
Linear Dynamical Systems
Invariant Synthesis

Amaury Pouly

1 / 23



Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

▶ (1) is an invariant: it holds at every
step

▶ (1) implies the guard is true

2 / 23



Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

▶ (1) is an invariant: it holds at every
step

▶ (1) implies the guard is true

2 / 23



Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

▶ (1) is an invariant: it holds at every
step

▶ (1) implies the guard is true

2 / 23



Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

▶ (1) is an invariant: it holds at every
step

▶ (1) implies the guard is true

2 / 23



Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

▶ (1) is an invariant: it holds at every
step

▶ (1) implies the guard is true

2 / 23



Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

▶ (1) is an invariant: it holds at every
step

▶ (1) implies the guard is true

2 / 23



Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]
Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

▶ (1) is an invariant: it holds at every
step

▶ (1) implies the guard is true

2 / 23



Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]
Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

▶ (1) is an invariant: it holds at every
step

▶ (1) implies the guard is true

2 / 23



Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]
Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

▶ (1) is an invariant: it holds at every
step

▶ (1) implies the guard is true

2 / 23



Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition

3 / 23



Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition

3 / 23



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 23



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 23



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 23



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 23



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 23



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 23



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 23



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 23



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 23



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 23



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 23



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 23



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

4 / 23



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1

S1

I2

S2

I3

S3

S1,S2,S3 are the reachable states
4 / 23



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1

S1

I2

S2

I3

S3

S1,S2,S3 is also an inductive invariant
4 / 23



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1
S1

I2

S2

I3 S3

I1,I2,I3 is an invariant
4 / 23



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1

S1

I2

S2

I3

S3

I1,I2,I3 is NOT an inductive invariant
4 / 23



Inductive invariants: example

x , y , z range over Q fi : R3 → R3

1 2

3

f1
f2

f3

f4f5

I1

S1

I2

S2

I3

S3

I1,I2,I3 is an inductive invariant
4 / 23



Why Invariants?

I
S

BAD!

The classical approach to the verification of temporal safety
properties of programs requires the construction of inductive
invariants [...]. Automation of this construction is the main
challenge in program verification.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko
Invariant Synthesis for Combined Theories, 2007

5 / 23



Which invariants?

Intervals

Octagons Polyhedrons

Affine/linear sets Algebraic sets =
polynomial equalities

Semialgebraic sets

⩽

⩽

⩽
⩽

⩽

⩽

6 / 23



Affine programs

▶ Nondeterministic branching (no guards)
▶ All assignments are affine
▶ Allow nondeterministic assignments (x := ∗)

1 2

3

f1
f2

f3

f4f5

▶ Can overapproximate complex programs
▶ Covers existing formalisms:

probabilistic, quantum, quantitative automata

7 / 23



Affine programs

▶ Nondeterministic branching (no guards)

▶ All assignments are affine
▶ Allow nondeterministic assignments (x := ∗)

1 2

3

f1
f2

f3

f4f5

▶ Can overapproximate complex programs
▶ Covers existing formalisms:

probabilistic, quantum, quantitative automata

7 / 23



Affine programs

▶ Nondeterministic branching (no guards)
▶ All assignments are affine

▶ Allow nondeterministic assignments (x := ∗)

1 2

3

x := 3x − 7y + 1
f2

f3

f4f5

▶ Can overapproximate complex programs
▶ Covers existing formalisms:

probabilistic, quantum, quantitative automata

7 / 23



Affine programs

▶ Nondeterministic branching (no guards)
▶ All assignments are affine
▶ Allow nondeterministic assignments (x := ∗)

1 2

3

x := 3x − 7y + 1
f2

f3

y :=
∗f5

▶ Can overapproximate complex programs
▶ Covers existing formalisms:

probabilistic, quantum, quantitative automata

7 / 23



Affine programs

▶ Nondeterministic branching (no guards)
▶ All assignments are affine
▶ Allow nondeterministic assignments (x := ∗)

1 2

3

x := 3x − 7y + 1
f2

f3

y :=
∗f5

▶ Can overapproximate complex programs

▶ Covers existing formalisms:
probabilistic, quantum, quantitative automata

7 / 23



Affine programs

▶ Nondeterministic branching (no guards)
▶ All assignments are affine
▶ Allow nondeterministic assignments (x := ∗)

1 2

3

x := 3x − 7y + 1
f2

f3

y :=
∗f5

▶ Can overapproximate complex programs
▶ Covers existing formalisms:

probabilistic, quantum, quantitative automata

7 / 23



Karr’s Algorithm

Theorem (Karr 76)

There is an algorithm which computes, for any given affine program
over Q, its strongest affine inductive invariant.

8 / 23



Randomized Karr’s Algorithm @ POPL 2003

9 / 23



Some polynomial invariants

Theorem (ICALP 2004)

There is an algorithm which computes, for any given affine program
over Q, all its polynomial inductive invariants up to any fixed degree d.

10 / 23



Why fixed degree is not enough

▶ Paraboloid z = x2 + y2

▶ Union of 3 hyperplanes (x − y)(10y + x)(y + 10x) = 0

11 / 23



Why fixed degree is not enough
▶ Paraboloid z = x2 + y2

▶ Union of 3 hyperplanes (x − y)(10y + x)(y + 10x) = 0

11 / 23



Why fixed degree is not enough
▶ Paraboloid z = x2 + y2

▶ Union of 3 hyperplanes (x − y)(10y + x)(y + 10x) = 0

11 / 23



Why fixed degree is not enough
▶ Paraboloid z = x2 + y2

▶ Union of 3 hyperplanes (x − y)(10y + x)(y + 10x) = 0

11 / 23



Why fixed degree is not enough
▶ Paraboloid z = x2 + y2

▶ Union of 3 hyperplanes (x − y)(10y + x)(y + 10x) = 0

11 / 23



Why fixed degree is not enough
▶ Paraboloid z = x2 + y2

▶ Union of 3 hyperplanes (x − y)(10y + x)(y + 10x) = 0

11 / 23



Main result

Theorem (Hrushovski, Ouaknine, P., Worrell, 2018)

There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.

▶ strongest polynomial invariant ⇐⇒ smallest algebraic set
▶ Thus our algorithm computes all polynomial relations that always

hold among program variables at each program location, in all
possible executions of the program

▶ We represent this using a finite basis of polynomial equalities

12 / 23



Main result

Theorem (Hrushovski, Ouaknine, P., Worrell, 2018)

There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.

▶ strongest polynomial invariant ⇐⇒ smallest algebraic set

▶ Thus our algorithm computes all polynomial relations that always
hold among program variables at each program location, in all
possible executions of the program

▶ We represent this using a finite basis of polynomial equalities

12 / 23



Main result

Theorem (Hrushovski, Ouaknine, P., Worrell, 2018)

There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.

▶ strongest polynomial invariant ⇐⇒ smallest algebraic set
▶ Thus our algorithm computes all polynomial relations that always

hold among program variables at each program location, in all
possible executions of the program

▶ We represent this using a finite basis of polynomial equalities

12 / 23



Main result

Theorem (Hrushovski, Ouaknine, P., Worrell, 2018)

There is an algorithm which computes, for any given affine program
over Q, its strongest polynomial inductive invariant.

▶ strongest polynomial invariant ⇐⇒ smallest algebraic set
▶ Thus our algorithm computes all polynomial relations that always

hold among program variables at each program location, in all
possible executions of the program

▶ We represent this using a finite basis of polynomial equalities

12 / 23



At the edge of decidability

x :=x0

x := M1x
x := M2x

. . .

x := Mkx

S

Theorem (Markov 1947*)

There is a fixed set of 6 × 6 integer matrices M1, . . . ,Mk such that the
reachability problem “y is reachable from x0?” is undecidable.

Theorem (Paterson 1970*)

The mortality problem “ 0 is reachable from x0 with M1, . . . ,Mk?” is
undecidable for 3 × 3 matrices.

*Original theorems about semigroups, reformulated with affine programs.

13 / 23



At the edge of decidability

x :=x0

x := M1x
x := M2x

. . .

x := Mkx

S

Theorem (Markov 1947*)

There is a fixed set of 6 × 6 integer matrices M1, . . . ,Mk such that the
reachability problem “y is reachable from x0?” is undecidable.

Theorem (Paterson 1970*)

The mortality problem “ 0 is reachable from x0 with M1, . . . ,Mk?” is
undecidable for 3 × 3 matrices.

*Original theorems about semigroups, reformulated with affine programs.
13 / 23



At the edge of decidability

x :=x0

x := M1x
x := M2x

. . .

x := Mkx

S

Theorem (Markov 1947*)

There is a fixed set of 6 × 6 integer matrices M1, . . . ,Mk such that the
reachability problem “y is reachable from x0?” is undecidable.

Theorem (Paterson 1970*)

The mortality problem “ 0 is reachable from x0 with M1, . . . ,Mk?” is
undecidable for 3 × 3 matrices.

*Original theorems about semigroups, reformulated with affine programs.
13 / 23



Zariski closure of finitely generated groups

Our algorithm relies on this result:

Theorem (Derksen, Jeandel and Koiran, 2004)

There is an algorithm which computes, for any given affine program
over Q using only invertible transformations, its strongest polynomial
inductive invariant.

Equivalently, compute the Zariski closure of a finitely generated groups
of matrices.

14 / 23



From groups to semigroup

Theorem (Hrushovski, Ouaknine, P., Worrell, 2018)

There is an algorithm that computes the Zariski closure of any finitely
semigroup of matrices (with algebraic coefficients), given its
generators as inputs.

Corollary

Given an affine program, we can compute for each location the ideal of
all polynomial relations that hold at that location.

15 / 23



Going hybrid: a bouncing ball

x

y

ẋ = vx
ẏ = vy
v̇x = 0
v̇y = −g
ṫ = 1

t := 0
x := 0
y := h

vx := c
vy := 0

vy := −vy
▶ affine program: collision
+ linear differential equation: mechanics
= linear hybrid automaton

Invariants:
▶ vx = c
▶ x = tc
▶ v2

y + 2g(y − h) = 0

recover conservation
of energy!

16 / 23



Going hybrid: a bouncing ball

x

y

ẋ = vx
ẏ = vy
v̇x = 0
v̇y = −g
ṫ = 1

t := 0
x := 0
y := h

vx := c
vy := 0

vy := −vy
▶ affine program: collision
+ linear differential equation: mechanics
= linear hybrid automaton

Invariants:
▶ vx = c
▶ x = tc
▶ v2

y + 2g(y − h) = 0

recover conservation
of energy!

16 / 23



Going hybrid: a bouncing ball

x

y

ẋ = vx
ẏ = vy
v̇x = 0
v̇y = −g
ṫ = 1

t := 0
x := 0
y := h

vx := c
vy := 0

vy := −vy
▶ affine program: collision
+ linear differential equation: mechanics
= linear hybrid automaton

Invariants:
▶ vx = c
▶ x = tc
▶ v2

y + 2g(y − h) = 0

recover conservation
of energy!

16 / 23



Example: RC circuit

OPEN

I CLOSED IR

R

VR

VC
Q

C
V

switch

t

İ = 0
İR = − 1

RC IR
V̇R = − 1

C IR
Q̇ = IR
V̇C = 1

C IR

OPEN

İ = − 1
RC IR

İR = − 1
RC IR

V̇R = − 1
C IR

Q̇ = IR
V̇C = 1

C IR

CLOSED
I := 1

R (V−VC)

IR := 1
R (V−VC)

VR :=V−VC

I :=0

IR :=− 1
R VC

VR :=−VC

17 / 23



Example: RC circuit

OPEN

I CLOSED IR

R

VR

VC
Q

C
V

switch

t

İ = 0
İR = − 1

RC IR
V̇R = − 1

C IR
Q̇ = IR
V̇C = 1

C IR

OPEN

İ = − 1
RC IR

İR = − 1
RC IR

V̇R = − 1
C IR

Q̇ = IR
V̇C = 1

C IR

CLOSED
I := 1

R (V−VC)

IR := 1
R (V−VC)

VR :=V−VC

I :=0

IR :=− 1
R VC

VR :=−VC

17 / 23



Example: RC circuit

OPEN

I CLOSED IR

R

VR

VC
Q

C
V

switch

t

İ = 0
İR = − 1

RC IR
V̇R = − 1

C IR
Q̇ = IR
V̇C = 1

C IR

OPEN

İ = − 1
RC IR

İR = − 1
RC IR

V̇R = − 1
C IR

Q̇ = IR
V̇C = 1

C IR

CLOSED

I := 1
R (V−VC)

IR := 1
R (V−VC)

VR :=V−VC

I :=0

IR :=− 1
R VC

VR :=−VC

17 / 23



Example: RC circuit

OPEN

I CLOSED IR

R

VR

VC
Q

C
V

switch

t

İ = 0
İR = − 1

RC IR
V̇R = − 1

C IR
Q̇ = IR
V̇C = 1

C IR

OPEN

İ = − 1
RC IR

İR = − 1
RC IR

V̇R = − 1
C IR

Q̇ = IR
V̇C = 1

C IR

CLOSED
I := 1

R (V−VC)

IR := 1
R (V−VC)

VR :=V−VC

I :=0

IR :=− 1
R VC

VR :=−VC

17 / 23



Example: RC circuit

OPEN

I CLOSED IR

R

VR

VC
Q

C
V

Invariants
OPEN CLOSED

Q = CVC Q = CVC
VR = RIR VR = RIR

I = 0 I = IR
VR = −VC VR = V − VC

İ = 0
İR = − 1

RC IR
V̇R = − 1

C IR
Q̇ = IR
V̇C = 1

C IR

OPEN

İ = − 1
RC IR

İR = − 1
RC IR

V̇R = − 1
C IR

Q̇ = IR
V̇C = 1

C IR

CLOSED
I := 1

R (V−VC)

IR := 1
R (V−VC)

VR :=V−VC

I :=0

IR :=− 1
R VC

VR :=−VC

17 / 23



Linear Hybrid Automata

▶ Nondeterministic branching (no guards)
▶ All assignments are affine
▶ Linear differential equations in each location

ẋ =2y−x

ẏ =x−y Ẋ = AX

Ẋ = BX

x := 3x − 7y + 1
f2

f3

f4f5

▶ More general than affine programs
▶ More general than linear differential equations

18 / 23



Linear Hybrid Automata

▶ Nondeterministic branching (no guards)
▶ All assignments are affine
▶ Linear differential equations in each location

ẋ =2y−x

ẏ =x−y Ẋ = AX

Ẋ = BX

x := 3x − 7y + 1
f2

f3

f4f5

▶ More general than affine programs
▶ More general than linear differential equations

18 / 23



From affine programs to hybrid automata

Theorem (Majumdar, Ouaknine, P., Worrell, 2020)

There is an algorithm that computes, for any given guard-free linear
hybrid automaton over Q, its strongest polynomial inductive invariant.

For systems with purely continuous dynamics, i.e. no discrete
transitions, called switching systems:

Theorem (Hrushovski, Ouaknine, P., Worrell, 2018)

There is no algorithm that computes the strongest algebraic inductive
invariant for the class of switching systems with equality guards.

19 / 23



From affine programs to hybrid automata

Theorem (Majumdar, Ouaknine, P., Worrell, 2020)

There is an algorithm that computes, for any given guard-free linear
hybrid automaton over Q, its strongest polynomial inductive invariant.

For systems with purely continuous dynamics, i.e. no discrete
transitions, called switching systems:

Theorem (Hrushovski, Ouaknine, P., Worrell, 2018)

There is no algorithm that computes the strongest algebraic inductive
invariant for the class of switching systems with equality guards.

19 / 23



From hybrid automata to affine programs

Theorem (Majumdar, Ouaknine, P., Worrell, 2020)

There is an algorithm that computes, for any given guard-free linear
hybrid automaton over Q, an affine program over Q that has the
same polynomial inductive invariants.

ẋ = vx
ẏ = vy
v̇x = 0
v̇y = −g
ṫ = 1

t := 0
x := 0
y := h

vx := c
vy := 0

vy := −vy

BALL;

t := 0
x := 0
y := h

vx := c
vy := 0

vy := −vy

vy := vy − g
t := t + 1

x := x + vx

y := y + vy − 1
2g

20 / 23



From hybrid automata to affine programs

Theorem (Majumdar, Ouaknine, P., Worrell, 2020)

There is an algorithm that computes, for any given guard-free linear
hybrid automaton over Q, an affine program over Q that has the
same polynomial inductive invariants.

ẋ = vx
ẏ = vy
v̇x = 0
v̇y = −g
ṫ = 1

t := 0
x := 0
y := h

vx := c
vy := 0

vy := −vy

BALL;

t := 0
x := 0
y := h

vx := c
vy := 0

vy := −vy

vy := vy − g
t := t + 1

x := x + vx

y := y + vy − 1
2g

20 / 23



From hybrid automata to affine programs

Theorem (Majumdar, Ouaknine, P., Worrell, 2020)

There is an algorithm that computes, for any given guard-free linear
hybrid automaton over Q, an affine program over Q that has the
same polynomial inductive invariants.

ẋ = vx
ẏ = vy
v̇x = 0
v̇y = −g
ṫ = 1

t := 0
x := 0
y := h

vx := c
vy := 0

vy := −vy

BALL;

t := 0
x := 0
y := h

vx := c
vy := 0

vy := −vy

vy := vy − g
t := t + 1

x := x + vx

y := y + vy − 1
2g

20 / 23



Linear Differential Equations

For x(t) ∈ Rn and A rational matrix, consider

ẋ = Ax

The solution is
x(t) = eAtx(0)

where eX is the matrix exponential.

Recall that:
▶ strongest algebraic invariant = smallest algebraic set
▶ smallest algebraic set containing X = Zariski closure X of X

Lemma
Let A be a rational matrix, there exists B an algebraic matrix such that
⟨B⟩ = ⟨eA⟩ = {eAt : t ∈ R}.

▶ obvious candidate B = eA is not algebraic
▶ “reverse-engineer” B algebraic to encode some multiplicative

relations between the eigenvalues

21 / 23



Linear Differential Equations

For x(t) ∈ Rn and A rational matrix, consider

ẋ = Ax

The solution is
x(t) = eAtx(0)

where eX is the matrix exponential. Recall that:
▶ strongest algebraic invariant = smallest algebraic set
▶ smallest algebraic set containing X = Zariski closure X of X

Lemma
Let A be a rational matrix, there exists B an algebraic matrix such that
⟨B⟩ = ⟨eA⟩ = {eAt : t ∈ R}.

▶ obvious candidate B = eA is not algebraic
▶ “reverse-engineer” B algebraic to encode some multiplicative

relations between the eigenvalues

21 / 23



Linear Differential Equations

For x(t) ∈ Rn and A rational matrix, consider

ẋ = Ax

The solution is
x(t) = eAtx(0)

where eX is the matrix exponential. Recall that:
▶ strongest algebraic invariant = smallest algebraic set
▶ smallest algebraic set containing X = Zariski closure X of X

Lemma
Let A be a rational matrix, there exists B an algebraic matrix such that
⟨B⟩ = ⟨eA⟩ = {eAt : t ∈ R}.

▶ obvious candidate B = eA is not algebraic
▶ “reverse-engineer” B algebraic to encode some multiplicative

relations between the eigenvalues
21 / 23



Complexity of computing the Zariski closure

How expensive is it to compute this strongest invariant ?

linear hybrid semigroup groupreduce reduce

Theorem (Derksen, Jeandel and Koiran, 2004)

There is an algorithm that computes the Zariski closure of any finitely
group of matrices, given its generators as inputs.

No complexity bounds. It is not clear it is even elementary.

Theorem (Nosan, P., Schmitz, Shirmohammadi, Worrell, 2022)

Given a finite set S of invertible matrices of dimension n, the algebraic
group G := ⟨S⟩ can be defined with equations of degree at most
septuply exponential in n.

22 / 23



Complexity of computing the Zariski closure

How expensive is it to compute this strongest invariant ?

linear hybrid semigroup groupreduce reduce

Theorem (Derksen, Jeandel and Koiran, 2004)

There is an algorithm that computes the Zariski closure of any finitely
group of matrices, given its generators as inputs.

No complexity bounds. It is not clear it is even elementary.

Theorem (Nosan, P., Schmitz, Shirmohammadi, Worrell, 2022)

Given a finite set S of invertible matrices of dimension n, the algebraic
group G := ⟨S⟩ can be defined with equations of degree at most
septuply exponential in n.

22 / 23



Complexity of computing the Zariski closure

How expensive is it to compute this strongest invariant ?

linear hybrid semigroup groupreduce reduce

Theorem (Derksen, Jeandel and Koiran, 2004)

There is an algorithm that computes the Zariski closure of any finitely
group of matrices, given its generators as inputs.

No complexity bounds. It is not clear it is even elementary.

Theorem (Nosan, P., Schmitz, Shirmohammadi, Worrell, 2022)

Given a finite set S of invertible matrices of dimension n, the algebraic
group G := ⟨S⟩ can be defined with equations of degree at most
septuply exponential in n.

22 / 23



Summary

▶ invariant = overapproximation of reachable states
▶ invariants allow verification of safety properties
▶ guard-free linear hybrid automata:

▶ nondeterministic branching, no guards, affine assignments
▶ linear differential equations

ẋ =2y−x

ẏ =x−y Ẋ = AX

Ẋ = BX

x := 3x − 7y + 1
f2

f3

f4f5

Theorem (Majumdar, Ouaknine, P., Worrell, 2020)

There is an algorithm that computes, for any given guard-free linear
hybrid automaton over Q, its strongest polynomial inductive invariant.

23 / 23


