
Linear Dynamical Systems
Overview

Amaury Pouly

1 / 23

Examples: while loop, Markov chain

Bull
market

Bear
market

Stagnant
market

0.9 0.8
0.075

0.050.25
0.025 0.25

0.15

State: X = (pbull ,pbear ,pstag) ∈ [0,1]3

Transitions:

A =

 0.9 0.15 0.25
0.075 0.8 0.25
0.025 0.05 0.5


→ Linear dynamical system

Xn+1 = AXn

Linear loop

pbull := 0
pbear := 1
pstag := 0
while pbull ⩽ 1/2 do pbull

pbear
pstag

 := A

 pbull
pbear
pstag


The loop terminates if and
only if the probability of a bull
market is > 1/2.

2 / 23

Examples: while loop, Markov chain

Bull
market

Bear
market

Stagnant
market

0.9 0.8
0.075

0.050.25
0.025 0.25

0.15

State: X = (pbull ,pbear ,pstag) ∈ [0,1]3

Transitions:

A =

 0.9 0.15 0.25
0.075 0.8 0.25
0.025 0.05 0.5


→ Linear dynamical system

Xn+1 = AXn

Linear loop

pbull := 0
pbear := 1
pstag := 0
while pbull ⩽ 1/2 do pbull

pbear
pstag

 := A

 pbull
pbear
pstag


The loop terminates if and
only if the probability of a bull
market is > 1/2.

2 / 23

Examples: while loop, Markov chain

Bull
market

Bear
market

Stagnant
market

0.9 0.8
0.075

0.050.25
0.025 0.25

0.15

State: X = (pbull ,pbear ,pstag) ∈ [0,1]3

Transitions:

A =

 0.9 0.15 0.25
0.075 0.8 0.25
0.025 0.05 0.5


→ Linear dynamical system

Xn+1 = AXn

Linear loop

pbull := 0
pbear := 1
pstag := 0
while pbull ⩽ 1/2 do pbull

pbear
pstag

 := A

 pbull
pbear
pstag



The loop terminates if and
only if the probability of a bull
market is > 1/2.

2 / 23

Examples: while loop, Markov chain

Bull
market

Bear
market

Stagnant
market

0.9 0.8
0.075

0.050.25
0.025 0.25

0.15

State: X = (pbull ,pbear ,pstag) ∈ [0,1]3

Transitions:

A =

 0.9 0.15 0.25
0.075 0.8 0.25
0.025 0.05 0.5


→ Linear dynamical system

Xn+1 = AXn

Linear loop

pbull := 0
pbear := 1
pstag := 0
while pbull ⩽ 1/2 do pbull

pbear
pstag

 := A

 pbull
pbear
pstag


The loop terminates if and
only if the probability of a bull
market is > 1/2.

2 / 23

Example: mass-spring-damper system

m

kb

u(t)

z

with external input u(t).

State: X = z ∈ R

Equation of motion:

mz ′′ = −kz − bz ′ + mg

+ u

→ Affine but not first order

State: X = (z, z ′,1) ∈ R3

Equation of motion:z
z ′

1

′

=

 z ′

− k
m z − b

m z ′ + g
0



+

0
1
m
0

u

Can be used to model a car suspension.

3 / 23

Example: mass-spring-damper system

m

kb

u(t)

z

with external input u(t).

State: X = z ∈ R

Equation of motion:

mz ′′ = −kz − bz ′ + mg

+ u

→ Affine but not first order

State: X = (z, z ′,1) ∈ R3

Equation of motion:z
z ′

1

′

=

 z ′

− k
m z − b

m z ′ + g
0



+

0
1
m
0

u

Can be used to model a car suspension.

3 / 23

Example: mass-spring-damper system

m

kb

u(t)

z

with external input u(t).

State: X = z ∈ R

Equation of motion:

mz ′′ = −kz − bz ′ + mg

+ u

→ Affine but not first order

State: X = (z, z ′,1) ∈ R3

Equation of motion:z
z ′

1

′

=

 z ′

− k
m z − b

m z ′ + g
0



+

0
1
m
0

u

Can be used to model a car suspension.

3 / 23

Example: mass-spring-damper system

m

kb

u(t)

z

with external input u(t).

State: X = z ∈ R

Equation of motion:

mz ′′ = −kz − bz ′ + mg

+ u

→ Affine but not first order

State: X = (z, z ′,1) ∈ R3

Equation of motion:z
z ′

1

′

=

 z ′

− k
m z − b

m z ′ + g
0



+

0
1
m
0

u

Can be used to model a car suspension.

3 / 23

Example: mass-spring-damper system

m

kb

u(t)

z

with external input u(t).

→ Linear dynamical system

X ′ = AX

State: X = z ∈ R

Equation of motion:

mz ′′ = −kz − bz ′ + mg

+ u

→ Affine but not first order

State: X = (z, z ′,1) ∈ R3

Equation of motion:z
z ′

1

′

=

 z ′

− k
m z − b

m z ′ + g
0



+

0
1
m
0

u

Can be used to model a car suspension.

3 / 23

Example: mass-spring-damper system

m

kb

u(t)

z

with external input u(t).

State: X = z ∈ R

Equation of motion:

mz ′′ = −kz − bz ′ + mg + u

State: X = (z, z ′,1) ∈ R3

Equation of motion:z
z ′

1

′

=

 z ′

− k
m z − b

m z ′ + g
0



+

0
1
m
0

u

Can be used to model a car suspension.

3 / 23

Example: mass-spring-damper system

m

kb

u(t)

z

with external input u(t).

→ Linear time invariant system

X ′ = AX + Bu

State: X = z ∈ R

Equation of motion:

mz ′′ = −kz − bz ′ + mg + u

State: X = (z, z ′,1) ∈ R3

Equation of motion:z
z ′

1

′

=

 z ′

− k
m z − b

m z ′ + g
0

 +

0
1
m
0

u

Can be used to model a car suspension.

3 / 23

Example: mass-spring-damper system

m

kb

u(t)

z

with external input u(t).

→ Linear time invariant system

X ′ = AX + Bu

State: X = z ∈ R

Equation of motion:

mz ′′ = −kz − bz ′ + mg + u

State: X = (z, z ′,1) ∈ R3

Equation of motion:z
z ′

1

′

=

 z ′

− k
m z − b

m z ′ + g
0

 +

0
1
m
0

u

Can be used to model a car suspension.

3 / 23

Linear dynamical systems

Discrete case

x(n + 1) = Ax(n)

▶ biology,
▶ software verification,
▶ probabilistic model checking,
▶ combinatorics,
▶

Continuous case

x ′(t) = Ax(t)

▶ biology,
▶ physics,
▶ probabilistic model checking,
▶ electrical circuits,
▶

Typical questions

▶ reachability
▶ safety

▶ controllability

▶ optimal control
▶ feedback control
▶ ...

4 / 23

Linear dynamical systems

Discrete case

x(n + 1) = Ax(n) + Bu(n)

▶ biology,
▶ software verification,
▶ probabilistic model checking,
▶ combinatorics,
▶

Continuous case

x ′(t) = Ax(t) + Bu(t)

▶ biology,
▶ physics,
▶ probabilistic model checking,
▶ electrical circuits,
▶

Typical questions

▶ reachability
▶ safety
▶ controllability

▶ optimal control
▶ feedback control
▶ ...

4 / 23

Linear dynamical systems

Discrete case

x(n + 1) = Ax(n) + Bu(n)

▶ biology,
▶ software verification,
▶ probabilistic model checking,
▶ combinatorics,
▶

Continuous case

x ′(t) = Ax(t) + Bu(t)

▶ biology,
▶ physics,
▶ probabilistic model checking,
▶ electrical circuits,
▶

Typical questions

▶ reachability
▶ safety
▶ controllability

▶ optimal control
▶ feedback control
▶ ...

4 / 23

More complicated programs

Linear loop with if

x := 2−10

y := 1
while y ⩾ x do

if y ⩾ 2x then[
x
y

]
:=

[
2 0
1 4

] [
x
y

]
else[

x
y

]
:=

[
2 3
−3 7

] [
x
y

]

;

Nondeterminic loop

x := 2−10

y := 1
while true do

non deterministically do[
x
y

]
:=

[
2 0
1 4

] [
x
y

]
or [

x
y

]
:=

[
2 3
−3 7

] [
x
y

]
Very challenging to analyze!
▶ reachability is undecidable
▶ invariant* synthesis also hard

Overapproximate behaviours
▶ reachability still undecidable
▶ invariant synthesis possible

5 / 23

More complicated programs

Linear loop with if

x := 2−10

y := 1
while y ⩾ x do

if y ⩾ 2x then[
x
y

]
:=

[
2 0
1 4

] [
x
y

]
else[

x
y

]
:=

[
2 3
−3 7

] [
x
y

]

;

Nondeterminic loop

x := 2−10

y := 1
while true do

non deterministically do[
x
y

]
:=

[
2 0
1 4

] [
x
y

]
or [

x
y

]
:=

[
2 3
−3 7

] [
x
y

]

Very challenging to analyze!
▶ reachability is undecidable
▶ invariant* synthesis also hard

Overapproximate behaviours
▶ reachability still undecidable
▶ invariant synthesis possible

*Will be defined later, think “approximate reachability”.
5 / 23

More complicated programs

Linear loop with if

x := 2−10

y := 1
while y ⩾ x do

if y ⩾ 2x then[
x
y

]
:=

[
2 0
1 4

] [
x
y

]
else[

x
y

]
:=

[
2 3
−3 7

] [
x
y

]
;

Nondeterminic loop

x := 2−10

y := 1
while true do

non deterministically do[
x
y

]
:=

[
2 0
1 4

] [
x
y

]
or [

x
y

]
:=

[
2 3
−3 7

] [
x
y

]
Very challenging to analyze!
▶ reachability is undecidable
▶ invariant* synthesis also hard

Overapproximate behaviours
▶ reachability still undecidable
▶ invariant synthesis possible

*Will be defined later, think “approximate reachability”.
5 / 23

More complicated programs

Linear loop with if

x := 2−10

y := 1
while y ⩾ x do

if y ⩾ 2x then[
x
y

]
:=

[
2 0
1 4

] [
x
y

]
else[

x
y

]
:=

[
2 3
−3 7

] [
x
y

]
;

Nondeterminic loop

x := 2−10

y := 1
while true do

non deterministically do[
x
y

]
:=

[
2 0
1 4

] [
x
y

]
or [

x
y

]
:=

[
2 3
−3 7

] [
x
y

]
Very challenging to analyze!
▶ reachability is undecidable
▶ invariant* synthesis also hard

Overapproximate behaviours
▶ reachability still undecidable
▶ invariant synthesis possible

*Will be defined later, think “approximate reachability”.
5 / 23

Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

▶ (1) is an invariant: it holds at every
step

▶ (1) implies the guard is true

6 / 23

Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

▶ (1) is an invariant: it holds at every
step

▶ (1) implies the guard is true

6 / 23

Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

▶ (1) is an invariant: it holds at every
step

▶ (1) implies the guard is true

6 / 23

Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

▶ (1) is an invariant: it holds at every
step

▶ (1) implies the guard is true

6 / 23

Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

▶ (1) is an invariant: it holds at every
step

▶ (1) implies the guard is true

6 / 23

Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

▶ (1) is an invariant: it holds at every
step

▶ (1) implies the guard is true

6 / 23

Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]
Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

▶ (1) is an invariant: it holds at every
step

▶ (1) implies the guard is true

6 / 23

Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]
Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

▶ (1) is an invariant: it holds at every
step

▶ (1) implies the guard is true

6 / 23

Does this program halt?

Affine program

x := 2−10

y := 1
while y ⩾ x do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]
Certificate of non-termination:

x2y − x3 = 1023
1073741824 (1)

y

x

▶ (1) is an invariant: it holds at every
step

▶ (1) implies the guard is true

6 / 23

Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition

7 / 23

Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition

7 / 23

Why Invariants?

I
S

BAD!

The classical approach to the verification of temporal safety
properties of programs requires the construction of inductive
invariants [...]. Automation of this construction is the main
challenge in program verification.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko
Invariant Synthesis for Combined Theories, 2007

8 / 23

Affine programs

▶ Nondeterministic branching (no guards)
▶ All assignments are affine
▶ Allow nondeterministic assignments (x := ∗)

1 2

3

f1
f2

f3

f4f5

▶ Can overapproximate complex programs
▶ Covers existing formalisms:

finite, probabilistic, quantum, quantitative automata

9 / 23

Affine programs

▶ Nondeterministic branching (no guards)

▶ All assignments are affine
▶ Allow nondeterministic assignments (x := ∗)

1 2

3

f1
f2

f3

f4f5

▶ Can overapproximate complex programs
▶ Covers existing formalisms:

finite, probabilistic, quantum, quantitative automata

9 / 23

Affine programs

▶ Nondeterministic branching (no guards)
▶ All assignments are affine

▶ Allow nondeterministic assignments (x := ∗)

1 2

3

x := 3x − 7y + 1
f2

f3

f4f5

▶ Can overapproximate complex programs
▶ Covers existing formalisms:

finite, probabilistic, quantum, quantitative automata

9 / 23

Affine programs

▶ Nondeterministic branching (no guards)
▶ All assignments are affine
▶ Allow nondeterministic assignments (x := ∗)

1 2

3

x := 3x − 7y + 1
f2

f3

y :=
∗f5

▶ Can overapproximate complex programs
▶ Covers existing formalisms:

finite, probabilistic, quantum, quantitative automata

9 / 23

Affine programs

▶ Nondeterministic branching (no guards)
▶ All assignments are affine
▶ Allow nondeterministic assignments (x := ∗)

1 2

3

x := 3x − 7y + 1
f2

f3

y :=
∗f5

▶ Can overapproximate complex programs
▶ Covers existing formalisms:

finite, probabilistic, quantum, quantitative automata

9 / 23

RC circuit

OPEN

I CLOSED IR

R

VR

VC
Q

C
V

switch

t

İ = 0
İR = − 1

RC IR
V̇R = − 1

C IR
Q̇ = IR
V̇C = 1

C IR

OPEN

İ = − 1
RC IR

İR = − 1
RC IR

V̇R = − 1
C IR

Q̇ = IR
V̇C = 1

C IR

CLOSED
I := 1

R (V−VC)

IR := 1
R (V−VC)

VR :=V−VC

I :=0

IR :=− 1
R VC

VR :=−VC

10 / 23

RC circuit

OPEN

I CLOSED IR

R

VR

VC
Q

C
V

switch

t

İ = 0
İR = − 1

RC IR
V̇R = − 1

C IR
Q̇ = IR
V̇C = 1

C IR

OPEN

İ = − 1
RC IR

İR = − 1
RC IR

V̇R = − 1
C IR

Q̇ = IR
V̇C = 1

C IR

CLOSED
I := 1

R (V−VC)

IR := 1
R (V−VC)

VR :=V−VC

I :=0

IR :=− 1
R VC

VR :=−VC

10 / 23

RC circuit

OPEN

I CLOSED IR

R

VR

VC
Q

C
V

switch

t

İ = 0
İR = − 1

RC IR
V̇R = − 1

C IR
Q̇ = IR
V̇C = 1

C IR

OPEN

İ = − 1
RC IR

İR = − 1
RC IR

V̇R = − 1
C IR

Q̇ = IR
V̇C = 1

C IR

CLOSED

I := 1
R (V−VC)

IR := 1
R (V−VC)

VR :=V−VC

I :=0

IR :=− 1
R VC

VR :=−VC

10 / 23

RC circuit

OPEN

I CLOSED IR

R

VR

VC
Q

C
V

switch

t

İ = 0
İR = − 1

RC IR
V̇R = − 1

C IR
Q̇ = IR
V̇C = 1

C IR

OPEN

İ = − 1
RC IR

İR = − 1
RC IR

V̇R = − 1
C IR

Q̇ = IR
V̇C = 1

C IR

CLOSED
I := 1

R (V−VC)

IR := 1
R (V−VC)

VR :=V−VC

I :=0

IR :=− 1
R VC

VR :=−VC

10 / 23

Switching systems

x ′ = A1x x ′ = A2x

x ′ = A3xx ′ = A4x

Restricted hybrid system:
▶ linear dynamics
▶ no guards (nondeterministic)
▶ no discrete updates

switchx(t)

t
x ′ = A1x

t1

x ′ = A2x

t2

x ′ = A3x

t3

x ′ = A4x

t4

▶ reachability also undecidable
▶ invariant synthesis possible

11 / 23

Switching systems

x ′ = A1x x ′ = A2x

x ′ = A3xx ′ = A4x

Restricted hybrid system:
▶ linear dynamics
▶ no guards (nondeterministic)
▶ no discrete updates

switchx(t)

t
x ′ = A1x

t1

x ′ = A2x

t2

x ′ = A3x

t3

x ′ = A4x

t4
▶ reachability also undecidable
▶ invariant synthesis possible

11 / 23

Going hybrid: a bouncing ball

x

y

ẋ = vx
ẏ = vy
v̇x = 0
v̇y = −g
ṫ = 1

t := 0
x := 0
y := h

vx := c
vy := 0

vy := −vy
▶ affine program: collision
+ linear differential equation: mechanics
= linear hybrid automaton

Invariants:
▶ vx = c
▶ x = tc
▶ v2

y + 2g(y − h) = 0

recover conservation
of energy!

12 / 23

Going hybrid: a bouncing ball

x

y

ẋ = vx
ẏ = vy
v̇x = 0
v̇y = −g
ṫ = 1

t := 0
x := 0
y := h

vx := c
vy := 0

vy := −vy
▶ affine program: collision
+ linear differential equation: mechanics
= linear hybrid automaton

Invariants:
▶ vx = c
▶ x = tc
▶ v2

y + 2g(y − h) = 0

recover conservation
of energy!

12 / 23

Going hybrid: a bouncing ball

x

y

ẋ = vx
ẏ = vy
v̇x = 0
v̇y = −g
ṫ = 1

t := 0
x := 0
y := h

vx := c
vy := 0

vy := −vy
▶ affine program: collision
+ linear differential equation: mechanics
= linear hybrid automaton

Invariants:
▶ vx = c
▶ x = tc
▶ v2

y + 2g(y − h) = 0

recover conservation
of energy!

12 / 23

Linear Hybrid Automata

▶ Nondeterministic branching (no guards)
▶ All assignments are affine
▶ Linear differential equations in each location

ẋ =2y−x

ẏ =x−y Ẋ = AX

Ẋ = BX

x := 3x − 7y + 1
f2

f3

f4f5

▶ More general than affine programs
▶ More general than linear differential equations

13 / 23

Linear Hybrid Automata

▶ Nondeterministic branching (no guards)
▶ All assignments are affine
▶ Linear differential equations in each location

ẋ =2y−x

ẏ =x−y Ẋ = AX

Ẋ = BX

x := 3x − 7y + 1
f2

f3

f4f5

▶ More general than affine programs
▶ More general than linear differential equations

13 / 23

Which invariants?

Intervals

Octagons Polyhedrons

Affine/linear sets Algebraic sets =
polynomial equalities

Semialgebraic sets

⩽

⩽

⩽
⩽

⩽

⩽

14 / 23

Linear system with rounding

Rounding: ⌊·⌉ = round to nearest integer

A =

[
cos θ − sin θ
sin θ cos θ

]
∈ Q2×2,

⌊(
x
y

)⌉
=

(
⌊x⌉
⌊y⌉

)

Problem: given X0 ∈ Q2, define Xn+1 = ⌊AXn⌉

▶ is reachability decidable ?
▶ is (Xn)n eventually periodic?

▶ what does the reachable set
look like?

r = 10, θ = π/42 r = 10, θ = 20.4π
10 r = 15, θ = π/91 r = 20, θ = π/14

Open problems! Only known for a few specific values of θ.

15 / 23

Linear system with rounding

Rounding: ⌊·⌉ = round to nearest integer

A =

[
cos θ − sin θ
sin θ cos θ

]
∈ Q2×2,

⌊(
x
y

)⌉
=

(
⌊x⌉
⌊y⌉

)
Problem: given X0 ∈ Q2, define Xn+1 = ⌊AXn⌉

▶ is reachability decidable ?
▶ is (Xn)n eventually periodic?

▶ what does the reachable set
look like?

r = 10, θ = π/42 r = 10, θ = 20.4π
10 r = 15, θ = π/91 r = 20, θ = π/14

Open problems! Only known for a few specific values of θ.

15 / 23

Linear system with rounding

Rounding: ⌊·⌉ = round to nearest integer

A =

[
cos θ − sin θ
sin θ cos θ

]
∈ Q2×2,

⌊(
x
y

)⌉
=

(
⌊x⌉
⌊y⌉

)
Problem: given X0 ∈ Q2, define Xn+1 = ⌊AXn⌉

▶ is reachability decidable ?
▶ is (Xn)n eventually periodic?

▶ what does the reachable set
look like?

r = 10, θ = π/42

r = 10, θ = 20.4π
10 r = 15, θ = π/91 r = 20, θ = π/14

Open problems! Only known for a few specific values of θ.

15 / 23

Linear system with rounding

Rounding: ⌊·⌉ = round to nearest integer

A =

[
cos θ − sin θ
sin θ cos θ

]
∈ Q2×2,

⌊(
x
y

)⌉
=

(
⌊x⌉
⌊y⌉

)
Problem: given X0 ∈ Q2, define Xn+1 = ⌊AXn⌉

▶ is reachability decidable ?
▶ is (Xn)n eventually periodic?

▶ what does the reachable set
look like?

r = 10, θ = π/42 r = 10, θ = 20.4π
10

r = 15, θ = π/91 r = 20, θ = π/14

Open problems! Only known for a few specific values of θ.

15 / 23

Linear system with rounding

Rounding: ⌊·⌉ = round to nearest integer

A =

[
cos θ − sin θ
sin θ cos θ

]
∈ Q2×2,

⌊(
x
y

)⌉
=

(
⌊x⌉
⌊y⌉

)
Problem: given X0 ∈ Q2, define Xn+1 = ⌊AXn⌉

▶ is reachability decidable ?
▶ is (Xn)n eventually periodic?

▶ what does the reachable set
look like?

r = 10, θ = π/42 r = 10, θ = 20.4π
10 r = 15, θ = π/91

r = 20, θ = π/14

Open problems! Only known for a few specific values of θ.

15 / 23

Linear system with rounding

Rounding: ⌊·⌉ = round to nearest integer

A =

[
cos θ − sin θ
sin θ cos θ

]
∈ Q2×2,

⌊(
x
y

)⌉
=

(
⌊x⌉
⌊y⌉

)
Problem: given X0 ∈ Q2, define Xn+1 = ⌊AXn⌉

▶ is reachability decidable ?
▶ is (Xn)n eventually periodic?

▶ what does the reachable set
look like?

r = 10, θ = π/42 r = 10, θ = 20.4π
10 r = 15, θ = π/91 r = 20, θ = π/14

Open problems! Only known for a few specific values of θ.

15 / 23

Linear system with rounding

Rounding: ⌊·⌉ = round to nearest integer

A =

[
cos θ − sin θ
sin θ cos θ

]
∈ Q2×2,

⌊(
x
y

)⌉
=

(
⌊x⌉
⌊y⌉

)
Problem: given X0 ∈ Q2, define Xn+1 = ⌊AXn⌉

▶ is reachability decidable ?
▶ is (Xn)n eventually periodic?

▶ what does the reachable set
look like?

r = 10, θ = π/42 r = 10, θ = 20.4π
10 r = 15, θ = π/91 r = 20, θ = π/14

Open problems! Only known for a few specific values of θ.
15 / 23

Linear dynamical systems are ubiquitous...

... and lead to very interesting mathematics!

16 / 23

Interesting related mathematics

▶ Linear recurrent sequences (LRS)

xn+k = ak−1an+k−1 + · · ·+ x0xn

Fibonacci: Fn+2 = Fn+1 + Fn

▶ Skolem/Positivity problem (Open for more than 70 years!)
decide if a given LRS has a zero/is always positive

▶ Exponential polynomials:

f (t) = P1(t)eλ1t + · · ·+ Pn(t)eλnt

Examples: polynomials, et , sin(t), t2 sin(t)− e−t

▶ Continuous Skolem/Positivity (Also open)
decide if an exponential polynomial has a zero/is always positive

Reachability often harder/reduces to of these problems!

17 / 23

Interesting related mathematics

▶ Linear recurrent sequences (LRS)

xn+k = ak−1an+k−1 + · · ·+ x0xn

Fibonacci: Fn+2 = Fn+1 + Fn

▶ Skolem/Positivity problem (Open for more than 70 years!)
decide if a given LRS has a zero/is always positive

▶ Exponential polynomials:

f (t) = P1(t)eλ1t + · · ·+ Pn(t)eλnt

Examples: polynomials, et , sin(t), t2 sin(t)− e−t

▶ Continuous Skolem/Positivity (Also open)
decide if an exponential polynomial has a zero/is always positive

Reachability often harder/reduces to of these problems!

17 / 23

Interesting related mathematics

▶ Linear recurrent sequences (LRS)

xn+k = ak−1an+k−1 + · · ·+ x0xn

Fibonacci: Fn+2 = Fn+1 + Fn

▶ Skolem/Positivity problem (Open for more than 70 years!)
decide if a given LRS has a zero/is always positive

▶ Exponential polynomials:

f (t) = P1(t)eλ1t + · · ·+ Pn(t)eλnt

Examples: polynomials, et , sin(t), t2 sin(t)− e−t

▶ Continuous Skolem/Positivity (Also open)
decide if an exponential polynomial has a zero/is always positive

Reachability often harder/reduces to of these problems!

17 / 23

Interesting related mathematics

▶ Linear recurrent sequences (LRS)

xn+k = ak−1an+k−1 + · · ·+ x0xn

Fibonacci: Fn+2 = Fn+1 + Fn

▶ Skolem/Positivity problem (Open for more than 70 years!)
decide if a given LRS has a zero/is always positive

▶ Exponential polynomials:

f (t) = P1(t)eλ1t + · · ·+ Pn(t)eλnt

Examples: polynomials, et , sin(t), t2 sin(t)− e−t

▶ Continuous Skolem/Positivity (Also open)
decide if an exponential polynomial has a zero/is always positive

Reachability often harder/reduces to of these problems!

17 / 23

Interesting related mathematics

▶ Linear recurrent sequences (LRS)

xn+k = ak−1an+k−1 + · · ·+ x0xn

Fibonacci: Fn+2 = Fn+1 + Fn

▶ Skolem/Positivity problem (Open for more than 70 years!)
decide if a given LRS has a zero/is always positive

▶ Exponential polynomials:

f (t) = P1(t)eλ1t + · · ·+ Pn(t)eλnt

Examples: polynomials, et , sin(t), t2 sin(t)− e−t

▶ Continuous Skolem/Positivity (Also open)
decide if an exponential polynomial has a zero/is always positive

Reachability often harder/reduces to of these problems!

17 / 23

Algebraic numbers and conjectures

Algebraic number: root of polynomial with integer coefficients
Transcendental number: not algebraic, e.g. e, π

Theorem (Gelfond–Schneider theorem)

If a,b are algebraic numbers with a ̸= 0,1 and b irrational, then (any
value of) ab transcendental.

Example: 2
√

2 is transcendental.

Why is this related to reachability?
▶ target is usually rational/algebraic
▶ reachability creates constraints between numbers

Example: given a,b ∈ Q, P ∈ Q[X] polynomial, find t such that

P(t) = a and et = b ; impossible unless t = 0

Biggest open question in this field: Schanuel’s conjecture

18 / 23

Algebraic numbers and conjectures

Algebraic number: root of polynomial with integer coefficients
Transcendental number: not algebraic, e.g. e, π

Theorem (Gelfond–Schneider theorem)

If a,b are algebraic numbers with a ̸= 0,1 and b irrational, then (any
value of) ab transcendental.

Example: 2
√

2 is transcendental.

Why is this related to reachability?
▶ target is usually rational/algebraic
▶ reachability creates constraints between numbers

Example: given a,b ∈ Q, P ∈ Q[X] polynomial, find t such that

P(t) = a and et = b ; impossible unless t = 0

Biggest open question in this field: Schanuel’s conjecture

18 / 23

Algebraic numbers and conjectures

Algebraic number: root of polynomial with integer coefficients
Transcendental number: not algebraic, e.g. e, π

Theorem (Gelfond–Schneider theorem)

If a,b are algebraic numbers with a ̸= 0,1 and b irrational, then (any
value of) ab transcendental.

Example: 2
√

2 is transcendental.

Why is this related to reachability?
▶ target is usually rational/algebraic
▶ reachability creates constraints between numbers

Example: given a,b ∈ Q, P ∈ Q[X] polynomial, find t such that

P(t) = a and et = b

; impossible unless t = 0

Biggest open question in this field: Schanuel’s conjecture

18 / 23

Algebraic numbers and conjectures

Algebraic number: root of polynomial with integer coefficients
Transcendental number: not algebraic, e.g. e, π

Theorem (Gelfond–Schneider theorem)

If a,b are algebraic numbers with a ̸= 0,1 and b irrational, then (any
value of) ab transcendental.

Example: 2
√

2 is transcendental.

Why is this related to reachability?
▶ target is usually rational/algebraic
▶ reachability creates constraints between numbers

Example: given a,b ∈ Q, P ∈ Q[X] polynomial, find t such that

P(t) = a and et = b ; impossible unless t = 0

Biggest open question in this field: Schanuel’s conjecture

18 / 23

Algebraic numbers and conjectures

Algebraic number: root of polynomial with integer coefficients
Transcendental number: not algebraic, e.g. e, π

Theorem (Gelfond–Schneider theorem)

If a,b are algebraic numbers with a ̸= 0,1 and b irrational, then (any
value of) ab transcendental.

Example: 2
√

2 is transcendental.

Why is this related to reachability?
▶ target is usually rational/algebraic
▶ reachability creates constraints between numbers

Example: given a,b ∈ Q, P ∈ Q[X] polynomial, find t such that

P(t) = a and et = b ; impossible unless t = 0

Biggest open question in this field: Schanuel’s conjecture
18 / 23

Transcendental number theory

Many problems boil down to diophantine equations/approximations:
▶ Finding integer points in cones: Kronecker’s theorem

▶ Compare linear forms in logarithms: Baker’s theorem
√

2 + log
√

3 − 3 log
√

7 ?
= 1 + log 9 − log

42
√

666

19 / 23

Transcendental number theory

Many problems boil down to diophantine equations/approximations:
▶ Finding integer points in cones: Kronecker’s theorem

▶ Compare linear forms in logarithms: Baker’s theorem
√

2 + log
√

3 − 3 log
√

7 ?
= 1 + log 9 − log

42
√

666

19 / 23

(Semi-)group theory

Finitely generated matrix semigroup:
A1, . . . ,Ak ∈ Qn×n generate a semigroup S = ⟨A1, . . . ,Ak ⟩

Example: SL2(Z) =
〈[

0 −1
1 0

]
,

[
0 −1
1 1

]〉

Problems:
▶ finitness: is S finite ?
▶ mortality: does 0 ∈ S ?
▶ identity: does In ∈ S ?
▶ membership: does M ∈ S where M ∈ Qn×n is given as input ?

Undecidable in general, many decidable subclasses are known.
Equivalent to reachability of affine programs.

20 / 23

(Semi-)group theory

Finitely generated matrix semigroup:
A1, . . . ,Ak ∈ Qn×n generate a semigroup S = ⟨A1, . . . ,Ak ⟩

Example: SL2(Z) =
〈[

0 −1
1 0

]
,

[
0 −1
1 1

]〉
Problems:
▶ finitness: is S finite ?
▶ mortality: does 0 ∈ S ?
▶ identity: does In ∈ S ?
▶ membership: does M ∈ S where M ∈ Qn×n is given as input ?

Undecidable in general, many decidable subclasses are known.
Equivalent to reachability of affine programs.

20 / 23

(Semi-)group theory

Finitely generated matrix semigroup:
A1, . . . ,Ak ∈ Qn×n generate a semigroup S = ⟨A1, . . . ,Ak ⟩

Example: SL2(Z) =
〈[

0 −1
1 0

]
,

[
0 −1
1 1

]〉
Problems:
▶ finitness: is S finite ?
▶ mortality: does 0 ∈ S ?
▶ identity: does In ∈ S ?
▶ membership: does M ∈ S where M ∈ Qn×n is given as input ?

Undecidable in general, many decidable subclasses are known.
Equivalent to reachability of affine programs.

20 / 23

Algebraic geometry

Study systems of multivariate polynomial equations using abstract
algebraic techniques, with applications to geometry.

Examples

x2 + y2 + z2 − 1 = 0 ; sphere in R3

x2 + y2 + z2 = 1 ∧ x + y + z = 1 ; “sliced” sphere in R3

x2 + 1 = 0 ; ∅ in R
x2 + 1 = 0 ; {i ,−i} in C

The field K is very important:
▶ real algebraic geometry: more “intuitive” but more difficult, really

requires the study of semi-algebraic sets
▶ mainstream algebraic geometry: K is algebraically closed†, e.g. C

†K is algebraically closed if every non-constant polynomial has a root in K.

21 / 23

Algebraic geometry

Study systems of multivariate polynomial equations using abstract
algebraic techniques, with applications to geometry.

Examples

x2 + y2 + z2 − 1 = 0 ; sphere in R3

x2 + y2 + z2 = 1 ∧ x + y + z = 1 ; “sliced” sphere in R3

x2 + 1 = 0 ; ∅ in R
x2 + 1 = 0 ; {i ,−i} in C

The field K is very important:
▶ real algebraic geometry: more “intuitive” but more difficult, really

requires the study of semi-algebraic sets
▶ mainstream algebraic geometry: K is algebraically closed†, e.g. C

†K is algebraically closed if every non-constant polynomial has a root in K.
21 / 23

First-order theory of the reals

Many questions expressible in first-order logical theories:
▶ R0 = (R,0,1, <,+, ·): decidable

∀x , y ∈ R
x + y

2
⩾

√
xy

▶ Rexp = (R,0,1, <,+, ·, exp, cos ↾[0,1]): decidable subject to
Schanuel’s conjecture

∀x ∈ R x ̸= 0 ⇒ t + tet − 43e3t ̸= 1

▶ Presburger arithmetic (N,0,1, <,+): decidable

∃x ∈ Nn Ax ⩾ b

22 / 23

First-order theory of the reals

Many questions expressible in first-order logical theories:
▶ R0 = (R,0,1, <,+, ·): decidable

∀x , y ∈ R
x + y

2
⩾

√
xy

▶ Rexp = (R,0,1, <,+, ·, exp, cos ↾[0,1]): decidable subject to
Schanuel’s conjecture

∀x ∈ R x ̸= 0 ⇒ t + tet − 43e3t ̸= 1

▶ Presburger arithmetic (N,0,1, <,+): decidable

∃x ∈ Nn Ax ⩾ b

22 / 23

First-order theory of the reals

Many questions expressible in first-order logical theories:
▶ R0 = (R,0,1, <,+, ·): decidable

∀x , y ∈ R
x + y

2
⩾

√
xy

▶ Rexp = (R,0,1, <,+, ·, exp, cos ↾[0,1]): decidable subject to
Schanuel’s conjecture

∀x ∈ R x ̸= 0 ⇒ t + tet − 43e3t ̸= 1

▶ Presburger arithmetic (N,0,1, <,+): decidable

∃x ∈ Nn Ax ⩾ b

22 / 23

Summary

Linear dynamical systems are ubiquitous and exact reachability
questions lead to very interesting mathematical and logical questions.

But...
▶ some systems are fundamentally nonlinear

xn+1 = x2
n

▶ real programs manipulate data structures:
trees, arrays, ...

▶ some programs are not sequential / nondeterministic
probabilistic, concurrent/parallell, ...

▶ exact reachability is not the only approach
testing, probabilistic model checking, incomplete algorithms, ...

23 / 23

Summary

Linear dynamical systems are ubiquitous and exact reachability
questions lead to very interesting mathematical and logical questions.

But...
▶ some systems are fundamentally nonlinear

xn+1 = x2
n

▶ real programs manipulate data structures:
trees, arrays, ...

▶ some programs are not sequential / nondeterministic
probabilistic, concurrent/parallell, ...

▶ exact reachability is not the only approach
testing, probabilistic model checking, incomplete algorithms, ...

23 / 23

Summary

Linear dynamical systems are ubiquitous and exact reachability
questions lead to very interesting mathematical and logical questions.

But...
▶ some systems are fundamentally nonlinear

xn+1 = x2
n

▶ real programs manipulate data structures:
trees, arrays, ...

▶ some programs are not sequential / nondeterministic
probabilistic, concurrent/parallell, ...

▶ exact reachability is not the only approach
testing, probabilistic model checking, incomplete algorithms, ...

23 / 23

Summary

Linear dynamical systems are ubiquitous and exact reachability
questions lead to very interesting mathematical and logical questions.

But...
▶ some systems are fundamentally nonlinear

xn+1 = x2
n

▶ real programs manipulate data structures:
trees, arrays, ...

▶ some programs are not sequential / nondeterministic
probabilistic, concurrent/parallell, ...

▶ exact reachability is not the only approach
testing, probabilistic model checking, incomplete algorithms, ...

23 / 23

Summary

Linear dynamical systems are ubiquitous and exact reachability
questions lead to very interesting mathematical and logical questions.

But...
▶ some systems are fundamentally nonlinear

xn+1 = x2
n

▶ real programs manipulate data structures:
trees, arrays, ...

▶ some programs are not sequential / nondeterministic
probabilistic, concurrent/parallell, ...

▶ exact reachability is not the only approach
testing, probabilistic model checking, incomplete algorithms, ...

23 / 23

