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Examples: while loop, Markov chain
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Examples: while loop, Markov chain

Bull
market

market

market

State: X = (pbullapbearapstag) € [0, 1]3
Transitions:

09 0.15 0.25
A=10.075 08 0.25
0.025 0.05 05

— Linear dynamical system
Xn+1 = AXp
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Examples: while loop, Markov chain

0.075

Bear
market

Bull
market

Linear loop

Poui :=0
Pbear =1
Pstag := 0
while ppyy < 1/2 do

tagnan
market

Pouit Pbull
State: X = (Ppuil, Pvear, Pstag) € [0, 12 Poear | := A | Pbear
Transitions: Pstag Pstag
09 0.15 0.25
A= [0.075 0.8 0.25]
0.025 0.05 0.5

— Linear dynamical system
Xn+1 = AXp
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Examples: while loop, Markov chain

Bull
market

market

Pour =0
Poear =1
Pstag := 0
market while ppyy < 1/2 do
3 Pbul Pbull
State: X = (Ppull, Poear: Pstag) € [0, 1] Poear | := A | Poear
Transitions: Pstag Pstag

09 0.15 025
A=10075 08 025 The loop terminates if and
0.025 0.05 0.5 only if the probability of a bull
— Linear dynamical system market is > 1/2.

Xn+1 = AXp
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Example: mass-spring-damper system
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Example: mass-spring-damper system

1101 L1101 101 0000000000000070070007 .
////////////////////////////////////// ta‘te =Z€
0000000000000000050005005000500050007 .

//////////////////////////////////////

Zl b k Equation of motion:

mz" = —kz — bZ' + mg

4/101



Example: mass-spring-damper system
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zZl b k Equation of motion:

mz" = —kz — bZ' + mg

m — Affine but not first order
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Example: mass-spring-damper system

State: X =zeR

Zl b k Equation of motion:

mz" = —kz — bz’ + mg

m — Affine but not first order

State: X = (z,2/,1) e R®

Equation of motion:
z1’ z
/ k b

— /
Z| = |-8z-2Z+g

1 0
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Example: mass-spring-damper system

State: X =zeR

Zl b k Equation of motion:

mz" = —kz — bZ' + mg

m — Affine but not first order

State: X = (z,2/,1) e R®

Equation of motion:

— Linear dynamical system z1’ z

X' = AX Z| = |-fz-27Z+g

1 0
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Example: mass-spring-damper system

State: X =zeR

Zl b k Equation of motion:
mz' — —kz—bZ,+mg_|_ u
m
Tu
State: X = (27 z, 1) c R3
with external input u(f). Equation of motion:
V4 ! i
_ k b
Z| = |-mZ-pZ+g

1 0
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Example: mass-spring-damper system

State: X =zeR

zl b Kk Equation of motion:
mz' = —kz — bz +mg+ u
m
Lutn
State: X = (z,2/,1) e R®
with external input u(?). Equation of motion:
— Linear time invariant system z1’ z 0
X' = AX + Bu Z| =|-kz-L74+g| +|L]u
1 0 0
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Example: mass-spring-damper system

State: X =zeR

Equation of motion:

Z| b k
mz' = —kz — bz +mg+ u
m
Iu(t)
State: X = (z,2/,1) e R®
with external input u(?). Equation of motion:
— Linear time invariant system z1’ z 0
X' = AX + Bu Z| =|-kz-L74+g| +|L]u
1 0 0

Can be used to model a car suspension.
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Linear dynamical systems

Discrete case
x(n+1) = Ax(n)
> biology,
» software verification,
> probabilistic model checking,
» combinatorics,
>

Typical questions

» reachability
> safety

Continuous case
X'(t) = Ax(t)
> biology,
» physics,
» probabilistic model checking,
> electrical circuits,
>
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Linear dynamical systems

Discrete case Continuous case
x(n+ 1) = Ax(n) + Bu(n) x'(t) = Ax(t) + Bu(t)
> biology, > biology,
» software verification, » physics,
» probabilistic model checking, » probabilistic model checking,
» combinatorics, > electrical circuits,
> >

Typical questions

> reachability » optimal control
> safety » feedback control
» controllability > ...
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More complicated programs

Linear loop with if

=Y

y =1
while y > x do
if y > 2x then

R
D . [—23 3} ﬂ
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More complicated programs

Linear loop with if

x:=2"1

y =1
while y > x do
if y > 2x then

"B
315 30

Very challenging to analyze!
» reachability is undecidable
» invariant* synthesis also hard

"Will be defined later, think “approximate reachability”.
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More complicated programs

Linear loop with if Nondeterminic loop

7= x =210
y =1 y: =1
while y > x do while true do
if y > 2x then o~ non deterministically do

"B
315 30

Very challenging to analyze!
» reachability is undecidable
» invariant* synthesis also hard

L
- [5 90

"Will be defined later, think “approximate reachability”.
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More complicated programs

Linear loop with if Nondeterminic loop

7= x =210
y =1 y: =1
while y > x do while true do
if y > 2x then o~ non deterministically do

A-Fam CHIE AR

else
=150 b= 15D
y| T [-3 7]y y| -3 7]y
Very challenging to analyze! Overapproximate behaviours
» reachability is undecidable » reachability still undecidable

» invariant* synthesis also hard > invariant synthesis possible

"Will be defined later, think “approximate reachability”.
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Does this program halt?

Affine program

x =210

y =1
while y > x do

b=z 2]
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Does this program halt?

Affine program

7=z

y =1
while y > x do

b=z 2]
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Does this program halt?

Affine program

x = 9—10 Certificate of non-termination:
— 2 3 1023
y = Xy = X* = for37a1eea (1)
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Affine program

x = 9—10 Certificate of non-termination:
— 2 3 1023
y = Xy = X* = for37a1eea (1)

» (2) is an invariant: it holds at every
step
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Does this program halt?

Affine program

x = 9—10 Certificate of non-termination:
— 2 3 1023
y = Xy = X* = for37a1eea (1)

» (2) is an invariant: it holds at every
step

» (2) implies the guard is true
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Invariants

invariant = overapproximation of the reachable states
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Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition
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Why Invariants?

/ BAD!

o
The classical approach to the verification of temporal safety

properties of programs requires the construction of inductive
invariants [...]. Automation of this construction is the main

challenge in program verification.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko
Invariant Synthesis for Combined Theories, 2007
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Affine programs

f5 a
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Affine programs

» Nondeterministic branching (no guards)

f5 a
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Affine programs

» Nondeterministic branching (no guards)
» All assignments are affine

X =3x—-7y+1
f3

fa
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Affine programs

» Nondeterministic branching (no guards)
» All assignments are affine
> Allow nondeterministic assignments (x := %)

X =3x—-7y+1

fa

» Can overapproximate complex programs

» Covers existing formalisms:
finite, probabilistic, quantum, quantitative automata
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| cLosep Ir Vr

OPEN R
TV
t
OPEN

I =0
lg = _RLCIR
Ve = —¢lr
@ =1
Ve = &Ir
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| cLosep Ir VR

OPEN R
TV
t
OPEN CLOSED

I =0 I =—4clr
Ip _RLCIR {R = _RLCIF('
Ve = —Llg Ve =—¢lr
Q = Ir Q =
Ve = &ir Ve = &lr
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| cLosep Ir
. . o .
OPEN
TV
t
OPEN ] CLOSED
I =g(V-Ve)
I =0 In = (V—=Vc) I =—4slr
Ip _RLCIR Vp:=V-Ve Ir = _RLC/R
Vg = —lC/R ¢ 1 Vg = —%/R
Q = Ip I =0 Q = Ir
Ve = &ir Ip == Ve Ve = &lr
Vg :::—-Vb
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Switching systems

— X = Ax ] X = Asx Restricted hybrid system:
= » linear dynamics
4 > no guards (nondeterministic)
X'= Agx [« x" = Agx > no discrete updates
x(1) switch
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Switching systems

— X = Ax ] X = Asx Restricted hybrid system:
= » linear dynamics
4 > no guards (nondeterministic)
X'= Agx [« x" = Agx > no discrete updates
x(1) switch

> reachability also undecidable
» invariant synthesis possible
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Going hybrid: a bouncing ball
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Going hybrid: a bouncing ball

)/J\
Vy '= —Vy . .
» affine program: collision
t—0 m + linear differential equation: mechanics
X:=0 X = vy = linear hybrid automaton
y:=h y =Y
— v =0
Vy .= C \'/y =-g
V=0 | b =1
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Going hybrid: a bouncing ball

)/J\
> X
Vy == —Vy . .
» affine program: collision
t—0 m + linear differential equation: mechanics
x=0 X = Vx = linear hybrid automaton
=h y =V i : .
y_) Ve =0 Invariants: recover conservation
vei=¢ |y =—g > V=¢C of energy!
Vy — O % — 1 > X = ﬂ?

> v +2g(y —h)=0
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Linear Hybrid Automata

» Nondeterministic branching (no guards)
» All assignments are affine
» Linear differential equations in each location

x—oyx | X =3X—=T7y+1 —
— >XAXDf2

y=x-y f
fs /

: 7
X=BxlY "
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Linear Hybrid Automata

v

v

Nondeterministic branching (no guards)

All assignments are affine
Linear differential equations in each location

X =2y—x
y=x-y

x::3x—7y+1\

Af/
fs

fa

X = BX

More general than affine programs
More general than linear differential equations

XAXD f
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Which invariants?
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polynomial equalities
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Linear system with rounding

Rounding: [-] = round to nearest integer

a-lom mee= [()]- ()
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Linear system with rounding

Rounding: [-] = round to nearest integer

__|cos® —sind ) x\ | (Ix]
A= [sin@ cosH] € Q™ {(y)-‘ o (Ly}
Problem: given Xp € Q?, define X1 = |AX,]

> is reaChab”ity decidable ? » what does the reachable set
» is (Xn)n eventually periodic? look like?
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Linear system with rounding

Rounding: [-] = round to nearest integer
__|cos® —sind ) x\ | (Ix]
A= [sin@ cosH] € Q™ Ky)-‘ N ({y}
Problem: given Xp € Q?, define X1 = |AX,]

> is reaChab”ity decidable ? » what does the reachable set
» is (Xn)n eventually periodic? look like?

r=10,0 = /42
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Rounding: [-] = round to nearest integer
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Linear system with rounding

Rounding: [-] = round to nearest integer

a-lom mee= [()]- ()

Problem: given Xp € Q?, define X1 = |AX,]

> is reaChab”ity decidable ? » what does the reachable set
» is (Xn)n eventually periodic? look like?
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Linear system with rounding

Rounding: [-] = round to nearest integer
__|cos® —sind ) x\ | (Ix]
A= [sin& cosﬁ] € Q™ Ky)-‘ N ({y}
Problem: given Xp € Q?, define X1 = |AX,]

> is reaChab”ity decidable ? » what does the reachable set
» is (Xn)n eventually periodic? look like?

r=10,0 = /42 r=10, 0_2“ r=15,0

7/91 r=20,0=r/14

Open problems! Only known for a few specific values of 6.
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Linear dynamical systems are ubiquitous...

... and lead to very interesting mathematics!
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Interesting related mathematics

» Linear recurrent sequences (LRS)
Xn+k = 8k—18nyk—1 1 -+ XoXn

Fibonacci: Fpio = Fpyq + Fp
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18/101



Interesting related mathematics

» Linear recurrent sequences (LRS)
Xn+k = 8k—18nyk—1 1 -+ XoXn

Fibonacci: Fpyo = Fpiq + Fn

» Skolem/Positivity problem (Open for more than 70 years!)
decide if a given LRS has a zero/is always positive

» Exponential polynomials:
f(t) = Py(t)eM! + - + Pp(t)eM!
Examples: polynomials, €, sin(t), t?sin(f) — e~!
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Interesting related mathematics

» Linear recurrent sequences (LRS)
Xn+k = 8k—18nyk—1 1 -+ XoXn

Fibonacci: Fpi2 = Fpiq + Fn

» Skolem/Positivity problem (Open for more than 70 years!)
decide if a given LRS has a zero/is always positive

» Exponential polynomials:
f(t) = Py(t)eM! + - + Pp(t)eM!
Examples: polynomials, €, sin(t), t?sin(t) — e~!

» Continuous Skolem/Positivity (Also open)
decide if an exponential polynomial has a zero/is always positive
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Interesting related mathematics

» Linear recurrent sequences (LRS)
Xn+k = 8k—18nyk—1 1 -+ XoXn

Fibonacci: Fpi2 = Fpiq + Fn

» Skolem/Positivity problem (Open for more than 70 years!)
decide if a given LRS has a zero/is always positive

» Exponential polynomials:
f(t) = Py(t)eM! + - - - + Pp(t)eM!
Examples: polynomials, €, sin(t), t?sin(t) — e~!
» Continuous Skolem/Positivity (Also open)
decide if an exponential polynomial has a zero/is always positive

Reachability often harder/reduces to of these problems!
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Algebraic numbers and conjectures

Algebraic number: root of polynomial with integer coefficients
Transcendental number: not algebraic, e.g. e,
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Algebraic numbers and conjectures

Algebraic number: root of polynomial with integer coefficients
Transcendental number: not algebraic, e.g. e,

Theorem (Gelfond—Schneider theorem)

If a, b are algebraic numbers with a # 0,1 and b irrational, then (any
value of) aP transcendental.

Example: 2V2 s transcendental.
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Theorem (Gelfond—Schneider theorem)

If a, b are algebraic numbers with a # 0,1 and b irrational, then (any
value of) aP transcendental.

Example: 2V2 s transcendental.

Why is this related to reachability?
> target is usually rational/algebraic
» reachability creates constraints between numbers

Example: given a,b € Q, P € Q[X] polynomial, find t such that
P(ty=a and e'=b
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Algebraic numbers and conjectures

Algebraic number: root of polynomial with integer coefficients
Transcendental number: not algebraic, e.g. e,

Theorem (Gelfond—Schneider theorem)

If a, b are algebraic numbers with a # 0,1 and b irrational, then (any
value of) aP transcendental.

Example: 2V2 s transcendental.

Why is this related to reachability?
> target is usually rational/algebraic
» reachability creates constraints between numbers
Example: given a,b € Q, P € Q[X] polynomial, find t such that
P(ty=a and e'=b -~ impossible unless =0
Biggest open question in this field: Schanuel’'s conjecture
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Transcendental number theory

Many problems boil down to diophantine equations/approximations:
» Finding integer points in cones: Kronecker’s theorem

.
° ° ° ° o,
7 7
¢ 7
z 7/
4
4
) ) ° o, @
7z 7
7/
7 7
7 7
4
° ° ° ° °
° ° ° °
° ° ° ° °
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Transcendental number theory

Many problems boil down to diophantine equations/approximations:
» Finding integer points in cones: Kronecker’s theorem

° ° ° °
7 7
¢ 7
z 7/
7 7
¢ 7
° ° ° o,’,” @
7z 7
7/
7 7
7 7
4
° ° ° ° °
° ° ° °
° °® ° ° °

» Compare linear forms in logarithms: Baker’s theorem

V2 +log V3 — 3log V7 z 1+ log9 — log V666
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(Semi-)group theory

Finitely generated matrix semigroup:
Ay, ..., Ax € Q"™ generate a semigroup S = (A4, ..., Ak)

Example: SLy(Z) = <[? _01] ’ {(1) _11}>
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(Semi-)group theory

Finitely generated matrix semigroup:
Ay, ..., Ax € Q"™ generate a semigroup S = (A4, ..., Ak)

Example: SLy(Z) = <[? _01] ’ {(1) _11}>

Problems:
» finitness: is S finite ?
» mortality: does0e€ S?
» identity: does I, € S ?
» membership: does M € S where M € Q"*" is given as input ?
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(Semi-)group theory

Finitely generated matrix semigroup:
Ay, ..., Ax € Q"™ generate a semigroup S = (A4, ..., Ak)

Example: SLy(Z) = <[? _01] ’ {(1) _11}>

Problems:
» finitness: is S finite ?
» mortality: does0e€ S?
» identity: does I, € S ?
» membership: does M € S where M € Q"*" is given as input ?

Undecidable in general, many decidable subclasses are known.
Equivalent to reachability of affine programs.
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Algebraic geometry

Study systems of multivariate polynomial equations using abstract
algebraic techniques, with applications to geometry.
Examples

xX24+y?24+22-1=0 sphere in R®

XA L2 =1 AXxt+y+z=1 ~  “sliced” sphere in R®
X2 4+1=0 ~ @inR
XX+1=0 ~ {i,—i}inC
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Algebraic geometry

Study systems of multivariate polynomial equations using abstract
algebraic techniques, with applications to geometry.
Examples

xX24+y?24+22-1=0 sphere in R®

XCry2+ 22 =1 Axty+z=1 ~  “sliced” sphere in R®
X2—|—1:O ~ ZginR
XX+1=0 ~ {i,—i}inC

The field K is very important:

» real algebraic geometry: more “intuitive” but more difficult, really
requires the study of semi-algebraic sets

» mainstream algebraic geometry: K is algebraically closedt, e.g. C

TK is algebraically closed if every non-constant polynomial has a root in K.
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First-order theory of the reals

Many questions expressible in first-order logical theories:
> Ry = (R,0,1,<,+,-): decidable

nyeRTy/\/x_y
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First-order theory of the reals

Many questions expressible in first-order logical theories:
> Ry = (R,0,1,<,+,-): decidable

nyeRTy/\/x_y

> Rexp = (R,0,1, <, +,,exp, cos [[g,1]): decidable subject to
Schanuel’s conjecture

VX e Rx #0=t+ tel — 436> £ 1
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First-order theory of the reals

Many questions expressible in first-order logical theories:
> Ry = (R,0,1,<,+,-): decidable

vx,y € R Qy/\/x_y

> Rexp = (R,0,1, <, +,,exp, cos [[g,1]): decidable subject to
Schanuel’s conjecture

VX € Rx #0=t+te! — 43€% + 1
» Presburger arithmetic (N, 0,1, <, +): decidable
dxeN'"Ax > b
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Linear dynamical systems are ubiquitous and exact reachability
guestions lead to very interesting mathematical and logical questions.
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Linear dynamical systems are ubiquitous and exact reachability
guestions lead to very interesting mathematical and logical questions.

But...
» some systems are fundamentally nonlinear

2
Xnt1 = Xp

» real programs manipulate data structures:
trees, arrays, ...
» some programs are not sequential / nondeterministic
probabilistic, concurrent/parallell, ...
» exact reachability is not the only approach
testing, probabilistic model checking, incomplete algorithms, ...
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Reachability
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Examples: while loop, Markov chain

Bull
market

market

Pour =0
Poear =1
Pstag := 0
market while ppyy < 1/2 do
3 Pbul Pbull
State: X = (Ppull, Poear: Pstag) € [0, 1] Poear | := A | Poear
Transitions: Pstag Pstag

09 0.15 0.25
A=10075 08 025 The loop terminates if and
0.025 0.05 0.5 only if the probability of a bull
— Linear dynamical system market is > 1/2.

Xn+1 = AXp
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Termination Linear Loops

Does this loop terminate?

x:=2"10y.=1

until ¢(x) do

x} o {2 0 {x
=171l |y

y i 7
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Termination Linear Loops

Does this loop terminate? ™
' P ' Reachability problem

X =2710 y.—1 ~ » initial point: xy € Q°,

until ¢(x) do > transition matrix: A € Q9%9,
X] - [3 ? {X > target set: S C RY
il 2l decide if 3n € N. A"xy € S.

i 1%
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Termination Linear Loops

. . ?
Does this loop terminate* Reachability problem
> initial point: xp € QY,

x:=2"10y.=1 ~

» transition matrix: A € Q9%9,

until x =42 and y = 36 do
X] - [3 (1) {X > target set: S C RY
y 7 4l decide if 3n € N. A"xg € S.

Natural choices for S:
> point:
dneN AnXO =Yy
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Termination Linear Loops

. . "
Does this loop terminate* Reachability problem

X =210 y .= 1 ~ » initial point: X € QY,

until x = y do > transition matrix: A € Q9%9,
X] _ [3 (1) {X > target set: S C R
y i 7] Y

decide if 3n e N. A"xg € S.
Natural choices for S:

> point:
IneNAXy =y
» affine subspace:
IneNMA"xy =b
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Termination Linear Loops

. . "
Does this loop terminate* Reachability problem

X =210 y .= 1 ~ » initial point: X € QY,

until x > y do > transition matrix: A € Q9%9,
X] _ [3 (1) {X > target set: S C R
y i 7] Y

decide if 3n e N. A"xg € S.
Natural choices for S:

> point:
IneNAXy =y
» affine subspace:
IneNMA"xy =b
» polyhedron:
IneNMA"xy > b
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x:=2"10y.=1 ~

until x?y > 1 do > transition matrix: A € Q9%9,
X] - [3 (1) {X > target set: S C RY
y i 1V decide if 3n € N. A"xg € S.

Natural choices for S:
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IneNA'x =y dne N p(A'x) >0

> point:

» affine subspace:
IneNMA"xy =b

» polyhedron:
dne NMA"xy > b .



Termination Linear Loops

Does this loop terminate* Reachability problem
> initial point: xp € QY,

x:=2"10y.=1 ~

until X2y > 1 or x = y do > transition matrix: A € Q9%9,
X] - [3 (1) {X > target set: S C RY
y i 1V decide if 3n € N. A"xg € S.

Natural choices for S:
» (semi-)algebraic sets

IneNA'x =y dne N p(A'x) >0
» boolean combinations

> point:

» affine subspace:
IneNMA"xy =b
» polyhedron:
dne NMA"x) > b .



Termination Linear Loops

Does this loop terminate?

Reachability problem

x €[0,1],y €[1,2] ~
until ¢(x) do

{x

y

x}__{Z 0
vIm i g

Natural choices for S:

> initial point: xg € Q°,
> transition matrix: A € Q9%9,
> target set: S C RY

decide if 3n e N. A"xg € S.

» point: » (semi-)algebraic sets

dne N p(A'"x) >0
» boolean combinations

IneNAXy =y
» affine subspace:
IneNMA"xy =b
» polyhedron:

dne NMA"x) > b

> replace xp by an initial set X’

g e XINeNAX €S
VX € XAneNAxg € S
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What is decidable about linear loops?

Problem: given xg, A and S, decide if 3n € N such that A"xy € S.
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What is decidable about linear loops?

Problem: given xg, A and S, decide if 3n € N such that A"xy € S.

Theorem (Orbit problem; Kannan and Lipton 1980, 1986)

Decidable in polynomial time when S is a singleton.

Already nontrivial proof using algebraic number theory!

Theorem (Chonev, Ouaknine and Worrell, 2016)

Decidable (in NPF) when S is a linear subspace of dimension < 3.
Decidable (in PSPACE) when S is a polytope of dimension < 3.

Problem: given X', Aand S, decide if 3n € N such that A"X N S # @.

Theorem (Almagor, Ouaknine and Worrell, 2017)
Decidable (in PSPACE) when X', S are polytopes of dimension < 3.

Why do we need the dimension to be small?
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From loops to recurrent sequences

Linear Loop

X = Xo
until 3x; — 7x> + 4x3 = 0 do
X = Ax
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Half-space reachability
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until y"x = 0 do x := Ax decide if 3n € N. yTA"x, = 0.
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until y"x = 0 do x := Ax decide if 3n € N. yTA"xq = 0.

Consider the sequence u, = y T Ax.

Lemma
There exists ag, . ..,a4_1 € Q such that
Unig = 8d—1Unyg—1 + - -+ aoln, vn e N.

In other words, (un) is a linear recurrent sequence (LRS).
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From loops to recurrent sequences
Half-space reachability

X :=Xp Given x,y € Q9, A € Q9%9,
until y"x = 0 do x := Ax decide if 3n € N. yTA"xq = 0.

Consider the sequence u, = y T Ax.

Lemma
There exists ag, . ..,a4_1 € Q such that
Unig = 8d—1Unyg—1 + - -+ aoln, vn e N.

In other words, (un) is a linear recurrent sequence (LRS).
» Fibonacci: Fpip = Fpi1 + Fp
» Pell numbers: Ppip = 2P, 1 + Pp
» very common in combinatorics
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From loops to recurrent sequences

Half-space reachability

a4

X = Xo Given x,y € Q9, A e Q9%9,
until y"x = 0 do x := Ax decide if 3In € N. yTA"xy = 0.

Consider the sequence u, = y T Ax.

Lemma
There exists ag, . ..,a4_1 € Q such that
Unig = 8d—1Unyg—1 + - -+ aoln, vn e N.

In other words, (un)n is a linear recurrent sequence (LRS). Conversely,

Lemma

For any LRS (un)n, there exists xo, y and A such that u, = yT A"x,.
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Skolem and posivity problems

Linear recurrent sequence (LRS) of order d:
Unyd = @d—1Unyd—1 + -+ aoln, vneN.
Remark: entirely determined by uy, ..., Ug_1 and ay, .. ., ag—1
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Skolem and posivity problems

Linear recurrent sequence (LRS) of order d:
Untag = @d—1Untg—1 + -+ + aoln, vn e N.

Remark: entirely determined by uy, ..., Ug_1 and ay, .. ., ag—1

Skolem Problem
Given a LRS (un)n, decide if u, = 0 for some n € N.

This problem has been open for 70 years!
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Skolem and posivity problems

Linear recurrent sequence (LRS) of order d:
Unyg = @d—1Unyg—1 + -+ + aoln, vn e N.
Remark: entirely determined by uy, ..., Uq—1 and ag, ..., a4_1

Skolem Problem
Given a LRS (un)n, decide if u, = 0 for some n € N.

This problem has been open for 70 years!

Positivity Problem

Given a LRS (up)n, decide if u, > 0 for all n € N.

Harder than Skolem
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Skolem-Mahler-Lech theorem

Skolem Problem
Given a LRS (up)n, decide if u, = 0 for some n € N.

Theorem (Skolem, Mahler, and Lech, 1933, 1953, 1957)

The set {n € N : u, = 0} is a union of finitely arithmetic progression
and a finite set.

pattern

finite set

~
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Skolem-Mahler-Lech theorem

Skolem Problem
Given a LRS (up)n, decide if u, = 0 for some n € N.

Theorem (Skolem, Mahler, and Lech, 1933, 1953, 1957)

The set {n € N : u, = 0} is a union of finitely arithmetic progression
and a finite set.

pattern

finite set

~

The regular patterm is computable. Nothing is known about the finite
set: the proof is nonconstructive and uses p-adic analysis.
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Skolem in low dimension

Theorem (Mignotte, Shorey, Tijdeman; Vereshchagin, 1985)

The Skolem problem is decidable for LRS of order 4.
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Skolem in low dimension

Theorem (Mignotte, Shorey, Tijdeman; Vereshchagin, 1985)
The Skolem problem is decidable for LRS of order 4.

Theorem (Blondel and Portier, 2002)
The Skolem problem is NP-hard.

How can we show hardness without proving undecidability?
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Skolem in low dimension

Theorem (Mignotte, Shorey, TijJdeman; Vereshchagin, 1985)

The Skolem problem is decidable for LRS of order 4.

Theorem (Blondel and Portier, 2002)
The Skolem problem is NP-hard.

For any x € R, the (homogeneous Diophantine approximation) type
: n c
L(x) = mf{ceR. ‘x— E‘ < Wforsome n,meZ}.

Intuitively, if L(x) > 0 then x is badly approximable by rationals. Almost
nothing known for any concrete x except that L(x) € [0,1/+/5].

Theorem (Ouaknine and Worrell, 2013)

If Skolem is decidable at order 5 then one can approximate L(x) with
arbitrary precision for a large class of numbers x.
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Positivity and eventual posivity

Positivity Problem

Given a LRS (up)n, decide if u, > 0 for all n € N.
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Positivity and eventual posivity

Positivity Problem

Given a LRS (up)n, decide if u, > 0 for all n € N.

Theorem (Laohakosol and Tangsupphathawat, 2009)

The positivity problem is decidable at order 3.

Ultimate positivity Problem
Given a LRS (un)n, decide if 3N € N, such that u, > 0 for all n > N.

Theorem (Ouaknine and Worrell, 2014)

The ultimate positivity problem is decidable for simple* LRS. It is at
least as hard as deciding R.

*The associated characteristic polynomial has no repeated roots.
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First-order queries on orbits

First-order orbit query (FOOQ): fully quantified first-order sentence
whose atomic proposition are of the form

p(x) =0, A"x € T (T semialgebraic set).
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First-order queries on orbits

First-order orbit query (FOOQ): fully quantified first-order sentence
whose atomic proposition are of the form

p(x) =0, A"x € T (T semialgebraic set).
Examples: 3n € N such that...
> A'x =y : A'x € {y}
> A'SNT#@:3xeRIxe SAAXeT
> A'SCT:¥xeR¥IxecS—AxeT

Theorem (Almagor, Ouaknine and Worrell, 2021)

Given A and ®(n) a FOOQ, it is decidable whether 3n € N.®(n) in
dimension < 3.
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MSO model-checking

Given x e Q9 and A e Q™" and Ty, ..., Tx C RY semialgebraic sets.
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Let = = {0,1}* and define w € TN by
wh=(A"X€Ty,...,A"x € Tg).

Intuition: wj, records to which sets A"x belongs to at eact step n.
Problem: given an MSO formula V¥ over (N, <), decide whether w = V.

Examples: Pi(n) means A"x € T;
» 7;is reachable: 3n. P;i(n)
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vn: Pi(n) = (3m> n: Pi(m))
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MSO model-checking

Givenx e Q9and Ac Q™" and Ty, ..., Tx C RY semialgebraic sets.
Let = = {0,1}* and define w € TN by

wh=(A"X€Ty,...,A"x € Tg).

Intuition: wj, records to which sets A"x belongs to at eact step n.
Problem: given an MSO formula V¥ over (N, <), decide whether w = V.

Theorem (Karimov, Lefaucheux, Ouaknine, Purser, Varonka, Whiteland, Worrell)

This is decidable if all T; either have intrinsic dimension 1 or are
included in a subspace of dimension 3.

Examples: P;(n) means A"x € T;
» 7;is reachable: 3n. P;i(n)
» whenever 7; is visited 7; is visited some point later:
vn: Pi(n) = (3m> n: Pi(m))
> in target 7; at every odd position:

30 C N : |formula to define odd numbers|AVx : x € O = P;(x)
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Continuous linear dynamical systems
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Continuous linear dynamical systems

Linear differential equation:
X'(t)=Ax(t)  x(0)=xo
Example:

X'(t) = 7x(t)

~ x(t) = et
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Continuous linear dynamical systems

Linear differential equation:
X'(t)=Ax(t)  x(0)=xo
Example:

oo {3 o [0

Xé(t): —X1(t) Xo X2

~ x(t) = et N {x1(t) sin(f)
Xo(t)= cos(t)
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Continuous linear dynamical systems

Linear differential equation:
X'(t)=Ax(t)  x(0)=xo
General solution form:
x(t) = e*xg

M= M"
where eM = Z =
n=0
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Continuous reachability

Continuous Skolem problem

Given x, y and A, decide if 3t € R such that x” e/ly = 0.
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Given x, y and A, decide if 31 < [0. 1] such that x" e/ly = 0.
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Continuous positivity Problem

Given x, y and A, decide whether x"e/ly > 0 for all t > 0.
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Continuous reachability

Continuous Skolem problem

Given x, y and A, decide if 3t € R such that x” e/ly = 0.

Bounded continuous Skolem problem

Given x, y and A, decide if 37 < [0, 1] such that x"eAly = 0.

Continuous positivity Problem

Given x, y and A, decide whether x"e/ly > 0 for all t > 0.

Continuous positivity is inter-reducible with continuous Skolem.

The decidability of all these problems is also open!
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A link with number theory

Some reachability questions look like this :
JteR. 42t' =56 A e — el =9
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A link with number theory

Some reachability questions look like this (P, Q polynomials):
JteR. P(t)=0AQ(e")=0
Claim: impossible except possibly for t = 0 (easy to check)

Algebraic number: root of polynomial with integer coefficients
Transcendental number: not algebraic, e.g. e,

Theorem (Special case of Lindemann—Weierstrass)

If t is a nonzero algebraic number then €' is transcendental.

» P(t) =0 so tis algebraic (by definition)
» Lindemann—Weierstrass: e' transcendental (unless t = 0)
» hence Q(e!) # 0 (except maybe if t = 0)
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Exponential polynomial

In general,
d
xTefly = Z P;(t)eM!
i=1

where P; polynomial, \; € C eigenvalues of A.
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In general,
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where P; polynomial, \; € C eigenvalues of A.
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continuous Skolem problem.

Theorem (Wilkie and Maclntyre)

If Schanuel’s conjecture is true, then, for each k € N, the first-order
theory of the structure (R,0,1, <, +, -, exp, cos [[o k], Sin [[0,x]) IS
decidable.

» algorithm always correct, only termination requires the conjecture
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Exponential polynomial

In general,
d
XTeAty _ Z Pl_(t)ek,'t
i=1

where P; polynomial, \; € C eigenvalues of A.

Lindemann—Weierstrass’s theorem is not enough to solve the
continuous Skolem problem.

Theorem (Wilkie and Maclntyre)

If Schanuel’s conjecture is true, then, for each k € N, the first-order
theory of the structure (R,0,1, <, +, -, exp, cos [[o k], Sin [[0,x]) IS
decidable.

> algorithm always correct, only termination requires the conjecture
» this makes many problem (inc. continuous Skolem) decidable!
What is Schanuel’s conjecture?
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Schanuel’s conjecture

Schanuel’s conjecture

If z1,..., 2, that are linearly independent over Q, then at least n
numbers among z1, ..., 2z, €4,...,€* are algebraically independent.
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Example: w and e are algebraically independent
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im,1,—1, e are algebraically independent. But 1 is algebraic so = and e
are algebraically independent.
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Schanuel’s conjecture

Schanuel’s conjecture

If z1,..., 2, that are linearly independent over Q, then at least n
numbers among z1, ..., 2z, €4,...,€* are algebraically independent.
Example: w and e are algebraically independent

zi=ln, 2o =1 ~ ef'=-1,e2=e.

Clearly zy and z are linearly independent over Q. So at least 2 of
im,1,—1, e are algebraically independent. But 1 is algebraic so = and e
are algebraically independent.

Summary:
» Schanuel implies that =, e,  + e, e, ... are transcendental.
» 7 and e are known to be transcendental
» 7+ eis not known to be transcendental
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Continuous reachability

Bounded continuous Skolem problem: given x, y and A, decide if
» unbounded: 3t € [0, 1] such that x"eA'y = 0.
» bounded: 3t € R such that x"e#ly = 0.

Theorem (Chonev, Ouaknine and Worrell, 2016)

The bounded continuous Skolem Problem is decidable subject to
Schanuel’s conjecture.
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Continuous reachability

Bounded continuous Skolem problem: given x, y and A, decide if
» unbounded: 3t € [0, 1] such that x"eA'y = 0.
» bounded: 3t € R such that x"e#ly = 0.

Theorem (Chonev, Ouaknine and Worrell, 2016)

The bounded continuous Skolem Problem is decidable subject to
Schanuel’s conjecture.

Theorem (Chonev, Ouaknine and Worrell, 2016)

If the (unbounded) continuous Skolem Problem is decidable then the
Diophantine-approximation types of all real algebraic numbers is
computable.

In other words: it requires new mathematics...
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More complicated programs

Linear loop with if

=Y

y =1
while y > x do
if y > 2x then

J-Eap
D . [—23 3} ﬂ
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More complicated programs

Linear loop with if

=Y

y =1
while y > x do
if y > 2x then

“B-F e
-5 90

Reachability is trivially
undecidable by simulating two
counter automata
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More complicated programs

Linear loop with if

=Y

y =1
while y > x do

if y > 2x then ~
x| .12 0] |x
yl [1 4 [y

else
x| |2 3||x
vl [—3 7] Y]

Reachability is trivially
undecidable by simulating two
counter automata

Nondeterminic loop

x =210
y =1
while true do

NI
-1 90
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More complicated programs
Linear loop with if Nondeterminic loop

x =210 x =210
y =1 y =1
while y > x do while true do
if y > 2x then o~ non deterministically do
x| .12 0] |x x| {2 0 |x
vl [1 4 [y M - [1 4] M
else or
x] [2 3][x x| 2 3||x
=% AL b= 150

Reachability is trivially
undecidable by simulating two
counter automata » Nondeterminic

» Overapproximate behaviours
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Example: 2D robot

Rotate arm by v:
X cos v
(y) < <sin¢
X cos
<y9> < <sinzp

—siny\ [(x
cos Y ) y
—siny\ (X
cos 1) ) Yo

State: 0 = (X, ¥, X, ¥)

Discretized actions:

> rotate arm by

» change arm length by §
~» Linear transformations

Change arm length by 4:
X X Xp
+6
(y) . <y) (Ye)
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Matrix problems

Input: A, C € Q9*9 matrices
Output: 3ne€ Nsuchthat A”=C 7

Example: 3n € N such that
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Matrix problems

Input: A, C € Q9% matrices

Output: 3n € Nsuchthat A" =C 7 v Decidable (PTIME)
Input: A, B, C € Q9% matrices

Output: 3n,m € N such that A"B™ =C ? v Decidable
Input: Ay, ..., Ak, C € Q9%9 matrices

Output: 3ny,...,n, € Nsuchthat [[< A" =C 7

Example: 3n,m, p € N such that
2 31" 31" [2 5]°_[81 260],
01 (0 1] [0 1 o 1]
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Input: Ay, ..., Ak, C € Q9%9 matrices
Output: 3ny,...,n, € Nsuchthat [[< A" =C 7
v Decidable if A; commute x Undecidable in general

Input: A, ..., Ak, C € Q9% matrices
Output: C € (semigroup generated by A¢,... , Ac) ?

Semigroup: (Ay, ..., Ak) = all finite products of A¢, ..., Ak
Examples:
AlAsAy  AjAA1Ay  ASALASAY?
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Discrete reachability problems

Every nontrivial extension of simple linear loops seems to lead to
undecidable problems.
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Discrete reachability problems

Every nontrivial extension of simple linear loops seems to lead to
undecidable problems. What about the continuous setting?
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| cLosep Ir VR
. .« o N
OPEN R

IV
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| cLosep Ir Vr

OPEN R
TV
t
OPEN

I =0
lg = _RLCIR
Ve = —¢lr
@ =1
Ve = &Ir
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| cLosep Ir VR

OPEN R
TV
t
OPEN CLOSED

I =0 I =—4clr
Ip _RLCIR {R = _RLCIF('
Ve = —Llg Ve =—¢lr
Q = Ir Q =
Ve = &ir Ve = &lr
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| cLosep Ir
. . o .
OPEN
TV
t
OPEN ] CLOSED
I =g(V-Ve)
I =0 In = (V—=Vc) I =—4slr
Ip _RLCIR Vp:=V-Ve Ir = _RLC/R
Vg = —lC/R ¢ 1 Vg = —%/R
Q = Ip I =0 Q = Ir
Ve = &ir Ip == Ve Ve = &lr
Vg :::—-Vb
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Switching systems

— X = Ax ] X = Axx Restricted hybrid system:

» linear dynamics

+ > no guards (nondeterministic)
X' = Agx » no discrete updates

x1 (1) switch

—x = Asx

AN
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Switching systems

— X = Ax ] X = Axx Restricted hybrid system:

» linear dynamics

+ > no guards (nondeterministic)
X' = Agx » no discrete updates

x1 (1) switch

—x = Asx

AN

Dynamics:
eMls gAsls ghalo gAY
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Switching systems

— X = Ax ] X = Axx Restricted hybrid system:

» linear dynamics

+ > no guards (nondeterministic)
X' = Agx » no discrete updates

x1 (1) switch

—x = Asx

AN

Problem:
Mlighsligholo Attt — 0 2
What we control: t, b, f3, t4 € R>p
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Related work in the continuous case

Input: A, C € Q9*9 matrices
Output: 3t e Rsuchthate = C 7

Example: 3t € R such that

(s 1))
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Related work in the continuous case

Input: A, C € Q9*9 matrices
Output: 3t € Rsuch that At = C 7 v Decidable (PTIME)

Input: A, B, C € Q9% matrices
Output: 3t, u € N such that e#tefV = C 7

Example: 3t, u € R such that

oo 3o 95
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Related work in the continuous case

Input: A, C € Q9*9 matrices
Output: 3t € Rsuch that At = C 7 v Decidable (PTIME)

Input: A, B, C € Q9% matrices
Output: 3t, u € N such that e#tefV = C 7 x Unknown

Example: 3t, u € R such that

oo 3o 95
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Switching system

— X' = Ayx

A

~

X' = Asx

What about a loop ?

v

x' = Asx

A

x' = Asx
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Switching system

—

X' = Aix

~

X' = Asx

A

What about a loop ?

Dynamics:

eA4 fé eA3 fé eAg fé eA1 f1, eA4 Iy eA3 t3 eAg 1) eA1 t
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Switching system

— X = A xk—| X' = Axx

>< Loop <> clique

As

Az

f3 t4:t‘1 =0 b
Remark:
zero time dynamics (& = 0) are allowed
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Switching system

— X' = Ayx

~

X' = Asx

><\
I
>
5
>
><\
I
™
w
>

Dynamics:

any finite product of %'~ semigroup!

49/101



Switching system

— X' = Aix

~

X' = Asx

><\
I
>
5
>
><\
I
™
w
>

Problem:

Ceg 7

where G = (semigroup generated by e*! for all t > 0)

49/101



Reachability for switching systems

Input: Ay, ..., Ak, C € Q9% matrices
Output: 3t,..., t > 0 such that

n
[[¢*=c
i=1

Input: A, ..., Ak, C € Q9% matrices
Output:

C e (semigroup generated by e*! ... %! t>0) ?

Theorem (Ouaknine, P, Sous-Pinto, Worrell)

Both problems are:
» Undecidable in general
» Decidable when all the A; commute
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Some words about the proof (commuting case)

Product Problem

- = 0 st equivalent Semigroup Problem
;.. k=08t < >
H1'.71eAft/,-(:C 2 Ce(eM,. ..., e t>0) ?
i .
reduce

Integer Linear Programming

dneZ9st. 71Bn<s
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Some words about the proof (commuting case)

Product Problem

equivalent Semigroup Problem
dfy,... .tk >0st |« > A ;
H7:16A"t":C ? CE(G‘,,eAkt20> ?
reduce
A s of the form:
Integer Linear Programming ap + log(at) + - - - + log(ax)

dnez9st 7Bn< s v B.ao, ... ax are algebraic
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Some words about the proof (commuting case)

Product Problem

equivalent Semigroup Problem
Ht%,...;‘tk>Os.t. < ’Ce<eA1’ 15 0) 7
Hi:1eiti:C ? Sy > !
reduce
A s of the form:
Integer Linear Programming ap + log(at) + - - - + log(ax)
dnez9st 7Bn< s v B.ao, ... ax are algebraic

How did we get from reals to integers with 7 ?

e'=a o telog(a)+2rZ
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Integer Linear Programming

Ine zZ%suchthattBn<s ?
where s is a linear form in logarithms of algebraic numbers
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Integer Linear Programming

Ine zZ%suchthattBn<s ?
where s is a linear form in logarithms of algebraic numbers

Key ingredient: Diophantine approximations

» Finding integer points in cones: Kronecker’s theorem
® ® ) ) o,

v’ 7

R
[ ] [ ] ([ ] e,’,” o
s
s
A
,
’
[ J [ J [ ] [ ] [ ]
[ J [ J [ ] [ ]
[ J [ J [ ] [ ] [ ]
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Integer Linear Programming

dnez9suchthattBn<s ?
where s is a linear form in logarithms of algebraic numbers

Key ingredient: Diophantine approximations

» Finding integer points in cones: Kronecker’s theorem
® ® ) ) o,

R
[ ] [ ] ([ ] e,’,” o
s
s
A
,
’
[ J [ J [ ] [ ] [ ]
[ J [ J [ ] [ ]
[ J [ J [ ] [ ] [ ]

» Compare linear forms in logs: Baker’s theorem
V2+logV3—3logvV7 £ 1+log9—log V666 .0



Some words about the proof (general case)

Product Problem

reduce

Semigroup Problem

dfy, ..., = 0 s.t.
[l et =C 7

reduce

Hilbert's Tenth Problem

dnez9s.t. p(n)=0

TloeeMt. . eMtit=0) ?

Theorem (Matiyasevich)

Hilbert's Tenth Problem is
undecidable
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Summary on reachability

Exact reachability is hard:
» Skolem/Positivity problem for linear loops (Open for 70 years)
» Every mild extension is undecidable

» Decidability requires very strong assumptions (commuting
matrices)

Continuous vs discrete setting
» similar results
> different techniques
> continuous setting can leverage powerful results/conjectures
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Control Theory
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Example: mass-spring-damper system

//////////////////////////////////////

State: X=z€eR
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

zl b k Equation of motion:

mzZ" = —kz — bz + mg+u

Model with external input u(t)
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Example: mass-spring-damper system

State: X =zeR

zl b k Equation of motion:
mz" = —kz — bz +mg + u

m — Affine but not first order

Model with external input u(t)
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Example: mass-spring-damper system

State: X =zeR

zl b k Equation of motion:
mzZ" = —kz — bz + mg+u
m — Affine but not first order
Lun
State: X = (z,2/,1) e R®
Model with external input u(t) Equation of motion:
z ! Vi
7| = |-kz-2Z+g+u

1 0
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Example: mass-spring-damper system

State: X =zeR

2 b K Equation of motion:
mzZ" = —kz — bz + mg+u
m — Affine but not first order
Lun
State: X = (z,2/,1) e R®
Model with external input u(t) Equation of motion:
— Linear time invariant system S S
I
X =AX+ Bu Z| =|-kz-bz 19+ tu

with some constraints on u. 1 0
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A very simple example

A simplified one-dimensional car: control acceleration u(f)
X"(t) = u(t)
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A very simple example

A simplified one-dimensional car: control acceleration u(f)

X"(t) = u(t)

Starting at x(0) = a, want to reach and stop at x = b:

x' =0

x' =0
a b
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A very simple example

A simplified one-dimensional car: control acceleration u(f)

X"(t) = u(t)

Starting at x(0) = a, want to reach and stop at x = b:

x' =0 @

x' =0
e —= R, e
X
a b

~
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A very simple example

A simplified one-dimensional car: control acceleration u(f)
x"(t) = u(t)
Starting at x(0) = a, want to reach and stop at x = b:

x' =0 @

@ choose @ u(t)

x' =0
om0
b

\
[ 4
a
Possible solution:
u X' X
1 b
T
0 t Vv
—1 0 t a t
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A very simple example

A simplified one-dimensional car: control acceleration u(f)
x"(t) = u(t)
Starting at x(0) = a, want to reach and stop at x = b:

-

x' =0
oo —==0 -
a

x' =0
om0
b

\
[ 4
More realistic solution:
u X' X
1 b
T
0 t
v
—1 0 t a t

57/101



A very simple example

A simplified one-dimensional car: control acceleration u(f)
x"(t) = u(t)
Starting at x(0) = a, want to reach and stop at x = b:

x' =0 g x' =0

oo U o
X
b
Rephrasing the problem:

a
X' =y x]" [0 1] [x 0 -
(52 o BB B - xmmese

Starting from (x, y) = (a,0), try to reach (x, y) = (b, 0).

~

This is a point-to-point reachability problem.
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The problem

LTl Reachability problem

> asource y € Q",
> atarget z € Q",
> a transition matrix A € Q"*",
> a set of controls U C R”,
decide if 3T > 0, u: [0, T] — U measurable such that x(T) = z where

x(0) =y, x'(t) = Ax(t) + u(t) forte [0, T].
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The problem

LTl Reachability problem

> asource y € Q",
> atarget z € Q",
> a transition matrix A € Q"*",
> a set of controls U C R”,
decide if 3T > 0, u: [0, T] — U measurable such that x(T) = z where

x(0) =y, x'(t) = Ax(t) + u(t) forte [0, T].

Warning: u does not need to be “describable”, e.g. piecewise
polynomial. Otherwise, completely changes the nature of the problem.
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Bigger picture

Continuous Reachability problem

> asource y € Q", > a transition function f,

> atarget z € Q", > a set of controls U C R™,
decide if 3T > 0, u : [0, T] — U measurable such that x(T) = z where

x(0)=y,  X(f)=f(t.x(t),u(t)) fortelo,T].
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decide if 3T > 0, u : [0, T] — U measurable such that x(T) = z where

x(0)=y,  X(f)=f(t.x(t),u(t)) fortelo,T].

Generally undecidable:
» for nonlinear systems, even without control (U = {0})
> piecewise constant derivative systems (PCD), still no control
> linear saturated systems (at least for discrete systems), no control

LTI systems probably form the most useful class that is not undecidable.
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Bigger picture

Continuous Reachability problem

> asource y € Q", > a transition function f,

> atarget z € Q", > a set of controls U C R™,
decide if 3T > 0, u : [0, T] — U measurable such that x(T) = z where

x(0)=y,  X(f)=f(t.x(t),u(t)) fortelo,T].

Generally undecidable:
» for nonlinear systems, even without control (U = {0})
> piecewise constant derivative systems (PCD), still no control
> linear saturated systems (at least for discrete systems), no control

LTI systems probably form the most useful class that is not undecidable.

But do they really?
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Existing work

LTl Reachability problem
> asource y € Q", > a transition matrix A ¢ Q™"
> atarget z € Q", > a set of controls U C R”,

decide if 3T > 0, u: [0, T] — U measurable such that x(T) = z where

x(0) =y, X'(t) = Ax(t) + u(t) forte [0, T].
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Existing work

LTl Reachability problem
> asource y € Q", > a transition matrix A € Q<"
> atarget z € Q", > a set of controls U C R”,

decide if 3T > 0, u: [0, T] — U measurable such that x(T) = z where

x(0) =y, X'(t) = Ax(t) + u(t) forte [0, T].

Many variants (applies to non-LTI systems):

» can all points y € R" reach z =07 global null-controllability
can all points y € R” tend to z = 0?7 asymptotic null-controllability
can all points y ~ 0 reach z = 07 local null-controllability
is the trajectory bounded when v is bounded? stability
approximate the set of reachable points from y reach set

vvyyvyy
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Existing work

LTl Reachability problem
> asource y € Q", > a transition matrix A € Q<"
> atarget z € Q", > a set of controls U C R”,

decide if 3T > 0, u: [0, T] — U measurable such that x(T) = z where

x(0) =y, X'(t) = Ax(t) + u(t) forte [0, T].

Many variants (applies to non-LTI systems):
» can all points y € R" reach z =07 global null-controllability
» can all points y € R" tend to z = 0? asymptotic null-controllability
» can all points y ~ 0 reach z =07 local null-controllability
> is the trajectory bounded when v is bounded? stability
» approximate the set of reachable points from y reach set

But also:

» assumptions on A (typically spectral)
> assumptions on U
» restrictions on acceptable u
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Two known extreme cases

» When we have no control:
U={0} and x'(t)=Ax+u(t) <  x(t)=ex(0).
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Two known extreme cases

» When we have no control:
U={0} and x'(t)=Ax+u(t) <  x(t)=ex(0).
Theorem (Hainry’08)

Giveny,z € Q" and A € Q"™ ", it is decidable whether 3t > 0 such that

z=2ely.

» When we can control in a vector space:
U=BR™ and x'(t)=Ax+u(t) = x(t)€span[B,AB,...,A""'B]

Theorem (Folklore)

Giveny,z e Q"and Ae Q™" B e Q"™ jtis decidable whether
iT > 0andu: [0, T] — BR™ measurable such that x(0) = y and
x(T) = z where

X'(t) = Ax(t) + u(t)
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Back to the future

A simplified one-dimensional car: control acceleration u(1)
x"(t) = u(t)
Starting at x(0) = a, want to reach and stop at x = b:

x' =0 X'=0

e —= R, e
X

a b

Reality: acceleration/braking is not infinite ~ v is bounded!
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Back to the future

A simplified one-dimensional car: control acceleration u(1)
x"(t) = u(t)
Starting at x(0) = a, want to reach and stop at x = b:

x' =0 X'=0

e —= R, e
X

a b

Reality: acceleration/braking is not infinite ~ v is bounded!

Very few decidability results in the literature in this case.
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Our results: decidability

LTl Zonotope Null-Reachability problem

Given a matrix A € Q™" a set of controls U = B[—1, 1], a target
ze€ Q",decide if AT > 0, u: [0, T] — U such that x(T) = z where

x(0) =0, x'(t) = Ax(t) + u(t) forte [0, T].
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Our results: decidability

LTl Zonotope Null-Reachability problem

Given a matrix A € Q™" a set of controls U = B[—1, 1], a target
ze€ Q",decide if AT > 0, u: [0, T] — U such that x(T) = z where

x(0) =0, x'(t) = Ax(t) + u(t) forte [0, T].

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of:
» A s real diagonal, B is a column with at most 2 nonzero entries,
» A is real diagonalizable, eigenvalues C aQ for some o € Q,

» A only has one eigenvalue which is real, B is a column,
» dimension n =2, B is a column and A has real eigenvalues.
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» A s real diagonal, B is a column with at most 2 nonzero entries,
» A is real diagonalizable, eigenvalues C aQ for some o € Q,

» A only has one eigenvalue which is real, B is a column,
» dimension n =2, B is a column and A has real eigenvalues.

— Well, that was underwhelming...
% Are you sure you cannot do better?

63/101



Our results: conditional decidability

Schanuel’s conjecture

A deep conjecture in transcendental number theory. Widely believed
to be true and totally open.
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Our results: conditional decidability

Schanuel’s conjecture

A deep conjecture in transcendental number theory. Widely believed
to be true and totally open.

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of:
> A has real eigenvalues,
» in dimension n = 2,
> we bound the time to reachability.

and Schanuel’s conjecture is true.

Theorem (Wilkie and Maclntyre)

If Schanuel’s conjecture is true, then, for each k € N, the first-order
theory of the structure (R,0,1, <, +, -, exp, cos [[o 4], Sin [[0.x]) /S
decidable.
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65/101



Hardness

Study generalization:

LTI Null-Set-Reachability problem

Given a matrix A € Q™" a set of controls U C R", a set 7 C R”,
decide if 3T > 0, u: [0, T] — U such that x(T7) ¢ Z where

x(0)=0,  x(t)=Ax(t) + u(t) forte]o,T].

65/101



Hardness

Study generalization:

LTI Null-Set-Reachability problem

Given a matrix A € Q™" a set of controls U C R", a set 7 C R”,
decide if 3T > 0, u: [0, T] — U such that x(T7) ¢ Z where

x(0)=0,  x(t)=Ax(t) + u(t) forte]o,T].

This is trivially hard for U = {0} and Z = {hyperplane} because:

65/101



Hardness

Study generalization:

LTI Null-Set-Reachability problem

Given a matrix A € Q™" a set of controls U C R", a set 7 C R”,
decide if 3T > 0, u: [0, T] — U such that x(T7) ¢ Z where

x(0)=0,  x(t)=Ax(t) + u(t) forte]o,T].

This is trivially hard for U = {0} and Z = {hyperplane} because:

Continuous Skolem problem

Given a matrix A € Q™" and ¢, xo € Q", decide if 3T > 0 such that
cTeA’xo =0.

65/101



Hardness

Study generalization:

LTI Null-Set-Reachability problem

Given a matrix A € Q™" a set of controls U C R", a set 7 C R”,
decide if 3T > 0, u: [0, T] — U such that x(T7) ¢ Z where

x(0)=0,  x(t)=Ax(t) + u(t) forte]o,T].

This is trivially hard for U = {0} and Z = {hyperplane} because:

Continuous Skolem problem

Given a matrix A € Q™" and ¢, xo € Q", decide if 3T > 0 such that
cTeA’xo =0.

This is a well-known “hard” problem.
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Hardness (cont.)

Taking U = {0} is cheating:
» when U = {0}, reachable set is closed (or closed minus a point)

o7
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Hardness (cont.)

Taking U = {0} is cheating:
» when U = {0}, reachable set is closed (or closed minus a point)

() 7

» when U = B[-1,1]™, reachable set is open

boundary not included

This is completely different!
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Our results: hardness

LTI Zonotope Null-Set-Reachability problem

Given a matrix A € Q"*", a set of controls U = B[—1,1]", a set
Z C R" decide if 3T >0, u: [0, T] — U such that x(7) ¢ Z where

x(0) =0, x'(t) = Ax(t) + u(t) forte [0, T].
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Our results: hardness

LTI Zonotope Null-Set-Reachability problem

Given a matrix A € Q"*", a set of controls U = B[—1,1]", a set
Z C R" decide if 3T >0, u: [0, T] — U such that x(7) ¢ Z where

X(0) =0,  X(t)=Ax(t) + u(t) forte]o,T].

Theorem (Dantam, P.)

The Continuous Nontangential Skolem problem reduces to this
problem with a single input (m = 1), A stable and Z a hyperplane or a
convex compact set of dimension n — 1.

Continuous Skolem problem

Given a matrix A € Q™™ and ¢, xg € Q", decide if 3T > 0 such that
f(t) = 0 and '(t) # 0 where f(t) = cT e’lxy = 0.

It is essentially as hard as the Continuous Skolem problem.
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Conclusion (continuous case)

LTI reachability problem: find T and u such that
x(0) =0, X'(t) = Ax(t) + Bu(t), u(t) e [-1,1]™
satisfies x(T) = target. Very natural problem in control theory.

Point reachability is
» decidable in dimension 2 or with spectral constraints,
» conditionally decidable with real eigenvalues,
» conditionally decidable in bounded time,

Set reachability is Nontangential Continuous Skolem hard.
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The continuous case is much harder than expected. What about the
discrete case?
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The problem

> asource s € QY,
> atarget t € QF,
> a transition matrix A € Q9x9,
» a set of controls U C RY,
decide if 3T € N, ug, ..., ur_1 € U such that x; = t where

Xo = S, Xnt1 = AXp + Up.
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The problem

LTI-REACHABILITY

> asource s € QY,
> atarget t € QF,
> a transition matrix A € Q9x9,
» a set of controls U C RY,
decide if 3T € N, ug, ..., ur_1 € U such that x; = t where

Xo = S, Xnt1 = AXp + Up.

X1 = AXg + Up

—
./4‘)(0 Uo
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Xo=S
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The problem

LTI-REACHABILITY

» asource s € Q7

> atarget t € QF,

> a transition matrix A € Q9x9,
» a set of controls U C RY,

decide if 3T € N, ug, ..., ur_1 € U such that x; = t where
Xo = S, Xnt1 = AXp + Up.
X1 = AXxo + Up AXz
—> L ]
./4‘)(0 Uo

= Axy + U .

X s ; 2 1 1 :
,

AX1
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The problem

LTI-REACHABILITY

» asource s € Q7

> atarget t € QF,

> a transition matrix A € Q9x9,
» a set of controls U C RY,

decide if 3T € N, ug, ..., ur_1 € U such that x; = t where
Xo = S, Xnt1 = AXp + Up.
X1 = AXg + Up Axo
% Q,
./4‘)(0 Uo \UZ.
il > = AXy + Uy
Xo =S Uy Xz =1

AX1
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Decidability (1)

LTI-REACHABILITY

» asource s € QY,
> atarget t € QF,
> a transition matrix A € Q9x9,
> a set of controls U C RY,
decide if 3T € N, ug,...,ur_1 € U such that x; = t where

Xg = S, Xnt+1 = AXp + Up.
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Decidability (1)

LTI-REACHABILITY

» asource s € QY,
> atarget t € QF,
> a transition matrix A € Q9x9,
> a set of controls U C RY,
decide if 3T € N, ug,...,ur_1 € U such that x; = t where

Xg = S, Xnt1 = AXp + Up.

Theorem (Lipton and Kannan, 1986)

LTI-REACHABILITY is decidable if U is an affine subspace of RY.

Almost no exact results for other classes of U in particular when U is
bounded (which is the most natural case).
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Hardness

Theorem (Fijalkow, Ouaknine, P. Sousa-Pinto, Worrell)

LTI-REACHABILITY IS
» undecidable if U is a finite union of affine subspaces.
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Hardness

Theorem (Fijalkow, Ouaknine, P. Sousa-Pinto, Worrell)

LTI-REACHABILITY IS
» undecidable if U is a finite union of affine subspaces.
» Skolem-hard if U = {0} U V where V is an affine subspace
» Positivity-hard if U is a convex polytope

Since we cannot solve Skolem/Positivity, we need some strong
assumptions for decidability.
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A positive result

A LTI system (s, A, t, U) is simple if s =0 and
> U is a bounded polytope that contains 0 in its (relative) interior,
» the spectral radius of Ais less than 1 (stability),
» some positive power of A has exclusively real spectrum.

Theorem (Fijalkow, Ouaknine, P. Sousa-Pinto, Worrell)

LTI-REACHABILITY Is decidable for simple systems.

Remark: in fact we can decide reachability to a convex polytope Q.

ot

Assumptions imply that the
reachable set is an open
convex bounded set, but
not always a polytope!
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Why is this problem hard

The reachable set A*(U) can have infinitely many faces.

o
A= 3 ¢
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Why is this problem hard

The reachable set A*(U) can have faces of lower dimension: the
"top" extreme point does not belong to any facet.
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Why is this problem hard

Approach: two semi-decision procedures
» reachability: under-approximations of the reachable set
» non-reachability: separating hyperplanes
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Why is this problem hard

Approach: two semi-decision procedures
» reachability: under-approximations of the reachable set
» non-reachability: separating hyperplanes

Further difficulty: a separating hyperplane may not be supported by a
facet of either A*(U) or Q.
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Why is this problem hard

Even more difficulty: B*(V) has two extreme points that do not belong
to any facet and have rational coordinates, but whose (unique)
separating hyperplane requires the use of algebraic irrationals
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Why is this problem hard

Even more difficulty: B*(V) has two extreme points that do not belong
to any facet and have rational coordinates, but whose (unique)
separating hyperplane requires the use of algebraic irrationals

Theorem (Non-reachable instances)

There is a separating hyperplane with algebraic coefficients.
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Conclusion on control

Exact reachability for LTI systems:
» decidability crucially depends on the shape of the control set

» even with convex bounded inputs, the problem is very hard
(Skolem/Positivity, open for 70 years)

> we can recover decidability using strong spectral assumptions
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Conclusion on control

Exact reachability for LTI systems:
» decidability crucially depends on the shape of the control set

» even with convex bounded inputs, the problem is very hard
(Skolem/Positivity, open for 70 years)

> we can recover decidability using strong spectral assumptions

Despite an extensive literature in control theory, the decidability control
problems is still very open.
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Invariant Synthesis
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Does this program halt?

Affine program

x =210

y =1
while y > x do

b=z 2]
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Does this program halt?

Affine program

x = 9—10 Certificate of non-termination:
- 2 3 1023
V= XY = X° = qo73741824 (2)
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Does this program halt?

Affine program

x = 9—10 Certificate of non-termination:
- 2 3 1023
V= XY = X° = qo73741824 (2)

» (2) is an invariant: it holds at every
step

» (2) implies the guard is true
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Invariants

invariant = overapproximation of the reachable states
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Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition
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Inductive invariants: example

f3
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Inductive invariants: example

X,y,z range over Q fi: R® —» R3
S
So
#
fi
1 o 2 f>
f3
f5 f,
e
&

S4,55,5; are the reachable states
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Inductive invariants: example

X,y,z range over Q fi: R® —» R3
S
S.
e ke N
fi
1 A 2 f>
f3
f5 f,
g
S/

S1,55,S3 is also an inductive invariant
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Inductive invariants: example

X,y,z range over Q fi: R® —» R3
S
fi
1 o 2 f>
f3
f5 f,

l1,l>,l3 is an invariant
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Inductive invariants: example

X,y,z range over Q fi: R® - RS

ls

l1,l,1; is NOT an inductive invariant
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Inductive invariants: example

X,y,z range over Q fi: R® - RS

ls

l1,b,l3 is an inductive invariant
82/101



Why Invariants?

/ BAD!

o
The classical approach to the verification of temporal safety

properties of programs requires the construction of inductive
invariants [...]. Automation of this construction is the main

challenge in program verification.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko
Invariant Synthesis for Combined Theories, 2007
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Which invariants?
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Affine programs

f5 a
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Affine programs

» Nondeterministic branching (no guards)

f5 a
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Affine programs

» Nondeterministic branching (no guards)
» All assignments are affine

X =3x—-7y+1
f3

fa
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Affine programs

» Nondeterministic branching (no guards)
» All assignments are affine
> Allow nondeterministic assignments (x := %)

X =3x—-7y+1

fa

» Can overapproximate complex programs

» Covers existing formalisms:
probabilistic, quantum, quantitative automata
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Karr's Algorithm

Affine Relationships Among Variables of a Program*
Michael Karr

Received May 8, 1974

Summary. Several optimizations of programs can be performed when in certain
regions of a program equality relationships hold between a linear combination of the
variables of the program and a constant. This paper presents a practical approach to
detecting these relationships by considering the problem from the viewpoint of linear
algebra. Key to the practicality of this approach is an algorithm for the calculation of
the ““sum”’ of linear subspaces.

Theorem (Karr 76)

There is an algorithm which computes, for any given affine program
over Q, its strongest affine inductive invariant.
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Randomized Karr’'s Algorithm @ POPL 2003

Discovering Affine Equalities Using Random Interpretation

Sumit Gulwani George C. Necula
University of California, Berkeley
{gulwani,necula}@Qcs.berkeley.edu

ABSTRACT Keywords
Affine Relationships, Linear Equalities, Random Interpreta-

‘We present a new polynomial-time randomized algorithm for
tion, Randomized Algorithm

discovering affine equalities involving variables in a program.
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Some polynomial invariants

A Note on Karr’s Algorithm

Markus Miiller-Olm'* and Helmut Seidl®

Abstract. We give a simple formulation of Karr’s algorithm for computing all
affine relationships in affine programs. This simplified algorithm runs in time
O(nk") where n is the program size and k is the number of program variables
assuming unit cost for arithmetic operations. This improves upon the original
formulation by a factor of k. Moreover, our re-formulation avoids exponential
growth of the lengths of intermediately occurring numbers (in binary representa-
tion) and uses less complicated elementary operations. We also describe a gener-
alization that determines all polynomial relations up to degree d in time O ('ukw) .

Theorem (ICALP 2004)

There is an algorithm which computes, for any given affine program
over Q, all its polynomial inductive invariants up to any fixed degree d.
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Why fixed degree is not enough
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Main result

Theorem (Hrushovski, Ouaknine, P., Worrell, 2018)

There_ is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.
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Main result

Theorem (Hrushovski, Ouaknine, P., Worrell, 2018)
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possible executions of the program
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Main result

Theorem (Hrushovski, Ouaknine, P., Worrell, 2018)

There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.

> strongest polynomial invariant <= smallest algebraic set

» Thus our algorithm computes all polynomial relations that always
hold among program variables at each program location, in all
possible executions of the program

» We represent this using a finite basis of polynomial equalities
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At the edge of decidability
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Theorem (Markov 19479%)

There is a fixed set of 6 x 6 integer matrices My, . . ., M such that the
reachability problem “y is reachable from xy ?” is undecidable.

$Original theorems about semigroups, reformulated with affine programs.
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At the edge of decidability

X = Mix

X = Mox

)]

X = Mgx L e

Theorem (Markov 19479%)

There is a fixed set of 6 x 6 integer matrices My, . . ., M such that the
reachability problem “y is reachable from xy ?” is undecidable.

Theorem (Paterson 19707)

The mortality problem “0 is reachable from xq with My, ..., Mx?” is
undecidable for 3 x 3 matrices.

$Original theorems about semigroups, reformulated with affine programs.
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Zariski closure of finitely generated groups

Our algorithm relies on this result:

Quantum automata and algebraic groups

Harm Derksen®, Emmanuel Jeandel®, Pascal Koiran®*

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States
bLaboratoire de | ‘Informatique du Parallélisme, Ecole Normale Supérieure de Lyon, 69364, France

Received 15 September 2003; accepted 1 November 2004

Theorem (Derksen, Jeandel and Koiran, 2004)

There is an algorithm which computes, for any given affine program
over Q using only invertible transformations, its strongest polynomial
inductive invariant.

Equivalently, compute the Zariski closure of a finitely generated groups
of matrices.

92/101



From groups to semigroup

Theorem (Hrushovski, Ouaknine, P., Worrell, 2018)

There is an algorithm that computes the Zariski closure of any finitely

semigroup of matrices (with algebraic coefficients), given its
generators as inputs.

Corollary

Given an affine program, we can compute for each location the ideal of
all polynomial relations that hold at that location.
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Going hybrid: a bouncing ball
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Going hybrid: a bouncing ball

)/J\
Vy '= —Vy . .
» affine program: collision
t—0 m + linear differential equation: mechanics
X:=0 X = vy = linear hybrid automaton
y:=h y =Y
— v =0
Vy .= C \'/.y =-g
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Going hybrid: a bouncing ball

)/J\
> X
Vy == —Vy . .
» affine program: collision
t—0 m + linear differential equation: mechanics
x=0 X = Vx = linear hybrid automaton
=h y =V i : .
y_) Ve =0 Invariants: recover conservation
vei=¢ |y =—g > V=¢C of energy!
Vy — O % — 1 > X = ﬂ?

> v +2g(y —h)=0
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Example: RC circuit

| cLosep Ir VR
. .« o N
OPEN R

IV
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Example: RC circuit

| cLosep Ir VR

OPEN R
TV
t
OPEN

I =0
lg = _RLCIR
Va = —%/r
@ -1y
Ve = &Ir
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Example: RC circuit

| cLosep Ir 7]

OPEN R
TV
t
OPEN CLOSED

I =0 I =—4clr
Ip _RLCIR {R = _RLCIF('
Ve = —Llg Ve =—¢lr
Q =1Ig Q = I
Ve = &ir Ve = &lr
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Example: RC circuit

| cLosep Ir
. . o .
OPEN
TV
t
OPEN ] CLOSED
I =g(V-Ve)
I =0 In = (V—=Vc) I =—4slr
Ip _RLCIR Vp:=V-Ve Ir = _RLC/R
Vg = —lC/R ¢ 1 Vg = —%/R
Q = Ip I =0 Q = Ir
Ve = &ir Ip == Ve Ve = &lr
Vg :::—-Vb
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Example: RC circuit

| v Invariants
[ oo 7 A OPEN  CLOSED
OPEN R Ql Q=CV, Q=CV¢
TV Vo Va=Rlr Va=RIg
T C I=0 =g
Va=-Vo Vg=V-Vg
OPEN 1 CLOSED
I =k (V=Vo)
I =0 In = (V—=Vc) I =—4slr
Ip _RLCIR Vp:=V-Ve Ir = _RLC/R
Vg = —%/R ¢ 1 Vg = —%/R
Q = Ip I =0 Q = Ir
Ve = &ir Ip == Ve Ve = &lr
Vg i =—V¢
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Linear Hybrid Automata

» Nondeterministic branching (no guards)
» All assignments are affine
» Linear differential equations in each location

x—oyx | X =3X—=T7y+1 —
— >XAXDf2

y=x-y f
fs /

: 7
X=BxlY "
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Linear Hybrid Automata

v

v

Nondeterministic branching (no guards)

All assignments are affine
Linear differential equations in each location

X =2y—x
y=x-y

x::3x—7y+1\

Af/
fs

fa

X = BX

More general than affine programs
More general than linear differential equations

XAXD f
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From affine programs to hybrid automata

Theorem (Majumdar, Ouaknine, P., Worrell, 2020)

There is an algorithm that computes, for any given guard-free linear
hybrid automaton over Q, its strongest polynomial inductive invariant.
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From affine programs to hybrid automata

Theorem (Majumdar, Ouaknine, P., Worrell, 2020)

There is an algorithm that computes, for any given guard-free linear
hybrid automaton over Q, its strongest polynomial inductive invariant.

For systems with purely continuous dynamics, i.e. no discrete
transitions, called switching systems:

Theorem (Hrushovski, Ouaknine, P., Worrell, 2018)

There is no algorithm that computes the strongest algebraic inductive
invariant for the class of switching systems with equality guards.
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From hybrid automata to affine programs

Theorem (Majumdar, Ouaknine, P., Worrell, 2020)

There is an algorithm that computes, for any given guard-free linear
hybrid automaton over Q, an affine program over Q that has the
same polynomial inductive invariants.
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From hybrid automata to affine programs

Theorem (Majumdar, Ouaknine, P., Worrell, 2020)

There is an algorithm that computes, for any given guard-free linear
hybrid automaton over Q, an affine program over Q that has the
same polynomial inductive invariants.

Vy = _‘Vy

t: =0 m
X = X = Vx
y = y =y
% "/X_O
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From hybrid automata to affine programs

Theorem (Majumdar, Ouaknine, P., Worrell, 2020)

There is an algorithm that computes, for any given guard-free linear
hybrid automaton over Q, an affine program over Q that has the
same polynomial inductive invariants.

Vy = _‘Vy
t:=0 m
X = X = Vx
y = y =
— v, =0 ~
Vx :=C f/.y__g
V=0 | ¢ =1
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Linear Differential Equations

For x(t) € R™ and A rational matrix, consider
x = Ax
The solution is
x(t) = e*x(0)
where eX is the matrix exponential.
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Linear Differential Equations

For x(t) € R" and A rational matrix, consider
x = Ax
The solution is
x(t) = e'x(0)
where eX is the matrix exponential. Recall that:
» strongest algebraic invariant = smallest algebraic set
» smallest algebraic set containing X = Zariski closure X of X

Lemma

Let A be a rational matrix, there exists B an algebraic matrix such that
(B) = (eA) = {eAl: t e R}.
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Linear Differential Equations

For x(t) € R" and A rational matrix, consider
x = Ax
The solution is
x(t) = e*'x(0)
where eX is the matrix exponential. Recall that:
> strongest algebraic invariant = smallest algebraic set
» smallest algebraic set containing X = Zariski closure X of X

Lemma

Let A be a rational matrix, there exists B an algebraic matrix such that
(B) = (eA) = {eAl: t e R}.

» obvious candidate B = e” is not algebraic

> “reverse-engineer” B algebraic to encode some multiplicative
relations between the eigenvalues
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Complexity of computing the Zariski closure

How expensive is it to compute this strongest invariant ?

linear hybrid | 29Y%® [semigroup |29
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Complexity of computing the Zariski closure

How expensive is it to compute this strongest invariant ?

linear hybrid

reduce

Theorem (Derksen, Jeandel and Koiran, 2004)

semigroup

reduce -

There is an algorithm that computes the Zariski closure of any finitely
group of matrices, given its generators as inputs.

No complexity bounds. It is not clear it is even elementary.
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Complexity of computing the Zariski closure

How expensive is it to compute this strongest invariant ?

linear hybrid reduce reduce

Theorem (Derksen, Jeandel and Koiran, 2004)

There is an algorithm that computes the Zariski closure of any finitely
group of matrices, given its generators as inputs.

No complexity bounds. It is not clear it is even elementary.

Theorem (Nosan, P., Schmitz, Shirmohammadi, Worrell, 2022)

Given a finite set S of invertible matrices of dimension n, the algebraic

group G := (S) can be defined with equations of degree at most
septuply exponential in n.
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» invariant = overapproximation of reachable states
» invariants allow verification of safety properties

» guard-free linear hybrid automata:

» nondeterministic branching, no guards, affine assignments
» linear differential equations

X =2y—x
y=x-y

X =3x—-7y+1—

>
:I>I>2
&,

Theorem (Majumdar, Ouaknine, P., Worrell, 2020)

There is an algorithm that computes, for any given guard-free linear
hybrid automaton over Q, its strongest polynomial inductive invariant.
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