟨A1, . . . ,Ak ⟩

Example: SL2(Z) =
〈[

0 −1
1 0

]
,

[
0 −1
1 1

]〉

Problems:
▶ finitness: is S finite ?
▶ mortality: does 0 ∈ S ?
▶ identity: does In ∈ S ?
▶ membership: does M ∈ S where M ∈ Qn×n is given as input ?

Undecidable in general, many decidable subclasses are known.
Equivalent to reachability of affine programs.
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Algebraic geometry

Study systems of multivariate polynomial equations using abstract
algebraic techniques, with applications to geometry.

Examples

x2 + y2 + z2 − 1 = 0 ; sphere in R3

x2 + y2 + z2 = 1 ∧ x + y + z = 1 ; “sliced” sphere in R3

x2 + 1 = 0 ; ∅ in R
x2 + 1 = 0 ; {i ,−i} in C

The field K is very important:
▶ real algebraic geometry: more “intuitive” but more difficult, really

requires the study of semi-algebraic sets
▶ mainstream algebraic geometry: K is algebraically closed†, e.g. C

†K is algebraically closed if every non-constant polynomial has a root in K.
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First-order theory of the reals

Many questions expressible in first-order logical theories:
▶ R0 = (R,0,1, <,+, ·): decidable

∀x , y ∈ R
x + y

2
⩾
√

xy

▶ Rexp = (R,0,1, <,+, ·, exp, cos ↾[0,1]): decidable subject to
Schanuel’s conjecture

∀x ∈ R x ̸= 0⇒ t + tet − 43e3t ̸= 1

▶ Presburger arithmetic (N,0,1, <,+): decidable

∃x ∈ Nn Ax ⩾ b
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Summary

Linear dynamical systems are ubiquitous and exact reachability
questions lead to very interesting mathematical and logical questions.

But...
▶ some systems are fundamentally nonlinear

xn+1 = x2
n

▶ real programs manipulate data structures:
trees, arrays, ...

▶ some programs are not sequential / nondeterministic
probabilistic, concurrent/parallell, ...

▶ exact reachability is not the only approach
testing, probabilistic model checking, incomplete algorithms, ...
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Reachability
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Examples: while loop, Markov chain

Bull
market

Bear
market

Stagnant
market

0.9 0.8
0.075

0.050.25
0.025 0.25

0.15

State: X = (pbull ,pbear ,pstag) ∈ [0,1]3

Transitions:

A =

 0.9 0.15 0.25
0.075 0.8 0.25
0.025 0.05 0.5


→ Linear dynamical system

Xn+1 = AXn

Linear loop

pbull := 0
pbear := 1
pstag := 0
while pbull ⩽ 1/2 do pbull

pbear
pstag

 := A

 pbull
pbear
pstag


The loop terminates if and
only if the probability of a bull
market is > 1/2.
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Termination Linear Loops
Does this loop terminate?

Linear Loop

x := 2−10, y := 1
until ϕ(x) do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

;

Reachability problem

Given
▶ initial point: x0 ∈ Qd ,
▶ transition matrix: A ∈ Qd×d ,
▶ target set: S ⊆ Rd

decide if ∃n ∈ N.Anx0 ∈ S.

Natural choices for S:
▶ point:

∃n ∈ N Anx0 = y
▶ affine subspace:

∃n ∈ N MAnx0 = b
▶ polyhedron:

∃n ∈ N MAnx0 ⩾ b

▶ (semi-)algebraic sets

∃n ∈ N p(Anx0) ⩾ 0
▶ boolean combinations
▶ replace x0 by an initial set X

∃x0 ∈ X∃n ∈ N Anx0 ∈ S
∀x0 ∈ X∃n ∈ N Anx0 ∈ S
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Termination Linear Loops
Does this loop terminate?

Linear Loop
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Termination Linear Loops
Does this loop terminate?

Linear Loop
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Termination Linear Loops
Does this loop terminate?

Linear Loop
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Termination Linear Loops
Does this loop terminate?

Linear Loop

x := 2−10, y := 1
until x2y ⩾ 1 or x = y do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

] ;

Reachability problem

Given
▶ initial point: x0 ∈ Qd ,
▶ transition matrix: A ∈ Qd×d ,
▶ target set: S ⊆ Rd

decide if ∃n ∈ N.Anx0 ∈ S.

Natural choices for S:
▶ point:

∃n ∈ N Anx0 = y
▶ affine subspace:

∃n ∈ N MAnx0 = b
▶ polyhedron:

∃n ∈ N MAnx0 ⩾ b

▶ (semi-)algebraic sets

∃n ∈ N p(Anx0) ⩾ 0
▶ boolean combinations

▶ replace x0 by an initial set X
∃x0 ∈ X∃n ∈ N Anx0 ∈ S
∀x0 ∈ X∃n ∈ N Anx0 ∈ S
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Termination Linear Loops
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What is decidable about linear loops?

Problem: given x0, A and S, decide if ∃n ∈ N such that Anx0 ∈ S.

Theorem (Orbit problem; Kannan and Lipton 1980, 1986)

Decidable in polynomial time when S is a singleton.

Already nontrivial proof using algebraic number theory!

Theorem (Chonev, Ouaknine and Worrell, 2016)

Decidable (in NPRP) when S is a linear subspace of dimension ⩽ 3.
Decidable (in PSPACE) when S is a polytope of dimension ⩽ 3.

Problem: given X , A and S, decide if ∃n ∈ N such that AnX ∩ S ≠ ∅.

Theorem (Almagor, Ouaknine and Worrell, 2017)

Decidable (in PSPACE) when X ,S are polytopes of dimension ⩽ 3.

Why do we need the dimension to be small?
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From loops to recurrent sequences

Linear Loop

x := x0
until 3x1 − 7x2 + 4x3 = 0 do
x := Ax

;
Half-space reachability

Given x , y ∈ Qd , A ∈ Qd×d ,
decide if ∃n ∈ N. yT Anx0 = 0.

Consider the sequence un = yT Anx .

Lemma
There exists a0, . . . ,ad−1 ∈ Q such that

un+d = ad−1un+d−1 + · · ·+ a0un, ∀n ∈ N.

In other words, (un)n is a linear recurrent sequence (LRS).

Conversely,

▶ Fibonacci: Fn+2 = Fn+1 + Fn

▶ Pell numbers: Pn+2 = 2Pn+1 + Pn

▶ very common in combinatorics
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There exists a0, . . . ,ad−1 ∈ Q such that

un+d = ad−1un+d−1 + · · ·+ a0un, ∀n ∈ N.

In other words, (un)n is a linear recurrent sequence (LRS). Conversely,

Lemma
For any LRS (un)n, there exists x0, y and A such that un = yT Anx0.
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Skolem and posivity problems

Linear recurrent sequence (LRS) of order d :

un+d = ad−1un+d−1 + · · ·+ a0un, ∀n ∈ N.

Remark: entirely determined by u0, . . . ,ud−1 and a0, . . . ,ad−1

Skolem Problem
Given a LRS (un)n, decide if un = 0 for some n ∈ N.

This problem has been open for 70 years!

Positivity Problem

Given a LRS (un)n, decide if un ⩾ 0 for all n ∈ N.

Harder than Skolem
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Skolem-Mahler-Lech theorem

Skolem Problem
Given a LRS (un)n, decide if un = 0 for some n ∈ N.

Theorem (Skolem, Mahler, and Lech, 1933, 1953, 1957)

The set {n ∈ N : un = 0} is a union of finitely arithmetic progression
and a finite set.

0

pattern

finite set

The regular patterm is computable. Nothing is known about the finite
set: the proof is nonconstructive and uses p-adic analysis.
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Skolem in low dimension

Theorem (Mignotte, Shorey, Tijdeman; Vereshchagin, 1985)

The Skolem problem is decidable for LRS of order 4.

Theorem (Blondel and Portier, 2002)

The Skolem problem is NP-hard.

For any x ∈ R, the (homogeneous Diophantine approximation) type

L(x) = inf
{

c ∈ R :
∣∣∣x − n

m

∣∣∣ < c
m2 for some n,m ∈ Z

}
.

Intuitively, if L(x) > 0 then x is badly approximable by rationals. Almost
nothing known for any concrete x except that L(x) ∈ [0,1/

√
5].

Theorem (Ouaknine and Worrell, 2013)

If Skolem is decidable at order 5 then one can approximate L(x) with
arbitrary precision for a large class of numbers x.
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Positivity and eventual posivity

Positivity Problem

Given a LRS (un)n, decide if un ⩾ 0 for all n ∈ N.

Theorem (Laohakosol and Tangsupphathawat, 2009)

The positivity problem is decidable at order 3.

Ultimate positivity Problem

Given a LRS (un)n, decide if ∃N ∈ N, such that un ⩾ 0 for all n ⩾ N.

Theorem (Ouaknine and Worrell, 2014)

The ultimate positivity problem is decidable for simple‡ LRS. It is at
least as hard as deciding ∃R.
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Ultimate positivity Problem

Given a LRS (un)n, decide if ∃N ∈ N, such that un ⩾ 0 for all n ⩾ N.

Theorem (Ouaknine and Worrell, 2014)

The ultimate positivity problem is decidable for simple‡ LRS. It is at
least as hard as deciding ∃R.

‡The associated characteristic polynomial has no repeated roots.
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First-order queries on orbits

First-order orbit query (FOOQ): fully quantified first-order sentence
whose atomic proposition are of the form

p(x) ⩾ 0, Anx ∈ T (T semialgebraic set).

Examples: ∃n ∈ N such that...
▶ Anx = y : Anx ∈ {y}
▶ AnS ∩ T ̸= ∅: ∃x ∈ Rd . x ∈ S ∧ Anx ∈ T
▶ AnS ⊆ T : ∀x ∈ Rd . x ∈ S → Anx ∈ T

Theorem (Almagor, Ouaknine and Worrell, 2021)

Given A and Φ(n) a FOOQ, it is decidable whether ∃n ∈ N.Φ(n) in
dimension ⩽ 3.
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MSO model-checking

Given x ∈ Qd and A ∈ Qn×n and T1, . . . , Tk ⊆ Rd semialgebraic sets.

Let Σ = {0,1}k and define w ∈ ΣN by

wn =
(
Anx ∈ T1, . . . ,Anx ∈ Tk ).

Intuition: wn records to which sets Anx belongs to at eact step n.
Problem: given an MSO formula Ψ over (N, <), decide whether w |= Ψ.

Theorem (Karimov, Lefaucheux, Ouaknine, Purser, Varonka, Whiteland, Worrell)

This is decidable if all Ti either have intrinsic dimension 1 or are
included in a subspace of dimension 3.

Examples: Pi(n) means Anx ∈ Ti
▶ Ti is reachable: ∃n.Pi(n)
▶ whenever Ti is visited Tj is visited some point later:

∀n : Pi(n)⇒ (∃m > n : Pj(m))
▶ in target Ti at every odd position:

∃O ⊆ N : formula to define odd numbers ∧ ∀x : x ∈ O ⇒ Pi(x)
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Continuous linear dynamical systems

m

kb R L

CqV

Linear differential equation:

x ′(t) = Ax(t) x(0) = x0
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Linear differential equation:

x ′(t) = Ax(t) x(0) = x0

Example:

x ′(t) = 7x(t)

; x(t) = e7t

{
x ′

1(t)= x2(t)
x ′

2(t)= −x1(t)
⇔

[
x1
x2

]′
=

[
0 1
−1 0

] [
x1
x2

]

;
{

x1(t)= sin(t)
x2(t)= cos(t)
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Continuous linear dynamical systems

m

kb R L

CqV

Linear differential equation:

x ′(t) = Ax(t) x(0) = x0

General solution form:
x(t) = eAtx0

where eM =
∞∑

n=0

Mn

n!
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Continuous reachability

Continuous Skolem problem

Given x , y and A, decide if ∃t ∈ R such that xT eAty = 0.

Bounded continuous Skolem problem

Given x , y and A, decide if ∃t ∈ [0,1] such that xT eAty = 0.

Continuous positivity Problem

Given x , y and A, decide whether xT eAty ⩾ 0 for all t ⩾ 0.

Continuous positivity is inter-reducible with continuous Skolem.

The decidability of all these problems is also open!
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A link with number theory

Some reachability questions look like this :

∃t ∈ R. 42t7 = 56 ∧ e3t − et = 9

Claim: impossible except possibly for t = 0 (easy to check)

Algebraic number: root of polynomial with integer coefficients
Transcendental number: not algebraic, e.g. e, π

Theorem (Special case of Lindemann–Weierstrass)

If t is a nonzero algebraic number then et is transcendental.

▶ P(t) = 0 so t is algebraic (by definition)
▶ Lindemann–Weierstrass: et transcendental (unless t = 0)
▶ hence Q(et) ̸= 0 (except maybe if t = 0)
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Exponential polynomial

In general,

xT eAty =
d∑

i=1

Pi(t)eλi t

where Pi polynomial, λi ∈ C eigenvalues of A.

Lindemann–Weierstrass’s theorem is not enough to solve the
continuous Skolem problem.

Theorem (Wilkie and MacIntyre)

If Schanuel’s conjecture is true, then, for each k ∈ N, the first-order
theory of the structure (R,0,1, <,+, ·, exp, cos ↾[0,k ], sin ↾[0,k ]) is
decidable.

▶ algorithm always correct, only termination requires the conjecture
▶ this makes many problem (inc. continuous Skolem) decidable!

What is Schanuel’s conjecture?
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Schanuel’s conjecture

Schanuel’s conjecture

If z1, . . . , zn that are linearly independent over Q, then at least n
numbers among z1, . . . , zn,ez1 , . . . ,ezn are algebraically independent.

Example: π and e are algebraically independent

z1 = iπ, z2 = 1 ; ez1 = −1,ez2 = e.

Clearly z1 and z2 are linearly independent over Q. So at least 2 of
iπ,1,−1,e are algebraically independent. But 1 is algebraic so π and e
are algebraically independent.

Summary:
▶ Schanuel implies that π, e, π + e, eπ, ... are transcendental.
▶ π and e are known to be transcendental
▶ π + e is not known to be transcendental
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Continuous reachability

Bounded continuous Skolem problem: given x , y and A, decide if
▶ unbounded: ∃t ∈ [0,1] such that xT eAty = 0.
▶ bounded: ∃t ∈ R such that xT eAty = 0.

Theorem (Chonev, Ouaknine and Worrell, 2016)

The bounded continuous Skolem Problem is decidable subject to
Schanuel’s conjecture.

Theorem (Chonev, Ouaknine and Worrell, 2016)

If the (unbounded) continuous Skolem Problem is decidable then the
Diophantine-approximation types of all real algebraic numbers is
computable.

In other words: it requires new mathematics...
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More complicated programs

Linear loop with if

x := 2−10

y := 1
while y ⩾ x do

if y ⩾ 2x then[
x
y

]
:=

[
2 0
1 4

] [
x
y

]
else[

x
y

]
:=

[
2 3
−3 7

] [
x
y

]

;

Nondeterminic loop

x := 2−10

y := 1
while true do

non deterministically do[
x
y

]
:=

[
2 0
1 4

] [
x
y

]
or [

x
y

]
:=

[
2 3
−3 7

] [
x
y

]
Reachability is trivially
undecidable by simulating two
counter automata

▶ Overapproximate behaviours
▶ Nondeterminic

42 / 101



More complicated programs

Linear loop with if

x := 2−10

y := 1
while y ⩾ x do

if y ⩾ 2x then[
x
y

]
:=

[
2 0
1 4

] [
x
y

]
else[

x
y

]
:=

[
2 3
−3 7

] [
x
y

]

;

Nondeterminic loop

x := 2−10

y := 1
while true do

non deterministically do[
x
y

]
:=

[
2 0
1 4

] [
x
y

]
or [

x
y

]
:=

[
2 3
−3 7

] [
x
y

]

Reachability is trivially
undecidable by simulating two
counter automata

▶ Overapproximate behaviours
▶ Nondeterminic

42 / 101



More complicated programs

Linear loop with if

x := 2−10

y := 1
while y ⩾ x do

if y ⩾ 2x then[
x
y

]
:=

[
2 0
1 4

] [
x
y

]
else[

x
y

]
:=

[
2 3
−3 7

] [
x
y

]
;

Nondeterminic loop

x := 2−10

y := 1
while true do

non deterministically do[
x
y

]
:=

[
2 0
1 4

] [
x
y

]
or [

x
y

]
:=

[
2 3
−3 7

] [
x
y

]
Reachability is trivially
undecidable by simulating two
counter automata

▶ Overapproximate behaviours
▶ Nondeterminic

42 / 101



More complicated programs

Linear loop with if

x := 2−10

y := 1
while y ⩾ x do

if y ⩾ 2x then[
x
y

]
:=

[
2 0
1 4

] [
x
y

]
else[

x
y

]
:=

[
2 3
−3 7

] [
x
y

]
;

Nondeterminic loop

x := 2−10

y := 1
while true do

non deterministically do[
x
y

]
:=

[
2 0
1 4

] [
x
y

]
or [

x
y

]
:=

[
2 3
−3 7

] [
x
y

]
Reachability is trivially
undecidable by simulating two
counter automata

▶ Overapproximate behaviours
▶ Nondeterminic

42 / 101



Example: 2D robot

(xθ,yθ)

(x ,y)

θ

ℓ

State: u⃗ = (xθ, yθ, x , y)

Discretized actions:
▶ rotate arm by ψ
▶ change arm length by δ

; Linear transformations

Rotate arm by ψ:(
x
y

)
←

(
cosψ − sinψ
sinψ cosψ

)(
x
y

)
(

xθ
yθ

)
←

(
cosψ − sinψ
sinψ cosψ

)(
xθ
yθ

)
Change arm length by δ:(

x
y

)
←

(
x
y

)
+ δ

(
xθ
yθ

)
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Matrix problems

Input: A,C ∈ Qd×d matrices
Output: ∃n ∈ N such that An = C ?

✓ Decidable (PTIME)

Input: A,B,C ∈ Qd×d matrices
Output: ∃n,m ∈ N such that AnBm = C ?

✓ Decidable

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output: ∃n1, . . . ,nk ∈ N such that

∏k
i=1 Ani

i = C ?

✓ Decidable if Ai commute × Undecidable in general

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output: C ∈ ⟨semigroup generated by A1, . . . ,Ak ⟩ ?

✓ Decidable if Ai commute × Undecidable in general

Example: ∃n ∈ N such that[
1 1
0 1

]n

=

[
1 100
0 1

]
?

44 / 101



Matrix problems

Input: A,C ∈ Qd×d matrices
Output: ∃n ∈ N such that An = C ? ✓ Decidable (PTIME)

Input: A,B,C ∈ Qd×d matrices
Output: ∃n,m ∈ N such that AnBm = C ?

✓ Decidable

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output: ∃n1, . . . ,nk ∈ N such that

∏k
i=1 Ani

i = C ?

✓ Decidable if Ai commute × Undecidable in general

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output: C ∈ ⟨semigroup generated by A1, . . . ,Ak ⟩ ?

✓ Decidable if Ai commute × Undecidable in general

Example: ∃n ∈ N such that[
1 1
0 1

]n

=

[
1 100
0 1

]
?

44 / 101



Matrix problems

Input: A,C ∈ Qd×d matrices
Output: ∃n ∈ N such that An = C ? ✓ Decidable (PTIME)

Input: A,B,C ∈ Qd×d matrices
Output: ∃n,m ∈ N such that AnBm = C ?

✓ Decidable

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output: ∃n1, . . . ,nk ∈ N such that

∏k
i=1 Ani

i = C ?

✓ Decidable if Ai commute × Undecidable in general

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output: C ∈ ⟨semigroup generated by A1, . . . ,Ak ⟩ ?

✓ Decidable if Ai commute × Undecidable in general

Example: ∃n,m ∈ N such that[
2 3
0 1

]n [1
2

1
2

0 1

]m

=

[
1 60
0 1

]
?

44 / 101



Matrix problems

Input: A,C ∈ Qd×d matrices
Output: ∃n ∈ N such that An = C ? ✓ Decidable (PTIME)

Input: A,B,C ∈ Qd×d matrices
Output: ∃n,m ∈ N such that AnBm = C ? ✓ Decidable

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output: ∃n1, . . . ,nk ∈ N such that

∏k
i=1 Ani

i = C ?

✓ Decidable if Ai commute × Undecidable in general

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output: C ∈ ⟨semigroup generated by A1, . . . ,Ak ⟩ ?

✓ Decidable if Ai commute × Undecidable in general

Example: ∃n,m ∈ N such that[
2 3
0 1

]n [1
2

1
2

0 1

]m

=

[
1 60
0 1

]
?

44 / 101



Matrix problems

Input: A,C ∈ Qd×d matrices
Output: ∃n ∈ N such that An = C ? ✓ Decidable (PTIME)

Input: A,B,C ∈ Qd×d matrices
Output: ∃n,m ∈ N such that AnBm = C ? ✓ Decidable

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output: ∃n1, . . . ,nk ∈ N such that

∏k
i=1 Ani

i = C ?

✓ Decidable if Ai commute × Undecidable in general

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output: C ∈ ⟨semigroup generated by A1, . . . ,Ak ⟩ ?

✓ Decidable if Ai commute × Undecidable in general

Example: ∃n,m,p ∈ N such that[
2 3
0 1

]n [1
2

1
2

0 1

]m [
2 5
0 1

]p

=

[
81 260
0 1

]
?

44 / 101



Matrix problems

Input: A,C ∈ Qd×d matrices
Output: ∃n ∈ N such that An = C ? ✓ Decidable (PTIME)

Input: A,B,C ∈ Qd×d matrices
Output: ∃n,m ∈ N such that AnBm = C ? ✓ Decidable

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output: ∃n1, . . . ,nk ∈ N such that

∏k
i=1 Ani

i = C ?
✓ Decidable if Ai commute × Undecidable in general

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output: C ∈ ⟨semigroup generated by A1, . . . ,Ak ⟩ ?

✓ Decidable if Ai commute × Undecidable in general

Example: ∃n,m,p ∈ N such that[
2 3
0 1

]n [1
2

1
2

0 1

]m [
2 5
0 1

]p

=

[
81 260
0 1

]
?

44 / 101



Matrix problems

Input: A,C ∈ Qd×d matrices
Output: ∃n ∈ N such that An = C ? ✓ Decidable (PTIME)

Input: A,B,C ∈ Qd×d matrices
Output: ∃n,m ∈ N such that AnBm = C ? ✓ Decidable

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output: ∃n1, . . . ,nk ∈ N such that

∏k
i=1 Ani

i = C ?
✓ Decidable if Ai commute × Undecidable in general

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output: C ∈ ⟨semigroup generated by A1, . . . ,Ak ⟩ ?

✓ Decidable if Ai commute × Undecidable in general

Semigroup: ⟨A1, . . . ,Ak ⟩ = all finite products of A1, . . . ,Ak
Examples:

A1A3A2 A1A2A1A2 A8
3A2A3

1A42
3

44 / 101



Matrix problems

Input: A,C ∈ Qd×d matrices
Output: ∃n ∈ N such that An = C ? ✓ Decidable (PTIME)

Input: A,B,C ∈ Qd×d matrices
Output: ∃n,m ∈ N such that AnBm = C ? ✓ Decidable

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output: ∃n1, . . . ,nk ∈ N such that

∏k
i=1 Ani

i = C ?
✓ Decidable if Ai commute × Undecidable in general

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output: C ∈ ⟨semigroup generated by A1, . . . ,Ak ⟩ ?
✓ Decidable if Ai commute × Undecidable in general

Semigroup: ⟨A1, . . . ,Ak ⟩ = all finite products of A1, . . . ,Ak
Examples:

A1A3A2 A1A2A1A2 A8
3A2A3

1A42
3
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Discrete reachability problems

Every nontrivial extension of simple linear loops seems to lead to
undecidable problems.

What about the continuous setting?
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RC circuit

OPEN

I CLOSED IR

R

VR

VC
Q

C
V

switch

t

İ = 0
İR = − 1

RC IR
V̇R = − 1

C IR
Q̇ = IR
V̇C = 1

C IR

OPEN

İ = − 1
RC IR

İR = − 1
RC IR

V̇R = − 1
C IR

Q̇ = IR
V̇C = 1

C IR

CLOSED
I := 1

R (V−VC)

IR := 1
R (V−VC)

VR :=V−VC

I :=0

IR :=− 1
R VC

VR :=−VC
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RC circuit

OPEN

I CLOSED IR

R

VR

VC
Q

C
V

switch

t

İ = 0
İR = − 1

RC IR
V̇R = − 1

C IR
Q̇ = IR
V̇C = 1

C IR

OPEN

İ = − 1
RC IR

İR = − 1
RC IR

V̇R = − 1
C IR

Q̇ = IR
V̇C = 1

C IR

CLOSED
I := 1

R (V−VC)

IR := 1
R (V−VC)

VR :=V−VC

I :=0

IR :=− 1
R VC

VR :=−VC
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Switching systems

x ′ = A1x x ′ = A2x

x ′ = A3xx ′ = A4x

Restricted hybrid system:
▶ linear dynamics
▶ no guards (nondeterministic)
▶ no discrete updates

switchx1(t)

t
x ′ = A1x

t1

x ′ = A2x

t2

x ′ = A3x

t3

x ′ = A4x

t4
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t
x ′ = A1x

t1
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t2

x ′ = A3x
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x ′ = A4x
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Dynamics:
eA4t4eA3t3eA2t2eA1t1
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Switching systems

x ′ = A1x x ′ = A2x

x ′ = A3xx ′ = A4x

Restricted hybrid system:
▶ linear dynamics
▶ no guards (nondeterministic)
▶ no discrete updates

switchx1(t)

t
x ′ = A1x

t1

x ′ = A2x

t2

x ′ = A3x

t3

x ′ = A4x

t4

Problem:
eA4t4eA3t3eA2t2eA1t1 = C ?

What we control: t1, t2, t3, t4 ∈ R⩾0
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Related work in the continuous case

Input: A,C ∈ Qd×d matrices
Output: ∃t ∈ R such that eAt = C ?

✓ Decidable (PTIME)

Input: A,B,C ∈ Qd×d matrices
Output: ∃t ,u ∈ N such that eAteBu = C ?

× Unknown

Example: ∃t ∈ R such that

exp

([
1 1
0 1

]
t
)

=

[
1 100
0 1

]
?
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Input: A,B,C ∈ Qd×d matrices
Output: ∃t ,u ∈ N such that eAteBu = C ?

× Unknown

Example: ∃t ,u ∈ R such that

exp

([
2 3
0 1

]
t
)
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2

1
2

0 1

]
u
)

=

[
1 60
0 1

]
?
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Switching system

x ′ = A1x x ′ = A2x

x ′ = A3xx ′ = A4x

What about a loop ?
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Switching system

x ′ = A1x x ′ = A2x

x ′ = A3xx ′ = A4x

What about a loop ?

x1(t)

tt1 t2 t3 t4 t ′1 t ′2 t ′3 t ′4

A1 A2 A3 A4 A1 A2 A3 A4

Dynamics:
eA4t ′4eA3t ′3eA2t ′2eA1t ′1eA4t4eA3t3eA2t2eA1t1
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Switching system

x ′ = A1x x ′ = A2x

x ′ = A3xx ′ = A4x

Loop⇔ clique

x1(t)

tt1 t4 t3 t2t2=t3=0 t1=t2=0 t4=t1=0

A1 A4 A3 A2

Remark:
zero time dynamics (ti = 0) are allowed
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Switching system

x ′ = A1x x ′ = A2x

x ′ = A3xx ′ = A4x

x1(t)

tt1 t4 t3 t2

A1 A4 A3 A2

Dynamics:

any finite product of eAi t ; semigroup!
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Switching system

x ′ = A1x x ′ = A2x

x ′ = A3xx ′ = A4x

x1(t)

tt1 t4 t3 t2

A1 A4 A3 A2

Problem:
C ∈ G ?

where G = ⟨semigroup generated by eAi t for all t ⩾ 0⟩
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Reachability for switching systems

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output: ∃t1, . . . , tk ⩾ 0 such that

n∏
i=1

eAi ti = C ?

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output:

C ∈ ⟨semigroup generated by eA1t , . . . ,eAk t : t ⩾ 0⟩ ?

Theorem (Ouaknine, P, Sous-Pinto, Worrell)

Both problems are:
▶ Undecidable in general
▶ Decidable when all the Ai commute
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Some words about the proof (commuting case)

Product Problem

∃t1, . . . , tk ⩾ 0 s.t.∏n
i=1 eAi ti = C ?

Semigroup Problem

C ∈ ⟨eA1t , . . . ,eAk t : t ⩾ 0⟩ ?

Integer Linear Programming

∃n ∈ Zd s.t. πBn ⩽ s

equivalent

reduce

! s of the form:

a0 + log(a1) + · · ·+ log(ak )

✓ B,a0, . . . ,ak are algebraic

How did we get from reals to integers with π ?

eit = α ⇔ t ∈ log(α) + 2πZ
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Integer Linear Programming

∃n ∈ Zd such that πBn ⩽ s ?

where s is a linear form in logarithms of algebraic numbers

Key ingredient: Diophantine approximations
▶ Finding integer points in cones: Kronecker’s theorem

▶ Compare linear forms in logs: Baker’s theorem
√

2 + log
√

3− 3 log
√

7 ?
= 1 + log 9− log

42
√

666
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Integer Linear Programming

∃n ∈ Zd such that πBn ⩽ s ?

where s is a linear form in logarithms of algebraic numbers

Key ingredient: Diophantine approximations
▶ Finding integer points in cones: Kronecker’s theorem

▶ Compare linear forms in logs: Baker’s theorem
√

2 + log
√

3− 3 log
√

7 ?
= 1 + log 9− log

42
√

666 52 / 101



Some words about the proof (general case)

Product Problem

∃t1, . . . , tk ⩾ 0 s.t.∏n
i=1 eAi ti = C ?

Semigroup Problem

C ∈ ⟨eA1t , . . . ,eAk t : t ⩾ 0⟩ ?

Hilbert’s Tenth Problem

∃n ∈ Zd s.t. p(n) = 0

reduce

reduce
Theorem (Matiyasevich)

Hilbert’s Tenth Problem is
undecidable
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Summary on reachability

Exact reachability is hard:
▶ Skolem/Positivity problem for linear loops (Open for 70 years)
▶ Every mild extension is undecidable
▶ Decidability requires very strong assumptions (commuting

matrices)

Continuous vs discrete setting
▶ similar results
▶ different techniques
▶ continuous setting can leverage powerful results/conjectures
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Control Theory
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Example: mass-spring-damper system

m

kb

u(t)

z

Model with external input u(t)

→ Linear time invariant system

X ′ = AX + Bu

with some constraints on u.

State: X = z ∈ R

Equation of motion:

mz ′′ = −kz − bz ′ + mg + u

→ Affine but not first order

State: X = (z, z ′,1) ∈ R3

Equation of motion:z
z ′

1

′

=

 z ′

− k
m z − b

m z ′ + g + 1
m u

0


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A very simple example

A simplified one-dimensional car: control acceleration u(t)

x ′′(t) = u(t)

Starting at x(0) = a, want to reach and stop at x = b:

x
a b

x ′ = 0 x ′ = 0

?choose u(t)
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A very simple example

A simplified one-dimensional car: control acceleration u(t)

x ′′(t) = u(t)

Starting at x(0) = a, want to reach and stop at x = b:

x
a b

x ′ = 0 x ′ = 0
?choose u(t)

Possible solution:

a t

x

0 T

b

0 t

x ′

0 T

v0 t

u

T
1

−1
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A very simple example

A simplified one-dimensional car: control acceleration u(t)

x ′′(t) = u(t)

Starting at x(0) = a, want to reach and stop at x = b:

x
a b

x ′ = 0 x ′ = 0
?choose u(t)

More realistic solution:

a t

x

0 T

b

0 t

x ′

0 T

v
0 t

u

T
1

−1
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A very simple example

A simplified one-dimensional car: control acceleration u(t)

x ′′(t) = u(t)

Starting at x(0) = a, want to reach and stop at x = b:

x
a b

x ′ = 0 x ′ = 0
?choose u(t)

Rephrasing the problem:{
x ′ = y
y ′ = u

⇔
[
x
y

]′
=

[
0 1
0 0

] [
x
y

]
+

[
0
u

]
⇔ X ′ = AX + U

Starting from (x , y) = (a,0), try to reach (x , y) = (b,0).

This is a point-to-point reachability problem.
57 / 101



The problem

LTI Reachability problem

▶ a source y ∈ Qn,
▶ a target z ∈ Qn,
▶ a transition matrix A ∈ Qn×n,
▶ a set of controls U ⊆ Rn,

decide if ∃T ⩾ 0, u : [0,T ]→ U measurable such that x(T ) = z where

x(0) = y , x ′(t) = Ax(t) + u(t) for t ∈ [0,T ].

Warning: u does not need to be “describable”, e.g. piecewise
polynomial. Otherwise, completely changes the nature of the problem.
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Bigger picture

Continuous Reachability problem
▶ a source y ∈ Qn,
▶ a target z ∈ Qn,

▶ a transition function f ,
▶ a set of controls U ⊆ Rm,

decide if ∃T ⩾ 0, u : [0,T ]→ U measurable such that x(T ) = z where

x(0) = y , x ′(t) = f (t , x(t),u(t)) for t ∈ [0,T ].

Generally undecidable:
▶ for nonlinear systems, even without control (U = {0})
▶ piecewise constant derivative systems (PCD), still no control
▶ linear saturated systems (at least for discrete systems), no control

LTI systems probably form the most useful class that is not undecidable.

But do they really?
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Existing work

LTI Reachability problem
▶ a source y ∈ Qn,
▶ a target z ∈ Qn,

▶ a transition matrix A ∈ Qn×n,
▶ a set of controls U ⊆ Rn,

decide if ∃T ⩾ 0, u : [0,T ]→ U measurable such that x(T ) = z where

x(0) = y , x ′(t) = Ax(t) + u(t) for t ∈ [0,T ].

Many variants (applies to non-LTI systems):
▶ can all points y ∈ Rn reach z = 0? global null-controllability
▶ can all points y ∈ Rn tend to z = 0? asymptotic null-controllability
▶ can all points y ≈ 0 reach z = 0? local null-controllability
▶ is the trajectory bounded when u is bounded? stability
▶ approximate the set of reachable points from y reach set

But also:
▶ assumptions on A (typically spectral)
▶ assumptions on U
▶ restrictions on acceptable u
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▶ can all points y ∈ Rn tend to z = 0? asymptotic null-controllability
▶ can all points y ≈ 0 reach z = 0? local null-controllability
▶ is the trajectory bounded when u is bounded? stability
▶ approximate the set of reachable points from y reach set

But also:
▶ assumptions on A (typically spectral)
▶ assumptions on U
▶ restrictions on acceptable u
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Two known extreme cases

▶ When we have no control:

U = {0} and x ′(t) = Ax + u(t) ⇔ x(t) = eAtx(0).

Theorem (Hainry’08)

Given y , z ∈ Qn and A ∈ Qn×n, it is decidable whether ∃t ⩾ 0 such that

z = eAty .

▶ When we can control in a vector space:

U = BRm and x ′(t) = Ax+u(t) ⇒ x(t) ∈ span[B,AB, . . . ,An−1B]

Theorem (Folklore)

Given y , z ∈ Qn and A ∈ Qn×n,B ∈ Qn×m, it is decidable whether
∃T ⩾ 0 and u : [0,T ]→ BRm measurable such that x(0) = y and
x(T ) = z where

x ′(t) = Ax(t) + u(t)
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Back to the future

A simplified one-dimensional car: control acceleration u(t)

x ′′(t) = u(t)

Starting at x(0) = a, want to reach and stop at x = b:

x
a b

x ′ = 0 x ′ = 0
?choose u(t)

Reality: acceleration/braking is not infinite ; u is bounded!

Very few decidability results in the literature in this case.
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Our results: decidability

LTI Zonotope Null-Reachability problem

Given a matrix A ∈ Qn×n, a set of controls U = B[−1,1]m, a target
z ∈ Qn, decide if ∃T ⩾ 0, u : [0,T ]→ U such that x(T ) = z where

x(0) = 0, x ′(t) = Ax(t) + u(t) for t ∈ [0,T ].

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of:
▶ A is real diagonal, B is a column with at most 2 nonzero entries,
▶ A is real diagonalizable, eigenvalues ⊆ αQ for some α ∈ Q,
▶ A only has one eigenvalue which is real, B is a column,
▶ dimension n = 2, B is a column and A has real eigenvalues.

Well, that was underwhelming...

Are you sure you cannot do better?
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Our results: conditional decidability

Schanuel’s conjecture

A deep conjecture in transcendental number theory. Widely believed
to be true and totally open.

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of:
▶ A has real eigenvalues,
▶ in dimension n = 2,
▶ we bound the time to reachability.

and Schanuel’s conjecture is true.

Theorem (Wilkie and MacIntyre)

If Schanuel’s conjecture is true, then, for each k ∈ N, the first-order
theory of the structure (R,0,1, <,+, ·, exp, cos ↾[0,k ], sin ↾[0,k ]) is
decidable.
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Hardness

Study generalization:

LTI Null-Set-Reachability problem

Given a matrix A ∈ Qn×n, a set of controls U ⊆ Rn, a set Z ⊆ Rn,
decide if ∃T ⩾ 0, u : [0,T ]→ U such that x(T ) ∈ Z where

x(0) = 0, x ′(t) = Ax(t) + u(t) for t ∈ [0,T ].

This is trivially hard for U = {0} and Z = {hyperplane} because:

Continuous Skolem problem

Given a matrix A ∈ Qn×n and c, x0 ∈ Qn, decide if ∃T ⩾ 0 such that
cT eAtx0 = 0.

This is a well-known “hard” problem.
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Hardness (cont.)

Taking U = {0} is cheating:
▶ when U = {0}, reachable set is closed (or closed minus a point)

▶ when U = B[−1,1]m, reachable set is open

boundary not included

This is completely different!
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Our results: hardness

LTI Zonotope Null-Set-Reachability problem

Given a matrix A ∈ Qn×n, a set of controls U = B[−1,1]m, a set
Z ⊆ Rn, decide if ∃T ⩾ 0, u : [0,T ]→ U such that x(T ) ∈ Z where

x(0) = 0, x ′(t) = Ax(t) + u(t) for t ∈ [0,T ].

Theorem (Dantam, P.)

The Continuous Nontangential Skolem problem reduces to this
problem with a single input (m = 1), A stable and Z a hyperplane or a
convex compact set of dimension n − 1.

Continuous Nontangential Skolem problem

Given a matrix A ∈ Qn×n and c, x0 ∈ Qn, decide if ∃T ⩾ 0 such that
f (t) = 0 and f ′(t) ̸= 0 where f (t) = cT eAtx0 = 0.

It is essentially as hard as the Continuous Skolem problem.
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Conclusion (continuous case)

LTI reachability problem: find T and u such that

x(0) = 0, x ′(t) = Ax(t) + Bu(t), u(t) ∈ [−1,1]m

satisfies x(T ) = target. Very natural problem in control theory.

m

kb

u(t)

z

u(t)

R L

CqV (t)

Point reachability is
▶ decidable in dimension 2 or with spectral constraints,
▶ conditionally decidable with real eigenvalues,
▶ conditionally decidable in bounded time,

Set reachability is Nontangential Continuous Skolem hard.
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The continuous case is much harder than expected. What about the
discrete case?
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The problem

LTI-REACHABILITY

▶ a source s ∈ Qd ,
▶ a target t ∈ Qd ,
▶ a transition matrix A ∈ Qd×d ,
▶ a set of controls U ⊆ Rd ,

decide if ∃T ∈ N, u0, . . . ,uT−1 ∈ U such that xT = t where

x0 = s, xn+1 = Axn + un.

s t

Ax0

x1 = Ax0 + u0

u0

Ax1

x2 = Ax1 + u1
u1

Ax2

u2
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x0 = s x3 = t

Ax0

x1 = Ax0 + u0

u0

Ax1

x2 = Ax1 + u1
u1

Ax2

u2
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Decidability (1)

LTI-REACHABILITY

▶ a source s ∈ Qd ,
▶ a target t ∈ Qd ,
▶ a transition matrix A ∈ Qd×d ,
▶ a set of controls U ⊆ Rd ,

decide if ∃T ∈ N, u0, . . . ,uT−1 ∈ U such that xT = t where

x0 = s, xn+1 = Axn + un.

Theorem (Lipton and Kannan, 1986)

LTI-REACHABILITY is decidable if U is an affine subspace of Rd .

Almost no exact results for other classes of U in particular when U is
bounded (which is the most natural case).
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Hardness

Theorem (Fijalkow, Ouaknine, P. Sousa-Pinto, Worrell)

LTI-REACHABILITY is
▶ undecidable if U is a finite union of affine subspaces.

▶ Skolem-hard if U = {0} ∪ V where V is an affine subspace
▶ Positivity-hard if U is a convex polytope

Since we cannot solve Skolem/Positivity, we need some strong
assumptions for decidability.
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A positive result

A LTI system (s,A, t ,U) is simple if s = 0 and

▶ U is a bounded polytope that contains 0 in its (relative) interior,
▶ the spectral radius of A is less than 1 (stability),
▶ some positive power of A has exclusively real spectrum.

Theorem (Fijalkow, Ouaknine, P. Sousa-Pinto, Worrell)

LTI-REACHABILITY is decidable for simple systems.

Remark: in fact we can decide reachability to a convex polytope Q.

Reach set

t

Q

Assumptions imply that the
reachable set is an open
convex bounded set,

but
not always a polytope!
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Why is this problem hard

The reachable set A∗(U) can have infinitely many faces.

A∗(U)

A =

[1
3 0
0 2

3

]

U

(−2,−1) (0,−1)

(0,1) (2,1)
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Why is this problem hard

The reachable set A∗(U) can have faces of lower dimension: the
"top" extreme point does not belong to any facet.

A∗(U)

A =

[2
3 0
0 1

3

]

U

(−1,0)

(0,2)

(1,0)
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Why is this problem hard

Approach: two semi-decision procedures
▶ reachability: under-approximations of the reachable set
▶ non-reachability: separating hyperplanes

A∗(U)

Q
H

Q

H
Q

H

Further difficulty: a separating hyperplane may not be supported by a
facet of either A∗(U) or Q.
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Why is this problem hard

V

(−2,0) (0,0)

(0,2)

B =

[2
3

1
3

1
3 0

]

B∗(V )

Even more difficulty: B∗(V ) has two extreme points that do not belong
to any facet and have rational coordinates, but whose (unique)
separating hyperplane requires the use of algebraic irrationals

Theorem (Non-reachable instances)

There is a separating hyperplane with algebraic coefficients.
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Conclusion on control

Exact reachability for LTI systems:
▶ decidability crucially depends on the shape of the control set
▶ even with convex bounded inputs, the problem is very hard

(Skolem/Positivity, open for 70 years)
▶ we can recover decidability using strong spectral assumptions

Despite an extensive literature in control theory, the decidability control
problems is still very open.
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Invariant Synthesis
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Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (2)

y

x

▶ (2) is an invariant: it holds at every
step

▶ (2) implies the guard is true
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Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition

81 / 101



Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition

81 / 101



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3
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S1,S2,S3 are the reachable states
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Inductive invariants: example
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Why Invariants?

I
S

BAD!

The classical approach to the verification of temporal safety
properties of programs requires the construction of inductive
invariants [...]. Automation of this construction is the main
challenge in program verification.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko
Invariant Synthesis for Combined Theories, 2007
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Which invariants?

Intervals

Octagons Polyhedrons

Affine/linear sets Algebraic sets =
polynomial equalities

Semialgebraic sets

⩽

⩽

⩽
⩽

⩽

⩽
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Affine programs

▶ Nondeterministic branching (no guards)
▶ All assignments are affine
▶ Allow nondeterministic assignments (x := ∗)

1 2

3

f1
f2

f3

f4f5

▶ Can overapproximate complex programs
▶ Covers existing formalisms:

probabilistic, quantum, quantitative automata
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Karr’s Algorithm

Theorem (Karr 76)

There is an algorithm which computes, for any given affine program
over Q, its strongest affine inductive invariant.
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Randomized Karr’s Algorithm @ POPL 2003
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Some polynomial invariants

Theorem (ICALP 2004)

There is an algorithm which computes, for any given affine program
over Q, all its polynomial inductive invariants up to any fixed degree d.
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Why fixed degree is not enough

▶ Paraboloid z = x2 + y2

▶ Union of 3 hyperplanes (x − y)(10y + x)(y + 10x) = 0
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Main result

Theorem (Hrushovski, Ouaknine, P., Worrell, 2018)

There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.

▶ strongest polynomial invariant ⇐⇒ smallest algebraic set
▶ Thus our algorithm computes all polynomial relations that always

hold among program variables at each program location, in all
possible executions of the program

▶ We represent this using a finite basis of polynomial equalities
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▶ We represent this using a finite basis of polynomial equalities
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At the edge of decidability

x :=x0

x := M1x
x := M2x

. . .

x := Mkx

S

Theorem (Markov 1947§)

There is a fixed set of 6× 6 integer matrices M1, . . . ,Mk such that the
reachability problem “y is reachable from x0?” is undecidable.

Theorem (Paterson 1970*)

The mortality problem “ 0 is reachable from x0 with M1, . . . ,Mk?” is
undecidable for 3× 3 matrices.

§Original theorems about semigroups, reformulated with affine programs.
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Zariski closure of finitely generated groups

Our algorithm relies on this result:

Theorem (Derksen, Jeandel and Koiran, 2004)

There is an algorithm which computes, for any given affine program
over Q using only invertible transformations, its strongest polynomial
inductive invariant.

Equivalently, compute the Zariski closure of a finitely generated groups
of matrices.
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From groups to semigroup

Theorem (Hrushovski, Ouaknine, P., Worrell, 2018)

There is an algorithm that computes the Zariski closure of any finitely
semigroup of matrices (with algebraic coefficients), given its
generators as inputs.

Corollary

Given an affine program, we can compute for each location the ideal of
all polynomial relations that hold at that location.
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Going hybrid: a bouncing ball

x

y

ẋ = vx
ẏ = vy
v̇x = 0
v̇y = −g
ṫ = 1

t := 0
x := 0
y := h

vx := c
vy := 0

vy := −vy
▶ affine program: collision
+ linear differential equation: mechanics
= linear hybrid automaton

Invariants:
▶ vx = c
▶ x = tc
▶ v2

y + 2g(y − h) = 0

recover conservation
of energy!
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Example: RC circuit

OPEN

I CLOSED IR

R

VR

VC
Q

C
V

switch

t

İ = 0
İR = − 1

RC IR
V̇R = − 1

C IR
Q̇ = IR
V̇C = 1

C IR

OPEN

İ = − 1
RC IR

İR = − 1
RC IR

V̇R = − 1
C IR

Q̇ = IR
V̇C = 1

C IR

CLOSED
I := 1

R (V−VC)

IR := 1
R (V−VC)

VR :=V−VC

I :=0

IR :=− 1
R VC

VR :=−VC
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İ = 0
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Example: RC circuit

OPEN

I CLOSED IR

R

VR

VC
Q

C
V

Invariants
OPEN CLOSED

Q = CVC Q = CVC
VR = RIR VR = RIR

I = 0 I = IR
VR = −VC VR = V − VC

İ = 0
İR = − 1

RC IR
V̇R = − 1

C IR
Q̇ = IR
V̇C = 1

C IR

OPEN

İ = − 1
RC IR

İR = − 1
RC IR

V̇R = − 1
C IR

Q̇ = IR
V̇C = 1

C IR

CLOSED
I := 1

R (V−VC)

IR := 1
R (V−VC)

VR :=V−VC

I :=0

IR :=− 1
R VC

VR :=−VC
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Linear Hybrid Automata

▶ Nondeterministic branching (no guards)
▶ All assignments are affine
▶ Linear differential equations in each location

ẋ =2y−x

ẏ =x−y Ẋ = AX

Ẋ = BX

x := 3x − 7y + 1
f2

f3

f4f5

▶ More general than affine programs
▶ More general than linear differential equations
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ẏ =x−y Ẋ = AX
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From affine programs to hybrid automata

Theorem (Majumdar, Ouaknine, P., Worrell, 2020)

There is an algorithm that computes, for any given guard-free linear
hybrid automaton over Q, its strongest polynomial inductive invariant.

For systems with purely continuous dynamics, i.e. no discrete
transitions, called switching systems:

Theorem (Hrushovski, Ouaknine, P., Worrell, 2018)

There is no algorithm that computes the strongest algebraic inductive
invariant for the class of switching systems with equality guards.
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From hybrid automata to affine programs

Theorem (Majumdar, Ouaknine, P., Worrell, 2020)

There is an algorithm that computes, for any given guard-free linear
hybrid automaton over Q, an affine program over Q that has the
same polynomial inductive invariants.

ẋ = vx
ẏ = vy
v̇x = 0
v̇y = −g
ṫ = 1

t := 0
x := 0
y := h

vx := c
vy := 0

vy := −vy

BALL;

t := 0
x := 0
y := h

vx := c
vy := 0

vy := −vy

vy := vy − g
t := t + 1

x := x + vx

y := y + vy − 1
2g
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Linear Differential Equations

For x(t) ∈ Rn and A rational matrix, consider

ẋ = Ax

The solution is
x(t) = eAtx(0)

where eX is the matrix exponential.

Recall that:
▶ strongest algebraic invariant = smallest algebraic set
▶ smallest algebraic set containing X = Zariski closure X of X

Lemma
Let A be a rational matrix, there exists B an algebraic matrix such that
⟨B⟩ = ⟨eA⟩ = {eAt : t ∈ R}.

▶ obvious candidate B = eA is not algebraic
▶ “reverse-engineer” B algebraic to encode some multiplicative

relations between the eigenvalues
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Complexity of computing the Zariski closure

How expensive is it to compute this strongest invariant ?

linear hybrid semigroup groupreduce reduce

Theorem (Derksen, Jeandel and Koiran, 2004)

There is an algorithm that computes the Zariski closure of any finitely
group of matrices, given its generators as inputs.

No complexity bounds. It is not clear it is even elementary.

Theorem (Nosan, P., Schmitz, Shirmohammadi, Worrell, 2022)

Given a finite set S of invertible matrices of dimension n, the algebraic
group G := ⟨S⟩ can be defined with equations of degree at most
septuply exponential in n.
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Summary

▶ invariant = overapproximation of reachable states
▶ invariants allow verification of safety properties
▶ guard-free linear hybrid automata:

▶ nondeterministic branching, no guards, affine assignments
▶ linear differential equations

ẋ =2y−x

ẏ =x−y Ẋ = AX

Ẋ = BX

x := 3x − 7y + 1
f2

f3

f4f5

Theorem (Majumdar, Ouaknine, P., Worrell, 2020)

There is an algorithm that computes, for any given guard-free linear
hybrid automaton over Q, its strongest polynomial inductive invariant.
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