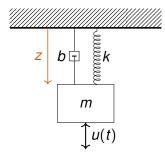
Linear Dynamical Systems Control Theory

Amaury Pouly

Université de Paris, IRIF, CNRS

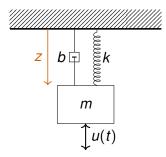


State : $X = z \in \mathbb{R}$

Equation of motion :

$$mz'' = -kz - bz' + mg + u$$

Model with external input u(t)



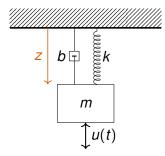
State : $X = z \in \mathbb{R}$

Equation of motion :

$$mz'' = -kz - bz' + mg + u$$

 \rightarrow Affine but not first order

Model with external input u(t)



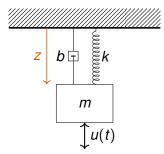
Model with external input u(t)

State : $X = z \in \mathbb{R}$

Equation of motion : mz'' = -kz - bz' + mg + u \rightarrow Affine but not first order

State : $X = (z, z', 1) \in \mathbb{R}^3$

Equation of motion : $\begin{bmatrix} z \\ z' \\ 1 \end{bmatrix}' = \begin{bmatrix} -\frac{k}{m}z - \frac{b}{m}z' + g + \frac{1}{m}u \\ 0 \end{bmatrix}$



Model with external input u(t) \rightarrow Linear time invariant system X' = AX + Bu

with some constraints on *u*.

State : $X = z \in \mathbb{R}$

Equation of motion : mz'' = -kz - bz' + mg + u \rightarrow Affine but not first order

State : $X = (z, z', 1) \in \mathbb{R}^3$

Equation of motion : $\begin{bmatrix} z \\ z' \\ 1 \end{bmatrix}' = \begin{bmatrix} -\frac{k}{m}z - \frac{b}{m}z' + g + \frac{1}{m}u \end{bmatrix}$

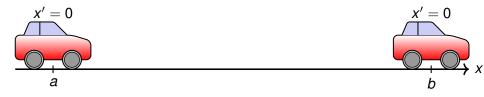
A simplified one-dimensional car : control acceleration u(t)

x''(t) = u(t)

A simplified one-dimensional car : control acceleration u(t)

x''(t) = u(t)

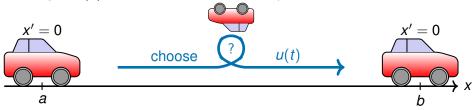
Starting at x(0) = a, want to reach and stop at x = b:



A simplified one-dimensional car : control acceleration u(t)

x''(t) = u(t)

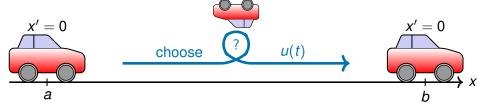
Starting at x(0) = a, want to reach and stop at x = b:



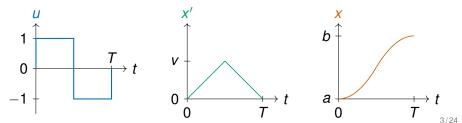
A simplified one-dimensional car : control acceleration u(t)

x''(t) = u(t)

Starting at x(0) = a, want to reach and stop at x = b:



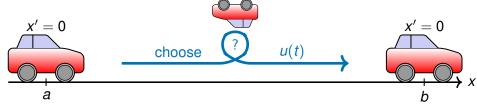
Possible solution :



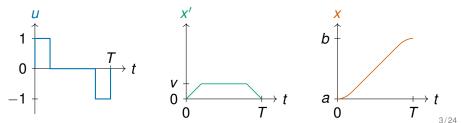
A simplified one-dimensional car : control acceleration u(t)

x''(t) = u(t)

Starting at x(0) = a, want to reach and stop at x = b:



More realistic solution :



A simplified one-dimensional car : control acceleration u(t)

x''(t) = u(t)

Starting at x(0) = a, want to reach and stop at x = b:



Rephrasing the problem :

$$\begin{cases} x' = y \\ y' = u \end{cases} \Leftrightarrow \begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ u \end{bmatrix} \Leftrightarrow X' = AX + U$$

Starting from (x, y) = (a, 0), try to reach (x, y) = (b, 0).

This is a point-to-point reachability problem.

LTI Reachability problem

- ▶ a source $y \in \mathbb{Q}^n$,
- ▶ a target $z \in \mathbb{Q}^n$,
- a transition matrix $A \in \mathbb{Q}^{n \times n}$,
- a set of controls $U \subseteq \mathbb{R}^n$,

decide if $\exists T \ge 0$, $u : [0, T] \rightarrow U$ measurable such that x(T) = z where

$$x(0) = y,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

LTI Reachability problem

- ▶ a source $y \in \mathbb{Q}^n$,
- ▶ a target $z \in \mathbb{Q}^n$,
- a transition matrix $A \in \mathbb{Q}^{n \times n}$,
- a set of controls $U \subseteq \mathbb{R}^n$,

decide if $\exists T \ge 0, u : [0, T] \rightarrow U$ measurable such that x(T) = z where

$$x(0) = y,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

Warning : *u* does not need to be "describable", *e.g.* piecewise polynomial. Otherwise, completely changes the nature of the problem.

Bigger picture

Continuous Reachability problem

- ▶ a source $y \in \mathbb{Q}^n$, ▶ a transition function f,
- ▶ a target $z \in \mathbb{Q}^n$, ▶ a set of controls $U \subseteq \mathbb{R}^m$,

decide if $\exists T \ge 0, u : [0, T] \rightarrow U$ measurable such that x(T) = z where

$$x(0) = y,$$
 $x'(t) = f(t, x(t), u(t))$ for $t \in [0, T].$

Bigger picture

Continuous Reachability problem

- ▶ a source $y \in \mathbb{Q}^n$, ▶ a transition function f,
- ▶ a target $z \in \mathbb{Q}^n$, ▶ a set of controls $U \subseteq \mathbb{R}^m$,

decide if $\exists T \ge 0, u : [0, T] \rightarrow U$ measurable such that x(T) = z where

$$x(0) = y,$$
 $x'(t) = f(t, x(t), u(t))$ for $t \in [0, T]$.

Generally undecidable :

- for nonlinear systems, even without control ($U = \{0\}$)
- piecewise constant derivative systems (PCD), still no control
- linear saturated systems (at least for discrete systems), no control

LTI systems probably form the most useful class that is not undecidable.

Bigger picture

Continuous Reachability problem

- ▶ a source $y \in \mathbb{Q}^n$, ▶ a transition function f,
- ▶ a target $z \in \mathbb{Q}^n$, ▶ a set of controls $U \subseteq \mathbb{R}^m$,

decide if $\exists T \ge 0, u : [0, T] \rightarrow U$ measurable such that x(T) = z where

$$x(0) = y,$$
 $x'(t) = f(t, x(t), u(t))$ for $t \in [0, T].$

Generally undecidable :

- for nonlinear systems, even without control ($U = \{0\}$)
- piecewise constant derivative systems (PCD), still no control
- linear saturated systems (at least for discrete systems), no control

LTI systems probably form the most useful class that is not undecidable.

But do they really?

LTI Reachability problem

- ▶ a source $y \in \mathbb{Q}^n$, ▶ a transition matrix $A \in \mathbb{Q}^{n \times n}$,
- ▶ a target $z \in \mathbb{Q}^n$, ▶ a set of controls $U \subseteq \mathbb{R}^n$,

decide if $\exists T \ge 0, u : [0, T] \rightarrow U$ measurable such that x(T) = z where

$$x(0) = y,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

LTI Reachability problem

- ▶ a source $y \in \mathbb{Q}^n$, ▶ a transition matrix $A \in \mathbb{Q}^{n \times n}$,
- ▶ a target $z \in \mathbb{Q}^n$, ▶ a set of controls $U \subseteq \mathbb{R}^n$,

decide if $\exists T \ge 0, u : [0, T] \rightarrow U$ measurable such that x(T) = z where

$$x(0) = y,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

Many variants (applies to non-LTI systems) :

• can **all points** $y \in \mathbb{R}^n$ reach z = 0?

global null-controllability

LTI Reachability problem

- ▶ a source $y \in \mathbb{Q}^n$, ▶ a transition matrix $A \in \mathbb{Q}^{n \times n}$,
- ▶ a target $z \in \mathbb{Q}^n$, ▶ a set of controls $U \subseteq \mathbb{R}^n$,

decide if $\exists T \ge 0, u : [0, T] \rightarrow U$ measurable such that x(T) = z where

$$x(0) = y,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

Many variants (applies to non-LTI systems) :

- ▶ can **all points** $y \in \mathbb{R}^n$ reach z = 0? global null-controllability
- ▶ can **all points** $y \in \mathbb{R}^n$ tend to z = 0? asymptotic null-controllability

LTI Reachability problem

- ▶ a source $y \in \mathbb{Q}^n$, ▶ a transition matrix $A \in \mathbb{Q}^{n \times n}$,
- ▶ a target $z \in \mathbb{Q}^n$, ▶ a set of controls $U \subseteq \mathbb{R}^n$,

decide if $\exists T \ge 0, u : [0, T] \rightarrow U$ measurable such that x(T) = z where

$$x(0) = y,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

Many variants (applies to non-LTI systems) :

- ▶ can all points $y \in \mathbb{R}^n$ reach z = 0? global null-controllability
- ▶ can all points $y \in \mathbb{R}^n$ tend to z = 0? asymptotic null-controllability
- can all points $y \approx 0$ reach z = 0?

local null-controllability

LTI Reachability problem

- ▶ a source $y \in \mathbb{Q}^n$, ▶ a transition matrix $A \in \mathbb{Q}^{n \times n}$,
- ▶ a target $z \in \mathbb{Q}^n$, ▶ a set of controls $U \subseteq \mathbb{R}^n$,

decide if $\exists T \ge 0, u : [0, T] \rightarrow U$ measurable such that x(T) = z where

$$x(0) = y,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

Many variants (applies to non-LTI systems) :

- ▶ can **all points** $y \in \mathbb{R}^n$ reach z = 0? global null-controllability
- ▶ can all points $y \in \mathbb{R}^n$ tend to z = 0? asymptotic null-controllability
- ▶ can all points $y \approx 0$ reach z = 0? local null-controllability

is the trajectory bounded when u is bounded?

stability

LTI Reachability problem

- ▶ a source $y \in \mathbb{Q}^n$, ▶ a transition matrix $A \in \mathbb{Q}^{n \times n}$,
- ▶ a target $z \in \mathbb{Q}^n$, ▶ a set of controls $U \subseteq \mathbb{R}^n$,

decide if $\exists T \ge 0, u : [0, T] \rightarrow U$ measurable such that x(T) = z where

$$x(0) = y,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

Many variants (applies to non-LTI systems) :

- ▶ can **all points** $y \in \mathbb{R}^n$ reach z = 0? global null-controllability
- ▶ can all points $y \in \mathbb{R}^n$ tend to z = 0? asymptotic null-controllability
- ► can all points $y \approx 0$ reach z = 0? local null-controllability

is the trajectory bounded when u is bounded?

approximate the set of reachable points from y reach set

stability

LTI Reachability problem

- ▶ a source $y \in \mathbb{Q}^n$, ▶ a transition matrix $A \in \mathbb{Q}^{n \times n}$,
- ▶ a target $z \in \mathbb{Q}^n$, ▶ a set of controls $U \subseteq \mathbb{R}^n$,

decide if $\exists T \ge 0, u : [0, T] \rightarrow U$ measurable such that x(T) = z where

x(0) = y, x'(t) = Ax(t) + u(t) for $t \in [0, T]$.

Many variants (applies to non-LTI systems) :

- ▶ can **all points** $y \in \mathbb{R}^n$ reach z = 0? global null-controllability
- ▶ can **all points** $y \in \mathbb{R}^n$ tend to z = 0? asymptotic null-controllability
- ► can all points $y \approx 0$ reach z = 0? local null-controllability
- is the trajectory bounded when u is bounded?
- approximate the set of reachable points from y reach set But also :
 - assumptions on A (typically spectral)
 - assumptions on U
 - restrictions on acceptable u

stability

▶ When we have no control :

$$U = \{0\}$$
 and $x'(t) = Ax + u(t)$ \Leftrightarrow $x(t) = e^{At}x(0)$.

▶ When we have no control :

$$U = \{0\}$$
 and $x'(t) = Ax + u(t)$ \Leftrightarrow $x(t) = e^{At}x(0)$.

Theorem (Hainry'08)

Given $y, z \in \mathbb{Q}^n$ and $A \in \mathbb{Q}^{n \times n}$, it is decidable whether $\exists t \ge 0$ such that

$$z = e^{At}y$$
.

When we have no control :

$$U = \{0\}$$
 and $x'(t) = Ax + u(t)$ \Leftrightarrow $x(t) = e^{At}x(0)$.

Theorem (Hainry'08)

Given $y, z \in \mathbb{Q}^n$ and $A \in \mathbb{Q}^{n \times n}$, it is decidable whether $\exists t \ge 0$ such that $z = e^{At}y$.

▶ When we can control in a vector space :

$$U = B\mathbb{R}^m$$
 and $x'(t) = Ax + u(t) \Rightarrow x(t) \in \operatorname{span}[B, AB, \dots, A^{n-1}B]$

When we have no control :

$$U = \{0\}$$
 and $x'(t) = Ax + u(t)$ \Leftrightarrow $x(t) = e^{At}x(0)$.

Theorem (Hainry'08)

Given $y, z \in \mathbb{Q}^n$ and $A \in \mathbb{Q}^{n \times n}$, it is decidable whether $\exists t \ge 0$ such that $z = e^{At}y$.

When we can control in a vector space :

$$m{U}=m{B}\mathbb{R}^m$$
 and $x'(t)=m{A}x+m{u}(t)$ \Rightarrow $x(t)\in ext{span}[m{B},m{A}m{B},\dots,m{A}^{n-1}m{B}]$

Theorem (Folklore)

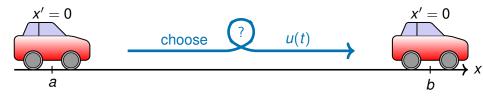
Given $y, z \in \mathbb{Q}^n$ and $A \in \mathbb{Q}^{n \times n}$, $B \in \mathbb{Q}^{n \times m}$, it is decidable whether $\exists T \ge 0$ and $u : [0, T] \to B\mathbb{R}^m$ measurable such that x(0) = y and x(T) = z where

$$x'(t) = Ax(t) + u(t)$$

A simplified one-dimensional car : control acceleration u(t)

```
x''(t) = u(t)
```

Starting at x(0) = a, want to reach and stop at x = b:

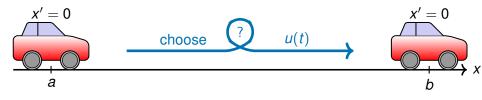


Reality : acceleration/braking is not infinite $\rightarrow u$ is bounded!

A simplified one-dimensional car : control acceleration u(t)

```
x''(t) = u(t)
```

Starting at x(0) = a, want to reach and stop at x = b:



Reality : acceleration/braking is not infinite $\sim u$ is bounded!

Very few decidability results in the literature in this case.

LTI Zonotope Null-Reachability problem

Given a matrix $A \in \mathbb{Q}^{n \times n}$, a set of controls $U = B[-1, 1]^m$, a target $z \in \mathbb{Q}^n$, decide if $\exists T \ge 0, u : [0, T] \to U$ such that x(T) = z where

$$x(0) = 0,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

LTI Zonotope Null-Reachability problem

Given a matrix $A \in \mathbb{Q}^{n \times n}$, a set of controls $U = B[-1, 1]^m$, a target $z \in \mathbb{Q}^n$, decide if $\exists T \ge 0, u : [0, T] \to U$ such that x(T) = z where

$$x(0) = 0,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of :

A is real diagonal, B is a column with at most 2 nonzero entries,

LTI Zonotope Null-Reachability problem

Given a matrix $A \in \mathbb{Q}^{n \times n}$, a set of controls $U = B[-1, 1]^m$, a target $z \in \mathbb{Q}^n$, decide if $\exists T \ge 0, u : [0, T] \to U$ such that x(T) = z where

$$x(0) = 0,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of :

- A is real diagonal, B is a column with at most 2 nonzero entries,
- ▶ A is real diagonalizable, eigenvalues $\subseteq \alpha \mathbb{Q}$ for some $\alpha \in \overline{\mathbb{Q}}$,

LTI Zonotope Null-Reachability problem

Given a matrix $A \in \mathbb{Q}^{n \times n}$, a set of controls $U = B[-1, 1]^m$, a target $z \in \mathbb{Q}^n$, decide if $\exists T \ge 0, u : [0, T] \to U$ such that x(T) = z where

$$x(0) = 0,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of :

- A is real diagonal, B is a column with at most 2 nonzero entries,
- A is real diagonalizable, eigenvalues $\subseteq \alpha \mathbb{Q}$ for some $\alpha \in \overline{\mathbb{Q}}$,
- A only has one eigenvalue which is real, B is a column,

LTI Zonotope Null-Reachability problem

Given a matrix $A \in \mathbb{Q}^{n \times n}$, a set of controls $U = B[-1, 1]^m$, a target $z \in \mathbb{Q}^n$, decide if $\exists T \ge 0, u : [0, T] \to U$ such that x(T) = z where

$$x(0) = 0,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of :

- A is real diagonal, B is a column with at most 2 nonzero entries,
- A is real diagonalizable, eigenvalues $\subseteq \alpha \mathbb{Q}$ for some $\alpha \in \overline{\mathbb{Q}}$,
- A only has one eigenvalue which is real, B is a column,
- dimension n = 2, B is a column and A has real eigenvalues.

LTI Zonotope Null-Reachability problem

Given a matrix $A \in \mathbb{Q}^{n \times n}$, a set of controls $U = B[-1, 1]^m$, a target $z \in \mathbb{Q}^n$, decide if $\exists T \ge 0, u : [0, T] \to U$ such that x(T) = z where

$$x(0) = 0,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of :

- A is real diagonal, B is a column with at most 2 nonzero entries,
- A is real diagonalizable, eigenvalues $\subseteq \alpha \mathbb{Q}$ for some $\alpha \in \overline{\mathbb{Q}}$,
- A only has one eigenvalue which is real, B is a column,
- dimension n = 2, B is a column and A has real eigenvalues.

Well, that was underwhelming...

LTI Zonotope Null-Reachability problem

Given a matrix $A \in \mathbb{Q}^{n \times n}$, a set of controls $U = B[-1, 1]^m$, a target $z \in \mathbb{Q}^n$, decide if $\exists T \ge 0, u : [0, T] \to U$ such that x(T) = z where

$$x(0) = 0,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of :

- A is real diagonal, B is a column with at most 2 nonzero entries,
- A is real diagonalizable, eigenvalues $\subseteq \alpha \mathbb{Q}$ for some $\alpha \in \overline{\mathbb{Q}}$,
- A only has one eigenvalue which is real, B is a column,
- dimension n = 2, B is a column and A has real eigenvalues.

Are you sure you cannot do better?

Schanuel's conjecture

A deep conjecture in transcendental number theory. Widely believed to be true and totally open.

Schanuel's conjecture

A deep conjecture in transcendental number theory. Widely believed to be true and totally open.

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of :

A has real eigenvalues,

Schanuel's conjecture

A deep conjecture in transcendental number theory. Widely believed to be true and totally open.

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of :

- A has real eigenvalues,
- in dimension n = 2,

Schanuel's conjecture

A deep conjecture in transcendental number theory. Widely believed to be true and totally open.

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of :

- A has real eigenvalues,
- ▶ in dimension n = 2,
- we bound the time to reachability.

and Schanuel's conjecture is true.

Schanuel's conjecture

A deep conjecture in transcendental number theory. Widely believed to be true and totally open.

Theorem (Dantam, P.)

The LTI Zonotope Null-Reachability problem is decidable if one of :

- A has real eigenvalues,
- in dimension n = 2,
- we bound the time to reachability.

and Schanuel's conjecture is true.

Theorem (Wilkie and MacIntyre)

If Schanuel's conjecture is true, then, for each $k \in \mathbb{N}$, the first-order theory of the structure $(\mathbb{R}, 0, 1, <, +, \cdot, \exp, \cos \upharpoonright_{[0,k]}, \sin \upharpoonright_{[0,k]})$ is decidable.

LTI Null-Set-Reachability problem

Given a matrix $A \in \mathbb{Q}^{n \times n}$, a set of controls $U \subseteq \mathbb{R}^n$, a set $Z \subseteq \mathbb{R}^n$, decide if $\exists T \ge 0, u : [0, T] \rightarrow U$ such that $x(T) \in Z$ where

$$x(0) = 0,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

LTI Null-Set-Reachability problem

Given a matrix $A \in \mathbb{Q}^{n \times n}$, a set of controls $U \subseteq \mathbb{R}^n$, a set $Z \subseteq \mathbb{R}^n$, decide if $\exists T \ge 0, u : [0, T] \rightarrow U$ such that $x(T) \in Z$ where

$$x(0) = 0,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

This is trivially hard for $U = \{0\}$ and $Z = \{$ hyperplane $\}$ because :

LTI Null-Set-Reachability problem

Given a matrix $A \in \mathbb{Q}^{n \times n}$, a set of controls $U \subseteq \mathbb{R}^n$, a set $Z \subseteq \mathbb{R}^n$, decide if $\exists T \ge 0, u : [0, T] \rightarrow U$ such that $x(T) \in Z$ where

$$x(0) = 0,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

This is trivially hard for $U = \{0\}$ and $Z = \{$ hyperplane $\}$ because :

Continuous Skolem problem

Given a matrix $A \in \mathbb{Q}^{n \times n}$ and $c, x_0 \in \mathbb{Q}^n$, decide if $\exists T \ge 0$ such that $c^T e^{At} x_0 = 0$.

LTI Null-Set-Reachability problem

Given a matrix $A \in \mathbb{Q}^{n \times n}$, a set of controls $U \subseteq \mathbb{R}^n$, a set $Z \subseteq \mathbb{R}^n$, decide if $\exists T \ge 0, u : [0, T] \rightarrow U$ such that $x(T) \in Z$ where

$$x(0) = 0,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

This is trivially hard for $U = \{0\}$ and $Z = \{$ hyperplane $\}$ because :

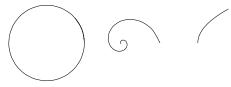
Continuous Skolem problem

Given a matrix $A \in \mathbb{Q}^{n \times n}$ and $c, x_0 \in \mathbb{Q}^n$, decide if $\exists T \ge 0$ such that $c^T e^{At} x_0 = 0$.

This is a well-known "hard" problem.

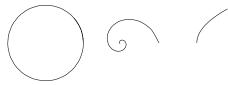
Hardness (cont.)

- Taking $U = \{0\}$ is cheating :
 - when $U = \{0\}$, reachable set is closed (or closed minus a point)



Hardness (cont.)

- Taking $U = \{0\}$ is cheating :
 - when $U = \{0\}$, reachable set is closed (or closed minus a point)



• when $U = B[-1, 1]^m$, reachable set is open

boundary not included

This is completely different !

Our results : hardness

LTI Zonotope Null-Set-Reachability problem

Given a matrix $A \in \mathbb{Q}^{n \times n}$, a set of controls $U = B[-1, 1]^m$, a set $Z \subseteq \mathbb{R}^n$, decide if $\exists T \ge 0, u : [0, T] \to U$ such that $x(T) \in Z$ where

x(0) = 0, x'(t) = Ax(t) + u(t) for $t \in [0, T]$.

Our results : hardness

LTI Zonotope Null-Set-Reachability problem

Given a matrix $A \in \mathbb{Q}^{n \times n}$, a set of controls $U = B[-1, 1]^m$, a set $Z \subseteq \mathbb{R}^n$, decide if $\exists T \ge 0, u : [0, T] \to U$ such that $x(T) \in Z$ where

$$x(0) = 0,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

Theorem (Dantam, P.)

The Continuous Nontangential Skolem problem reduces to this problem with a single input (m = 1), A stable and Z a hyperplane or a convex compact set of dimension n - 1.

Our results : hardness

LTI Zonotope Null-Set-Reachability problem

Given a matrix $A \in \mathbb{Q}^{n \times n}$, a set of controls $U = B[-1, 1]^m$, a set $Z \subseteq \mathbb{R}^n$, decide if $\exists T \ge 0, u : [0, T] \to U$ such that $x(T) \in Z$ where

$$x(0) = 0,$$
 $x'(t) = Ax(t) + u(t)$ for $t \in [0, T]$.

Theorem (Dantam, P.)

The Continuous Nontangential Skolem problem reduces to this problem with a single input (m = 1), A stable and Z a hyperplane or a convex compact set of dimension n - 1.

Continuous Nontangential Skolem problem

Given a matrix $A \in \mathbb{Q}^{n \times n}$ and $c, x_0 \in \mathbb{Q}^n$, decide if $\exists T \ge 0$ such that f(t) = 0 and $f'(t) \neq 0$ where $f(t) = c^T e^{At} x_0 = 0$.

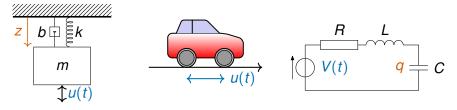
It is essentially as hard as the Continuous Skolem problem.

Conclusion (continuous case)

LTI reachability problem : find T and u such that

$$x(0) = 0,$$
 $x'(t) = Ax(t) + Bu(t),$ $u(t) \in [-1, 1]^n$

satisfies x(T) = target. Very natural problem in control theory.



Point reachability is

- decidable in dimension 2 or with spectral constraints,
- conditionally decidable with real eigenvalues,
- conditionally decidable in bounded time,

Set reachability is Nontangential Continuous Skolem hard.

The continuous case is much harder than expected. What about the discrete case?

LTI-REACHABILITY

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^d$,

decide if $\exists T \in \mathbb{N}, u_0, \ldots, u_{T-1} \in U$ such that $x_T = t$ where

$$x_0 = s,$$
 $x_{n+1} = Ax_n + u_n.$

ŝ

LTI-REACHABILITY

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- ▶ a set of controls $U \subseteq \mathbb{R}^d$,

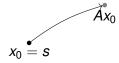
$$x_0 = s,$$
 $x_{n+1} = Ax_n + u_n.$

$$x_0 = s$$

LTI-REACHABILITY

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- ▶ a set of controls $U \subseteq \mathbb{R}^d$,

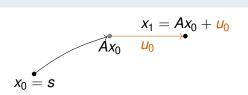
$$x_0 = s,$$
 $x_{n+1} = Ax_n + u_n.$



LTI-REACHABILITY

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- ▶ a set of controls $U \subseteq \mathbb{R}^d$,

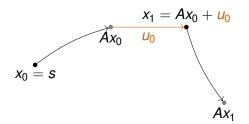
$$x_0 = s,$$
 $x_{n+1} = Ax_n + u_n.$



LTI-REACHABILITY

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- ▶ a set of controls $U \subseteq \mathbb{R}^d$,

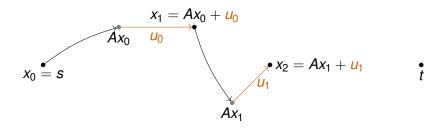
$$x_0 = s,$$
 $x_{n+1} = Ax_n + u_n.$



LTI-REACHABILITY

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- ▶ a set of controls $U \subseteq \mathbb{R}^d$,

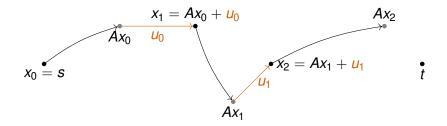
$$x_0 = s,$$
 $x_{n+1} = Ax_n + u_n.$



LTI-REACHABILITY

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- ▶ a set of controls $U \subseteq \mathbb{R}^d$,

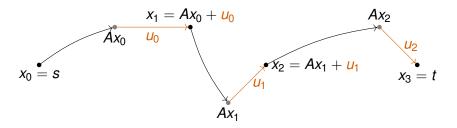
$$x_0 = s,$$
 $x_{n+1} = Ax_n + u_n.$



LTI-REACHABILITY

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- ▶ a set of controls $U \subseteq \mathbb{R}^d$,

$$x_0 = s,$$
 $x_{n+1} = Ax_n + u_n.$



- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- ► a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^d$,

$$x_0 = s, \qquad x_{n+1} = Ax_n + u_n.$$

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^d$,

decide if $\exists T \in \mathbb{N}$, $u_0, \ldots, u_{T-1} \in U$ such that $x_T = t$ where

$$x_0 = s, \qquad x_{n+1} = Ax_n + u_n.$$

Theorem (Lipton and Kannan, 1986)

LTI-REACHABILITY is decidable if U is an affine subspace of \mathbb{R}^d .

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^d$,

decide if $\exists T \in \mathbb{N}$, $u_0, \ldots, u_{T-1} \in U$ such that $x_T = t$ where

$$x_0 = s, \qquad x_{n+1} = Ax_n + u_n.$$

Theorem (Lipton and Kannan, 1986)

LTI-REACHABILITY is decidable if U is an affine subspace of \mathbb{R}^d .

Almost no exact results for other classes of U

- ▶ a source $s \in \mathbb{Q}^d$,
- ▶ a target $t \in \mathbb{Q}^d$,
- a transition matrix $A \in \mathbb{Q}^{d \times d}$,
- a set of controls $U \subseteq \mathbb{R}^d$,

decide if $\exists T \in \mathbb{N}$, $u_0, \ldots, u_{T-1} \in U$ such that $x_T = t$ where

$$x_0 = s, \qquad x_{n+1} = Ax_n + u_n.$$

Theorem (Lipton and Kannan, 1986)

LTI-REACHABILITY is decidable if U is an affine subspace of \mathbb{R}^d .

Almost no exact results for other classes of U in particular when U is bounded (which is the most natural case).

Hardness

Theorem (Fijalkow, Ouaknine, P. Sousa-Pinto, Worrell)

LTI-REACHABILITY **is**

undecidable if U is a finite union of affine subspaces.

Theorem (Fijalkow, Ouaknine, P. Sousa-Pinto, Worrell)

LTI-REACHABILITY **is**

- **undecidable** if *U* is a finite union of affine subspaces.
- Skolem-hard if $U = \{0\} \cup V$ where V is an affine subspace

Since we cannot solve Skolem/Positivity, we need some strong assumptions for decidability.

Theorem (Fijalkow, Ouaknine, P. Sousa-Pinto, Worrell)

LTI-REACHABILITY **is**

- undecidable if U is a finite union of affine subspaces.
- Skolem-hard if $U = \{0\} \cup V$ where V is an affine subspace
- Positivity-hard if U is a convex polytope

Since we cannot solve Skolem/Positivity, we need some strong assumptions for decidability.

A positive result

A LTI system (s, A, t, U) is simple if s = 0 and

A positive result

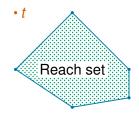
A LTI system (s, A, t, U) is simple if s = 0 and

U is a bounded polytope that contains 0 in its (relative) interior,

A positive result

A LTI system (s, A, t, U) is simple if s = 0 and

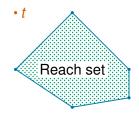
- ► U is a bounded polytope that contains 0 in its (relative) interior,
- the spectral radius of A is less than 1 (stability),



Assumptions imply that the reachable set is an open convex bounded set,

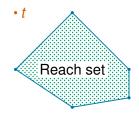
A LTI system (s, A, t, U) is simple if s = 0 and

- U is a bounded polytope that contains 0 in its (relative) interior,
- the spectral radius of A is less than 1 (stability),



A LTI system (s, A, t, U) is simple if s = 0 and

- U is a bounded polytope that contains 0 in its (relative) interior,
- the spectral radius of A is less than 1 (stability),
- some positive power of A has exclusively real spectrum.

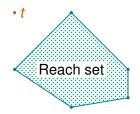


A LTI system (s, A, t, U) is simple if s = 0 and

- U is a bounded polytope that contains 0 in its (relative) interior,
- the spectral radius of A is less than 1 (stability),
- some positive power of A has exclusively real spectrum.

Theorem (Fijalkow, Ouaknine, P. Sousa-Pinto, Worrell)

LTI-REACHABILITY is decidable for simple systems.



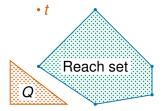
A LTI system (s, A, t, U) is simple if s = 0 and

- U is a bounded polytope that contains 0 in its (relative) interior,
- the spectral radius of A is less than 1 (stability),
- some positive power of A has exclusively real spectrum.

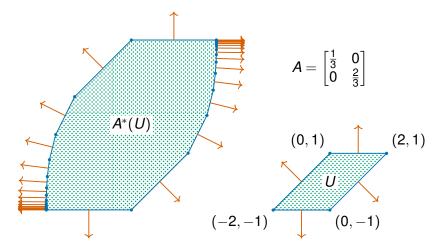
Theorem (Fijalkow, Ouaknine, P. Sousa-Pinto, Worrell)

LTI-REACHABILITY is decidable for simple systems.

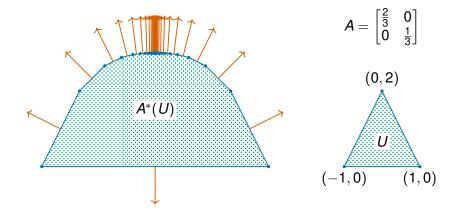
Remark : in fact we can decide reachability to a convex polytope Q.



The reachable set $A^*(U)$ can have **infinitely** many faces.



The reachable set $A^*(U)$ can have **faces of lower dimension** : the "top" extreme point does not belong to any facet.

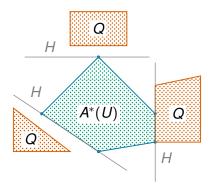


Approach : two semi-decision procedures

- reachability : under-approximations of the reachable set
- non-reachability : separating hyperplanes

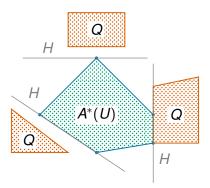
Approach : two semi-decision procedures

- reachability : under-approximations of the reachable set
- non-reachability : separating hyperplanes

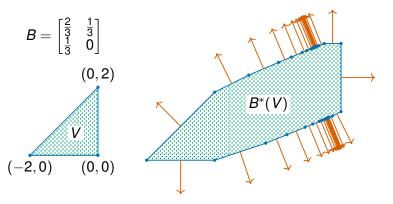


Approach : two semi-decision procedures

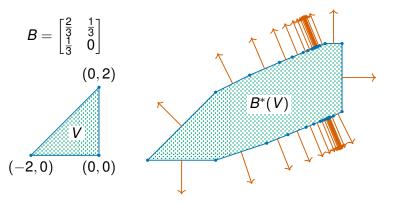
- reachability : under-approximations of the reachable set
- non-reachability : separating hyperplanes



Further difficulty : a separating hyperplane may not be supported by a facet of either $A^*(U)$ or Q.



Even more difficulty : $B^*(V)$ has two extreme points that do not belong to any facet and have rational coordinates, but whose (unique) separating hyperplane requires the use of algebraic irrationals



Even more difficulty : $B^*(V)$ has two extreme points that do not belong to any facet and have rational coordinates, but whose (unique) separating hyperplane requires the use of algebraic irrationals

Theorem (Non-reachable instances)

There is a separating hyperplane with algebraic coefficients.

Exact reachability for LTI systems :

- decidability crucially depends on the shape of the control set
- even with convex bounded inputs, the problem is very hard (Skolem/Positivity, open for 70 years)
- we can recover decidability using strong spectral assumptions

Exact reachability for LTI systems :

- decidability crucially depends on the shape of the control set
- even with convex bounded inputs, the problem is very hard (Skolem/Positivity, open for 70 years)
- we can recover decidability using strong spectral assumptions

Despite an extensive literature in control theory, the decidability control problems is still very open.