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Example : mass-spring-damper system

m

kb

u(t)

z

Model with external input u(t)

→ Linear time invariant system

X ′ = AX + Bu

with some constraints on u.

State : X = z ∈ R

Equation of motion :

mz ′′ = −kz − bz ′ + mg + u

→ Affine but not first order

State : X = (z, z ′,1) ∈ R3

Equation of motion :z
z ′

1

′

=

 z ′

− k
m z − b

m z ′ + g + 1
m u

0
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A very simple example

A simplified one-dimensional car : control acceleration u(t)

x ′′(t) = u(t)

Starting at x(0) = a, want to reach and stop at x = b :

x
a b

x ′ = 0 x ′ = 0

?choose u(t)
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A very simple example

A simplified one-dimensional car : control acceleration u(t)

x ′′(t) = u(t)

Starting at x(0) = a, want to reach and stop at x = b :

x
a b

x ′ = 0 x ′ = 0
?choose u(t)

Possible solution :

a t

x

0 T

b

0 t

x ′

0 T

v0 t

u

T
1
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A very simple example

A simplified one-dimensional car : control acceleration u(t)

x ′′(t) = u(t)

Starting at x(0) = a, want to reach and stop at x = b :

x
a b

x ′ = 0 x ′ = 0
?choose u(t)

More realistic solution :

a t

x

0 T

b

0 t

x ′

0 T

v
0 t

u

T
1
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A very simple example

A simplified one-dimensional car : control acceleration u(t)

x ′′(t) = u(t)

Starting at x(0) = a, want to reach and stop at x = b :

x
a b

x ′ = 0 x ′ = 0
?choose u(t)

Rephrasing the problem :{
x ′ = y
y ′ = u

⇔
[
x
y

]′
=

[
0 1
0 0

] [
x
y

]
+

[
0
u

]
⇔ X ′ = AX + U

Starting from (x , y) = (a,0), try to reach (x , y) = (b,0).

This is a point-to-point reachability problem.
3 / 24



The problem

LTI Reachability problem

▶ a source y ∈ Qn,
▶ a target z ∈ Qn,
▶ a transition matrix A ∈ Qn×n,
▶ a set of controls U ⊆ Rn,

decide if ∃T ⩾ 0, u : [0,T ] → U measurable such that x(T ) = z where

x(0) = y , x ′(t) = Ax(t) + u(t) for t ∈ [0,T ].

Warning : u does not need to be “describable”, e.g. piecewise
polynomial. Otherwise, completely changes the nature of the problem.
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Bigger picture

Continuous Reachability problem
▶ a source y ∈ Qn,
▶ a target z ∈ Qn,

▶ a transition function f ,
▶ a set of controls U ⊆ Rm,

decide if ∃T ⩾ 0, u : [0,T ] → U measurable such that x(T ) = z where

x(0) = y , x ′(t) = f (t , x(t),u(t)) for t ∈ [0,T ].

Generally undecidable :
▶ for nonlinear systems, even without control (U = {0})
▶ piecewise constant derivative systems (PCD), still no control
▶ linear saturated systems (at least for discrete systems), no control

LTI systems probably form the most useful class that is not undecidable.

But do they really?
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Existing work

LTI Reachability problem
▶ a source y ∈ Qn,
▶ a target z ∈ Qn,

▶ a transition matrix A ∈ Qn×n,
▶ a set of controls U ⊆ Rn,

decide if ∃T ⩾ 0, u : [0,T ] → U measurable such that x(T ) = z where

x(0) = y , x ′(t) = Ax(t) + u(t) for t ∈ [0,T ].

Many variants (applies to non-LTI systems) :
▶ can all points y ∈ Rn reach z = 0? global null-controllability
▶ can all points y ∈ Rn tend to z = 0? asymptotic null-controllability
▶ can all points y ≈ 0 reach z = 0? local null-controllability
▶ is the trajectory bounded when u is bounded? stability
▶ approximate the set of reachable points from y reach set

But also :
▶ assumptions on A (typically spectral)
▶ assumptions on U
▶ restrictions on acceptable u
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Two known extreme cases

▶ When we have no control :

U = {0} and x ′(t) = Ax + u(t) ⇔ x(t) = eAtx(0).

Theorem (Hainry’08)

Given y , z ∈ Qn and A ∈ Qn×n, it is decidable whether ∃t ⩾ 0 such that

z = eAty .

▶ When we can control in a vector space :

U = BRm and x ′(t) = Ax+u(t) ⇒ x(t) ∈ span[B,AB, . . . ,An−1B]

Theorem (Folklore)

Given y , z ∈ Qn and A ∈ Qn×n,B ∈ Qn×m, it is decidable whether
∃T ⩾ 0 and u : [0,T ] → BRm measurable such that x(0) = y and
x(T ) = z where

x ′(t) = Ax(t) + u(t)
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Back to the future

A simplified one-dimensional car : control acceleration u(t)

x ′′(t) = u(t)

Starting at x(0) = a, want to reach and stop at x = b :

x
a b

x ′ = 0 x ′ = 0
?choose u(t)

Reality : acceleration/braking is not infinite ; u is bounded !

Very few decidability results in the literature in this case.
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Our results : decidability

LTI Zonotope Null-Reachability problem

Given a matrix A ∈ Qn×n, a set of controls U = B[−1,1]m, a target
z ∈ Qn, decide if ∃T ⩾ 0, u : [0,T ] → U such that x(T ) = z where

x(0) = 0, x ′(t) = Ax(t) + u(t) for t ∈ [0,T ].

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of :
▶ A is real diagonal, B is a column with at most 2 nonzero entries,
▶ A is real diagonalizable, eigenvalues ⊆ αQ for some α ∈ Q,
▶ A only has one eigenvalue which is real, B is a column,
▶ dimension n = 2, B is a column and A has real eigenvalues.

Well, that was underwhelming...

Are you sure you cannot do better?
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Our results : conditional decidability

Schanuel’s conjecture

A deep conjecture in transcendental number theory. Widely believed to
be true and totally open.

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of :
▶ A has real eigenvalues,
▶ in dimension n = 2,
▶ we bound the time to reachability.

and Schanuel’s conjecture is true.

Theorem (Wilkie and MacIntyre)

If Schanuel’s conjecture is true, then, for each k ∈ N, the first-order
theory of the structure (R,0,1, <,+, ·, exp, cos ↾[0,k ], sin ↾[0,k ]) is
decidable.
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▶ in dimension n = 2,
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Hardness

Study generalization :

LTI Null-Set-Reachability problem

Given a matrix A ∈ Qn×n, a set of controls U ⊆ Rn, a set Z ⊆ Rn,
decide if ∃T ⩾ 0, u : [0,T ] → U such that x(T ) ∈ Z where

x(0) = 0, x ′(t) = Ax(t) + u(t) for t ∈ [0,T ].

This is trivially hard for U = {0} and Z = {hyperplane} because :

Continuous Skolem problem

Given a matrix A ∈ Qn×n and c, x0 ∈ Qn, decide if ∃T ⩾ 0 such that
cT eAtx0 = 0.

This is a well-known “hard” problem.
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Hardness (cont.)

Taking U = {0} is cheating :
▶ when U = {0}, reachable set is closed (or closed minus a point)

▶ when U = B[−1,1]m, reachable set is open

boundary not included

This is completely different !
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Our results : hardness

LTI Zonotope Null-Set-Reachability problem

Given a matrix A ∈ Qn×n, a set of controls U = B[−1,1]m, a set
Z ⊆ Rn, decide if ∃T ⩾ 0, u : [0,T ] → U such that x(T ) ∈ Z where

x(0) = 0, x ′(t) = Ax(t) + u(t) for t ∈ [0,T ].

Theorem (Dantam, P.)

The Continuous Nontangential Skolem problem reduces to this
problem with a single input (m = 1), A stable and Z a hyperplane or a
convex compact set of dimension n − 1.

Continuous Nontangential Skolem problem

Given a matrix A ∈ Qn×n and c, x0 ∈ Qn, decide if ∃T ⩾ 0 such that
f (t) = 0 and f ′(t) ̸= 0 where f (t) = cT eAtx0 = 0.

It is essentially as hard as the Continuous Skolem problem.
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Conclusion (continuous case)

LTI reachability problem : find T and u such that

x(0) = 0, x ′(t) = Ax(t) + Bu(t), u(t) ∈ [−1,1]m

satisfies x(T ) = target. Very natural problem in control theory.

m

kb

u(t)

z

u(t)

R L

CqV (t)

Point reachability is
▶ decidable in dimension 2 or with spectral constraints,
▶ conditionally decidable with real eigenvalues,
▶ conditionally decidable in bounded time,

Set reachability is Nontangential Continuous Skolem hard.
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The continuous case is much harder than expected. What about the
discrete case?

15 / 24



The problem

LTI-REACHABILITY

▶ a source s ∈ Qd ,
▶ a target t ∈ Qd ,
▶ a transition matrix A ∈ Qd×d ,
▶ a set of controls U ⊆ Rd ,

decide if ∃T ∈ N, u0, . . . ,uT−1 ∈ U such that xT = t where

x0 = s, xn+1 = Axn + un.

s t

Ax0

x1 = Ax0 + u0

u0

Ax1

x2 = Ax1 + u1
u1

Ax2

u2
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Decidability (1)

LTI-REACHABILITY

▶ a source s ∈ Qd ,
▶ a target t ∈ Qd ,
▶ a transition matrix A ∈ Qd×d ,
▶ a set of controls U ⊆ Rd ,

decide if ∃T ∈ N, u0, . . . ,uT−1 ∈ U such that xT = t where

x0 = s, xn+1 = Axn + un.

Theorem (Lipton and Kannan, 1986)

LTI-REACHABILITY is decidable if U is an affine subspace of Rd .

Almost no exact results for other classes of U in particular when U is
bounded (which is the most natural case).
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Hardness

Theorem (Fijalkow, Ouaknine, P. Sousa-Pinto, Worrell)

LTI-REACHABILITY is
▶ undecidable if U is a finite union of affine subspaces.

▶ Skolem-hard if U = {0} ∪ V where V is an affine subspace
▶ Positivity-hard if U is a convex polytope

Since we cannot solve Skolem/Positivity, we need some strong
assumptions for decidability.
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A positive result

A LTI system (s,A, t ,U) is simple if s = 0 and

▶ U is a bounded polytope that contains 0 in its (relative) interior,
▶ the spectral radius of A is less than 1 (stability),
▶ some positive power of A has exclusively real spectrum.

Theorem (Fijalkow, Ouaknine, P. Sousa-Pinto, Worrell)

LTI-REACHABILITY is decidable for simple systems.

Remark : in fact we can decide reachability to a convex polytope Q.

Reach set

t

Q

Assumptions imply that the
reachable set is an open
convex bounded set,

but
not always a polytope !
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Why is this problem hard

The reachable set A∗(U) can have infinitely many faces.

A∗(U)

A =

[1
3 0
0 2

3

]

U

(−2,−1) (0,−1)

(0,1) (2,1)
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Why is this problem hard

The reachable set A∗(U) can have faces of lower dimension : the
"top" extreme point does not belong to any facet.

A∗(U)

A =

[2
3 0
0 1

3

]

U

(−1,0)

(0,2)

(1,0)
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Why is this problem hard

Approach : two semi-decision procedures
▶ reachability : under-approximations of the reachable set
▶ non-reachability : separating hyperplanes

A∗(U)

Q
H

Q

H
Q

H

Further difficulty : a separating hyperplane may not be supported by a
facet of either A∗(U) or Q.
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Why is this problem hard

V

(−2,0) (0,0)

(0,2)

B =

[2
3

1
3

1
3 0

]

B∗(V )

Even more difficulty : B∗(V ) has two extreme points that do not belong
to any facet and have rational coordinates, but whose (unique)
separating hyperplane requires the use of algebraic irrationals

Theorem (Non-reachable instances)

There is a separating hyperplane with algebraic coefficients.
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Conclusion on control

Exact reachability for LTI systems :
▶ decidability crucially depends on the shape of the control set
▶ even with convex bounded inputs, the problem is very hard

(Skolem/Positivity, open for 70 years)
▶ we can recover decidability using strong spectral assumptions

Despite an extensive literature in control theory, the decidability control
problems is still very open.
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