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Example : mass-spring-damper system

//////////////////////////////////////

State : X=z€eR
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

zl b k Equation of motion :

mz" = —kz — bz + mg+u

Model with external input u(t)
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Example : mass-spring-damper system

State : X =z€eR

zl b k Equation of motion :
mz" = —kz — bz + mg+u
m — Affine but not first order
Lun
State : X = (z,2/,1) e R®
Model with external input u(t) Equation of motion :
z ! Vi
_ k b 1
Z| =|-5z-2Z+g+u

1 0
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Example : mass-spring-damper system

State : X =z€eR

2 b K Equation of motion :
mz" = —kz — bz + mg+u
m — Affine but not first order
Lun / 5
State: X =(z,2/,1) e R
Model with external input u(t) Equation of motion :
— Linear time invariant system S S
" — _ k b 1
X = AX + Bu Z| =|-kz-bz 19+ tu

with some constraints on u. 1 0
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A very simple example

A simplified one-dimensional car : control acceleration u(t)
x"(t) = u(t)
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A very simple example

A simplified one-dimensional car : control acceleration u(t)
x"(t) = u(t)
Starting at x(0) = a, want to reach and stop at x = b :

x' =0 @

@ choose @ u(t)

x' =0
om0
b

\
[ 4
a
Possible solution :
u X' X
1 b
T
0 t Vv
—1 0 t a t
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A very simple example

A simplified one-dimensional car : control acceleration u(t)
x"(t) = u(t)
Starting at x(0) = a, want to reach and stop at x = b :

-

x' =0
oo —==0 -
a

x' =0
om0
b

\
[ 4
More realistic solution :
u X' X
1 b
T
0 t
v
—1 0 t a t
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A very simple example

A simplified one-dimensional car : control acceleration u(t)
x"(t) = u(t)
Starting at x(0) = a, want to reach and stop at x = b :

x' =0 g x' =0

oo U o
X
b
Rephrasing the problem :

a
X' =y x]" [0 1] [x 0 -
(52 o BB AR - xomese

Starting from (x, y) = (a,0), try to reach (x, y) = (b, 0).

~

This is a point-to-point reachability problem.
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The problem

LTl Reachability problem

> asource y € Q",
> atarget z € Q",
> a transition matrix A € Q"*",
> a set of controls U C R”,
decide if 3T > 0, u: [0, T] — U measurable such that x(T) = z where

x(0) =y, x'(t) = Ax(t) + u(t) forte [0, T].
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The problem

LTl Reachability problem

> asource y € Q",
> atarget z € Q",
> a transition matrix A € Q"*",
> a set of controls U C R”,
decide if 3T > 0, u: [0, T] — U measurable such that x(T) = z where

x(0) =y, x'(t) = Ax(t) + u(t) forte [0, T].

Warning : u does not need to be “describable”, e.g. piecewise
polynomial. Otherwise, completely changes the nature of the problem.
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Bigger picture

Continuous Reachability problem

> asource y € Q", » a transition function f,

> atarget z € Q", > a set of controls U C R™,
decide if 3T > 0, u: [0, T] — U measurable such that x(T) = z where

x(0) =y,  X(t)=f(t,x(t),u(t)) fortelo,T].

5/24



Bigger picture

Continuous Reachability problem

> asource y € Q", » a transition function f,

> atarget z € Q", > a set of controls U C R™,
decide if 3T > 0, u: [0, T] — U measurable such that x(T) = z where

x(0) =y,  X(t)=f(t,x(t),u(t)) fortelo,T].

Generally undecidable :
» for nonlinear systems, even without control (U = {0})
> piecewise constant derivative systems (PCD), still no control
> linear saturated systems (at least for discrete systems), no control

LTI systems probably form the most useful class that is not undecidable.

5/24



Bigger picture

Continuous Reachability problem

> asource y € Q", » a transition function f,

> atarget z € Q", > a set of controls U C R™,
decide if 3T > 0, u: [0, T] — U measurable such that x(T) = z where

x(0) =y,  X(t)=f(t,x(t),u(t)) fortelo,T].

Generally undecidable :
» for nonlinear systems, even without control (U = {0})
> piecewise constant derivative systems (PCD), still no control
> linear saturated systems (at least for discrete systems), no control

LTI systems probably form the most useful class that is not undecidable.

But do they really ?
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Existing work

LTl Reachability problem
> asource y € Q", > a transition matrix A ¢ Q™"
> atarget z € Q", > a set of controls U C R”,

decide if 3T > 0, u: [0, T] — U measurable such that x(T) = z where

x(0) =y, X'(t) = Ax(t) + u(t) forte [0, T].
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Existing work

LTl Reachability problem
> asource y € Q", > a transition matrix A € Q<"
> atarget z € Q", > a set of controls U C R”,

decide if 3T > 0, u: [0, T] — U measurable such that x(T) = z where

x(0) =y, X'(t) = Ax(t) + u(t) forte [0, T].

Many variants (applies to non-LTI systems) :

» can all points y € R"reachz=07? global null-controllability
can all points y € R” tend to z = 0 ? asymptotic null-controllability
can all points y ~0Oreachz=07 local null-controllability
is the trajectory bounded when v is bounded ? stability
approximate the set of reachable points from y reach set

vvyyvyy
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Existing work

LTl Reachability problem
> asource y € Q", > a transition matrix A € Q<"
> atarget z € Q", > a set of controls U C R”,

decide if 3T > 0, u: [0, T] — U measurable such that x(T) = z where

x(0) =y, X'(t) = Ax(t) + u(t) forte [0, T].

Many variants (applies to non-LTI systems) :
» can all points y € R"reachz=07? global null-controllability
» can all points y € R" tend to z = 0 ? asymptotic null-controllability
» can all points y ~0reachz=07? local null-controllability
> is the trajectory bounded when u is bounded ? stability
» approximate the set of reachable points from y reach set

But also :

» assumptions on A (typically spectral)
> assumptions on U
» restrictions on acceptable u
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Two known extreme cases

» When we have no control :
U={0} and x(t)=Ax+u(t) <  x(t)=e'x(0).
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Two known extreme cases

» When we have no control :
U={0} and x(t)=Ax+u(t) <  x(t)=e'x(0).
Theorem (Hainry’08)

Giveny,z € Q" and A € Q"™ ", it is decidable whether 3t > 0 such that

z=2ely.

» When we can control in a vector space :
U=BR™ and x'(t)=Ax+u(t) = x(t)€span[B,AB,...,A""'B]

Theorem (Folklore)

Giveny,z e Q"and Ae Q™" B e Q"™ jtis decidable whether
iT > 0andu: [0, T] — BR™ measurable such that x(0) = y and
x(T) = z where

X'(t) = Ax(t) + u(t)

7/24



Back to the future

A simplified one-dimensional car : control acceleration u(t)
x"(t) = u(t)
Starting at x(0) = a, wantto reach and stopat x = b :

x' =0 X'=0

e —= R, e
X

a b

Reality : acceleration/braking is not infinite ~ v is bounded!
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Back to the future

A simplified one-dimensional car : control acceleration u(t)
x"(t) = u(t)
Starting at x(0) = a, wantto reach and stopat x = b :

x' =0 X'=0

e —= R, e
X

a b

Reality : acceleration/braking is not infinite ~ v is bounded!

Very few decidability results in the literature in this case.
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Our results : decidability

LTl Zonotope Null-Reachability problem

Given a matrix A € Q™" a set of controls U = B[—1, 1], a target
ze€ Q",decide if AT > 0, u: [0, T] — U such that x(T) = z where

x(0) =0, x'(t) = Ax(t) + u(t) forte [0, T].

9/24



Our results : decidability

LTl Zonotope Null-Reachability problem

Given a matrix A € Q™" a set of controls U = B[—1, 1], a target
ze€ Q",decide if AT > 0, u: [0, T] — U such that x(T) = z where

x(0) =0, x'(t) = Ax(t) + u(t) forte [0, T].

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of :
» A s real diagonal, B is a column with at most 2 nonzero entries,



Our results : decidability

LTl Zonotope Null-Reachability problem

Given a matrix A € Q™" a set of controls U = B[—1, 1], a target
ze€ Q",decide if AT > 0, u: [0, T] — U such that x(T) = z where

x(0) =0, x'(t) = Ax(t) + u(t) forte [0, T].

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of :
» A s real diagonal, B is a column with at most 2 nonzero entries,
» A is real diagonalizable, eigenvalues C aQ for some o € Q,



Our results : decidability

LTl Zonotope Null-Reachability problem

Given a matrix A € Q™" a set of controls U = B[—1, 1], a target
ze€ Q",decide if AT > 0, u: [0, T] — U such that x(T) = z where

x(0) =0, x'(t) = Ax(t) + u(t) forte [0, T].

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of :
» A is real diagonal, B is a column with at most 2 nonzero entries,
» A is real diagonalizable, eigenvalues C aQ for some o € Q,

» A only has one eigenvalue which is real, B is a column,



Our results : decidability

LTl Zonotope Null-Reachability problem

Given a matrix A € Q™" a set of controls U = B[—1, 1], a target
ze€ Q",decide if AT > 0, u: [0, T] — U such that x(T) = z where

x(0) =0, x'(t) = Ax(t) + u(t) forte [0, T].

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of :
» A s real diagonal, B is a column with at most 2 nonzero entries,
» A is real diagonalizable, eigenvalues C aQ for some o € Q,

» A only has one eigenvalue which is real, B is a column,
» dimension n =2, B is a column and A has real eigenvalues.



Our results : decidability

LTl Zonotope Null-Reachability problem

Given a matrix A € Q™" a set of controls U = B[—1, 1], a target
ze€ Q",decide if AT > 0, u: [0, T] — U such that x(T) = z where

x(0) =0, x'(t) = Ax(t) + u(t) forte [0, T].

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of :
» A s real diagonal, B is a column with at most 2 nonzero entries,
» A is real diagonalizable, eigenvalues C aQ for some o € Q,

» A only has one eigenvalue which is real, B is a column,
» dimension n =2, B is a column and A has real eigenvalues.

%/ Well, that was underwhelming...
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LTl Zonotope Null-Reachability problem

Given a matrix A € Q™" a set of controls U = B[—1, 1], a target
ze€ Q",decide if AT > 0, u: [0, T] — U such that x(T) = z where

x(0) =0, x'(t) = Ax(t) + u(t) forte [0, T].

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of :
» A s real diagonal, B is a column with at most 2 nonzero entries,
» A is real diagonalizable, eigenvalues C aQ for some o € Q,

» A only has one eigenvalue which is real, B is a column,
» dimension n =2, B is a column and A has real eigenvalues.

— Well, that was underwhelming...
% Are you sure you cannot do better ?



Our results : conditional decidability

Schanuel’s conjecture

A deep conjecture in transcendental number theory. Widely believed to
be true and totally open.
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Our results : conditional decidability

Schanuel’s conjecture

A deep conjecture in tfranscendental number theory. Widely believed to
be true and totally open.

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of :
> A has real eigenvalues,
» in dimension n = 2,
> we bound the time to reachability.

and Schanuel’s conjecture is true.

Theorem (Wilkie and Maclntyre)

If Schanuel’s conjecture is true, then, for each k € N, the first-order
theory of the structure (R,0,1, <, +, -, exp, cos [[o 4], Sin [[0.x]) /S
decidable.
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Hardness

Study generalization :

LTI Null-Set-Reachability problem

Given a matrix A € Q™" a set of controls U C R", a set 7 C R”,
decide if 3T > 0, u: [0, T] — U such that x(7) ¢ Z where

x(0)=0,  x(t)=Ax(t) + u(t) forte]o,T].

This is trivially hard for U = {0} and Z = {hyperplane} because :

Continuous Skolem problem

Given a matrix A € Q™" and ¢, xo € Q", decide if 3T > 0 such that
cTeA’xo =0.

This is a well-known “hard” problem.
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Hardness (cont.)

Taking U = {0} is cheating :
» when U = {0}, reachable set is closed (or closed minus a point)

o7
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Hardness (cont.)

Taking U = {0} is cheating :
» when U = {0}, reachable set is closed (or closed minus a point)

() 7

» when U = B[-1,1]™, reachable set is open

boundary not included

This is completely different !
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Our results : hardness

LTI Zonotope Null-Set-Reachability problem

Given a matrix A € Q"*", a set of controls U = B[—1,1]", a set
Z C R" decide if 3T >0, u: [0, T] — U such that x(7) ¢ Z where

x(0) =0, x'(t) = Ax(t) + u(t) forte [0, T].
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Our results : hardness

LTI Zonotope Null-Set-Reachability problem

Given a matrix A € Q"*", a set of controls U = B[—1,1]", a set
Z C R" decide if 3T >0, u: [0, T] — U such that x(7) ¢ Z where

X(0) =0,  X(t)=Ax(t) + u(t) forte]o,T].

Theorem (Dantam, P.)

The Continuous Nontangential Skolem problem reduces to this
problem with a single input (m = 1), A stable and Z a hyperplane or a
convex compact set of dimension n — 1.

Continuous Skolem problem

Given a matrix A € Q™™ and ¢, xg € Q", decide if 3T > 0 such that
f(t) = 0 and '(t) # 0 where f(t) = cT e’lxy = 0.

It is essentially as hard as the Continuous Skolem problem.



Conclusion (continuous case)

LTI reachability problem : find T and u such that
x(0) =0, X'(t) = Ax(t) + Bu(t), u(t) e [-1,1]™
satisfies x(T) = target. Very natural problem in control theory.

Point reachability is
» decidable in dimension 2 or with spectral constraints,
» conditionally decidable with real eigenvalues,
» conditionally decidable in bounded time,

Set reachability is Nontangential Continuous Skolem hard.
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The continuous case is much harder than expected. What about the
discrete case ?
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The problem

> asource s € QY,
> atarget t € QF,
> a transition matrix A € Q9x9,
» a set of controls U C RY,
decide if 3T € N, ug, ..., ur_1 € U such that x; = t where

Xo = S, Xnt1 = AXp + Up.
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The problem

LTI-REACHABILITY
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> a transition matrix A € Q9x9,
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—
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The problem

LTI-REACHABILITY

» asource s € Q7

> atarget t € QF,

> a transition matrix A € Q9x9,
» a set of controls U C RY,

decide if 3T € N, ug, ..., ur_1 € U such that x; = t where
Xo = S, Xnt1 = AXp + Up.
X1 = AXxo + Up AXz
—> L ]
./4‘)(0 Uo

= Axy + U .

X s ; 2 1 1 :
,
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The problem

LTI-REACHABILITY

» asource s € Q7

> atarget t € QF,

> a transition matrix A € Q9x9,
» a set of controls U C RY,

decide if 3T € N, ug, ..., ur_1 € U such that x; = t where
Xo = S, Xnt1 = AXp + Up.
X1 = AXg + Up Axo
% Q,
./4‘)(0 Uo \UZ.
il > = AXy + Uy
Xo =S Uy Xz =1

AX1
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Decidability (1)

LTI-REACHABILITY

» asource s € QY,
> atarget t € QF,
> a transition matrix A € Q9x9,
> a set of controls U C RY,
decide if 3T € N, ug,...,ur_1 € U such that x; = t where

Xg = S, Xnt+1 = AXp + Up.
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Decidability (1)

LTI-REACHABILITY

» asource s € QY,
> atarget t € QF,
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> a transition matrix A € Q9x9,
> a set of controls U C RY,
decide if 3T € N, ug,...,ur_1 € U such that x; = t where

Xg = S, Xnt1 = AXp + Up.

Theorem (Lipton and Kannan, 1986)

LTI-REACHABILITY is decidable if U is an affine subspace of RY.

Almost no exact results for other classes of U in particular when U is
bounded (which is the most natural case).
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Theorem (Fijalkow, Ouaknine, P. Sousa-Pinto, Worrell)

LTI-REACHABILITY IS
» undecidable if U is a finite union of affine subspaces.
» Skolem-hard if U = {0} U V where V is an affine subspace
» Positivity-hard if U is a convex polytope

Since we cannot solve Skolem/Positivity, we need some strong
assumptions for decidability.
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A positive result

A LTI system (s, A, t, U) is simple if s =0 and
> U is a bounded polytope that contains 0 in its (relative) interior,
» the spectral radius of Ais less than 1 (stability),
» some positive power of A has exclusively real spectrum.

Theorem (Fijalkow, Ouaknine, P. Sousa-Pinto, Worrell)

LTI-REACHABILITY Is decidable for simple systems.

Remark : in fact we can decide reachability to a convex polytope Q.

ot

Assumptions imply that the
reachable set is an open
convex bounded set, but
not always a polytope !
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Why is this problem hard

The reachable set A*(U) can have infinitely many faces.

o
A= 3 ¢
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Why is this problem hard

The reachable set A*(U) can have faces of lower dimension : the
"top" extreme point does not belong to any facet.
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Why is this problem hard

Approach : two semi-decision procedures
» reachability : under-approximations of the reachable set
» non-reachability : separating hyperplanes

Further difficulty : a separating hyperplane may not be supported by a
facet of either A*(U) or Q.
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Why is this problem hard

Even more difficulty : B*(V) has two extreme points that do not belong
to any facet and have rational coordinates, but whose (unique)
separating hyperplane requires the use of algebraic irrationals
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Why is this problem hard

Even more difficulty : B*(V) has two extreme points that do not belong
to any facet and have rational coordinates, but whose (unique)
separating hyperplane requires the use of algebraic irrationals

Theorem (Non-reachable instances)

There is a separating hyperplane with algebraic coefficients.

23/24



Conclusion on control

Exact reachability for LTI systems :
» decidability crucially depends on the shape of the control set

» even with convex bounded inputs, the problem is very hard
(Skolem/Positivity, open for 70 years)

> we can recover decidability using strong spectral assumptions
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Exact reachability for LTI systems :
» decidability crucially depends on the shape of the control set

» even with convex bounded inputs, the problem is very hard
(Skolem/Positivity, open for 70 years)

> we can recover decidability using strong spectral assumptions

Despite an extensive literature in control theory, the decidability control
problems is still very open.
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