Linear Dynamical Systems

Overview
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Examples: while loop, Markov chain
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Examples: while loop, Markov chain

Bull
market

market

market

State: X = (pbullapbearapstag) € [0, 1]3
Transitions:

09 0.15 0.25
A=10.075 08 0.25
0.025 0.05 05

— Linear dynamical system
Xn+1 = AXp
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Examples: while loop, Markov chain

0.075

Bear
market

Bull
market

Linear loop

Poui :=0
Pbear =1
Pstag := 0
while ppyy < 1/2 do

tagnan
market

Pouit Pbull
State: X = (Ppuil, Pvear, Pstag) € [0, 12 Poear | := A | Pbear
Transitions: Pstag Pstag
09 0.15 0.25
A= [0.075 0.8 0.25]
0.025 0.05 0.5

— Linear dynamical system
Xn+1 = AXp
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Examples: while loop, Markov chain

Bull
market

market

Pour =0
Poear =1
Pstag := 0
market while ppyy < 1/2 do
3 Pbul Pbull
State: X = (Ppull, Poear: Pstag) € [0, 1] Poear | := A | Poear
Transitions: Pstag Pstag

09 0.15 025
A=10075 08 025 The loop terminates if and
0.025 0.05 0.5 only if the probability of a bull
— Linear dynamical system market is > 1/2.

Xn+1 = AXp
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Example: mass-spring-damper system
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Example: mass-spring-damper system

1101 L1101 101 0000000000000070070007 .
////////////////////////////////////// ta‘te =Z€
0000000000000000050005005000500050007 .

//////////////////////////////////////

Zl b k Equation of motion:

mz" = —kz — bZ' + mg
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Example: mass-spring-damper system
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zZl b k Equation of motion:

mz" = —kz — bZ' + mg

m — Affine but not first order
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Example: mass-spring-damper system

State: X =zeR

Zl b k Equation of motion:

mz" = —kz — bz’ + mg

m — Affine but not first order

State: X = (z,2/,1) e R®

Equation of motion:
z1’ z
/ k b

— /
Z| = |-8z-2Z+g

1 0
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Example: mass-spring-damper system

State: X =zeR

Zl b k Equation of motion:

mz" = —kz — bZ' + mg

m — Affine but not first order

State: X = (z,2/,1) e R®

Equation of motion:

— Linear dynamical system z1’ z

X' = AX Z| = |-fz-27Z+g
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Example: mass-spring-damper system

State: X =zeR

Zl b k Equation of motion:
mz' — —kz—bZ,+mg_|_ u
m
Tu
State: X = (27 z, 1) c R3
with external input u(f). Equation of motion:
V4 ! i
_ k b
Z| = |-mZ-pZ+g

1 0
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Example: mass-spring-damper system

State: X =zeR

zl b Kk Equation of motion:
mz' = —kz — bz +mg+ u
m
Lutn
State: X = (z,2/,1) e R®
with external input u(?). Equation of motion:
— Linear time invariant system z1’ z 0
X' = AX + Bu Z| =|-kz-L74+g| +|L]u
1 0 0
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Example: mass-spring-damper system

State: X =zeR

Equation of motion:

Z| b k
mz' = —kz — bz +mg+ u
m
Iu(t)
State: X = (z,2/,1) e R®
with external input u(?). Equation of motion:
— Linear time invariant system z1’ z 0
X' = AX + Bu Z| =|-kz-L74+g| +|L]u
1 0 0

Can be used to model a car suspension.
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Linear dynamical systems

Discrete case
x(n+1) = Ax(n)
> biology,
» software verification,
> probabilistic model checking,
» combinatorics,
>

Typical questions

» reachability
> safety

Continuous case
X'(t) = Ax(t)
> biology,
» physics,
» probabilistic model checking,
> electrical circuits,
>
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Linear dynamical systems

Discrete case Continuous case
x(n+ 1) = Ax(n) + Bu(n) x'(t) = Ax(t) + Bu(t)
> biology, > biology,
» software verification, » physics,
» probabilistic model checking, » probabilistic model checking,
» combinatorics, > electrical circuits,
> >

Typical questions

> reachability » optimal control
> safety » feedback control
» controllability > ...
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More complicated programs

Linear loop with if

=Y

y =1
while y > x do
if y > 2x then

R
D . [—23 3} ﬂ
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More complicated programs

Linear loop with if

x:=2"1

y =1
while y > x do
if y > 2x then

"B
315 30

Very challenging to analyze!
» reachability is undecidable
» invariant* synthesis also hard

"Will be defined later, think “approximate reachability”.
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More complicated programs

Linear loop with if Nondeterminic loop

7= x =210
y =1 y: =1
while y > x do while true do
if y > 2x then o~ non deterministically do

"B
315 30

Very challenging to analyze!
» reachability is undecidable
» invariant* synthesis also hard

L
- [5 90

"Will be defined later, think “approximate reachability”.
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More complicated programs

Linear loop with if Nondeterminic loop

7= x =210
y =1 y: =1
while y > x do while true do
if y > 2x then o~ non deterministically do

A-Fam CHIE AR

else
=150 b= 15D
y| T [-3 7]y y| -3 7]y
Very challenging to analyze! Overapproximate behaviours
» reachability is undecidable » reachability still undecidable

» invariant* synthesis also hard > invariant synthesis possible

"Will be defined later, think “approximate reachability”.
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Does this program halt?

Affine program

x =210

y =1
while y > x do

b=z 2]
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while y > x do

b=z 2]
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Does this program halt?

Affine program

7=z

y =1
while y > x do

b=z 2]

6/23



Does this program halt?

Affine program

x = 9—10 Certificate of non-termination:

= 2, 3 _ 1023
s X"Y — X = {o73741824 (1)
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Does this program halt?

Affine program

x = 9—10 Certificate of non-termination:
— 2 3 1023
y = Xy = X* = for37a1eea (1)

» (1) is an invariant: it holds at every
step
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Does this program halt?

Affine program

x = 9—10 Certificate of non-termination:
— 2 3 1023
y = Xy = X* = for37a1eea (1)

» (1) is an invariant: it holds at every
step

» (1) implies the guard is true
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Invariants

invariant = overapproximation of the reachable states
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Invariants

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

transition
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Why Invariants?

/ BAD!

o
The classical approach to the verification of temporal safety

properties of programs requires the construction of inductive
invariants [...]. Automation of this construction is the main

challenge in program verification.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko
Invariant Synthesis for Combined Theories, 2007
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Affine programs

f5 a
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Affine programs

» Nondeterministic branching (no guards)

f5 a
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Affine programs

» Nondeterministic branching (no guards)
» All assignments are affine

X =3x—-7y+1
f3

fa
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Affine programs

» Nondeterministic branching (no guards)
» All assignments are affine
> Allow nondeterministic assignments (x := %)

X =3x—-7y+1

fa

» Can overapproximate complex programs

» Covers existing formalisms:
finite, probabilistic, quantum, quantitative automata
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| cLosep Ir Vr

OPEN R
TV
t
OPEN

I =0
lg = _RLCIR
Ve = —¢lr
@ =1
Ve = &Ir
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| cLosep Ir VR

OPEN R
TV
t
OPEN CLOSED

I =0 I =—4clr
Ip _RLCIR {R = _RLCIF('
Ve = —Llg Ve =—¢lr
Q = Ir Q =
Ve = &ir Ve = &lr
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| cLosep Ir
. . o .
OPEN
TV
t
OPEN ] CLOSED
I =g(V-Ve)
I =0 In = (V—=Vc) I =—4slr
Ip _RLCIR Vp:=V-Ve Ir = _RLC/R
Vg = —lC/R ¢ 1 Vg = —%/R
Q = Ip I =0 Q = Ir
Ve = &ir Ip == Ve Ve = &lr
Vh:::——Vb
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Switching systems

— X = Ax ] X = Asx Restricted hybrid system:
= » linear dynamics
4 > no guards (nondeterministic)
X'= Agx [« x" = Agx > no discrete updates
x(1) switch
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Switching systems

— X = Ax ] X = Asx Restricted hybrid system:
= » linear dynamics
4 > no guards (nondeterministic)
X'= Agx [« x" = Agx > no discrete updates
x(1) switch

> reachability also undecidable
» invariant synthesis possible
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Going hybrid: a bouncing ball
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Going hybrid: a bouncing ball

)/J\
Vy '= —Vy . .
» affine program: collision
t—0 m + linear differential equation: mechanics
X:=0 X = vy = linear hybrid automaton
y:=h y =Y
— v =0
Vy .= C \'/.y =-g
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Going hybrid: a bouncing ball

)/J\
> X
Vy == —Vy . .
» affine program: collision
t—0 m + linear differential equation: mechanics
x=0 X = Vx = linear hybrid automaton
=h y =V i : .
y_) Ve =0 Invariants: recover conservation
vei=¢ |y =—g > V=¢C of energy!
Vy — O % — 1 > X = ﬂ?

> v +2g(y —h)=0
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Linear Hybrid Automata

» Nondeterministic branching (no guards)
» All assignments are affine
» Linear differential equations in each location

x—oyx | X =3X—=T7y+1 —
— >XAXDf2

y=x-y f
fs /

: 7
X=BxlY "
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Linear Hybrid Automata

v

v

Nondeterministic branching (no guards)

All assignments are affine
Linear differential equations in each location

X =2y—x
y=x-y

x::3x—7y+1\

Af/
fs

fa

X = BX

More general than affine programs
More general than linear differential equations

XAXD f
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Which invariants?
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Algebraic sets =
polynomial equalities
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Linear system with rounding

Rounding: [-] = round to nearest integer

a-lom mee= [()]- ()

15/23



Linear system with rounding

Rounding: [-] = round to nearest integer

__|cos® —sind ) x\ | (Ix]
A= [sin@ cosH] € Q™ {(y)-‘ o (Ly}
Problem: given Xp € Q?, define X1 = |AX,]

> is reaChab”ity decidable ? » what does the reachable set
» is (Xn)n eventually periodic? look like?
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Linear system with rounding

Rounding: [-] = round to nearest integer
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> is reaChab”ity decidable ? » what does the reachable set
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r=10,0 = /42
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Linear system with rounding

Rounding: [-] = round to nearest integer
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Rounding: [-] = round to nearest integer
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Problem: given Xp € Q?, define X1 = |AX,]
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Linear system with rounding

Rounding: [-] = round to nearest integer
__|cos® —sind ) x\ | (Ix]
A= [sin& cosﬁ] € Q™ Ky)-‘ N ({y}
Problem: given Xp € Q?, define X1 = |AX,]

> is reaChab”ity decidable ? » what does the reachable set
» is (Xn)n eventually periodic? look like?

r=10,0 = /42 r=10, 0_2“ r=15,0

7/91 r=20,0=r/14

Open problems! Only known for a few specific values of 6.
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Linear dynamical systems are ubiquitous...

... and lead to very interesting mathematics!
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Interesting related mathematics

» Linear recurrent sequences (LRS)
Xn+k = 8k—18nyk—1 1 -+ XoXn

Fibonacci: Fpio = Fpyq + Fp
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Interesting related mathematics

» Linear recurrent sequences (LRS)
Xn+k = 8k—18nyk—1 1 -+ XoXn

Fibonacci: Fpyo = Fpiq + Fn

» Skolem/Positivity problem (Open for more than 70 years!)
decide if a given LRS has a zero/is always positive

» Exponential polynomials:
f(t) = Py(t)eM! + - + Pp(t)eM!
Examples: polynomials, €, sin(t), t?sin(f) — e~!
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Interesting related mathematics

» Linear recurrent sequences (LRS)
Xn+k = 8k—18nyk—1 1 -+ XoXn

Fibonacci: Fpi2 = Fpiq + Fn

» Skolem/Positivity problem (Open for more than 70 years!)
decide if a given LRS has a zero/is always positive

» Exponential polynomials:
f(t) = Py(t)eM! + - + Pp(t)eM!
Examples: polynomials, €, sin(t), t?sin(t) — e~!

» Continuous Skolem/Positivity (Also open)
decide if an exponential polynomial has a zero/is always positive
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Interesting related mathematics

» Linear recurrent sequences (LRS)
Xn+k = 8k—18nyk—1 1 -+ XoXn

Fibonacci: Fpi2 = Fpiq + Fn

» Skolem/Positivity problem (Open for more than 70 years!)
decide if a given LRS has a zero/is always positive

» Exponential polynomials:
f(t) = Py(t)eM! + - - - + Pp(t)eM!
Examples: polynomials, €, sin(t), t?sin(t) — e~!
» Continuous Skolem/Positivity (Also open)
decide if an exponential polynomial has a zero/is always positive

Reachability often harder/reduces to of these problems!
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Algebraic numbers and conjectures

Algebraic number: root of polynomial with integer coefficients
Transcendental number: not algebraic, e.g. e,
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Algebraic numbers and conjectures

Algebraic number: root of polynomial with integer coefficients
Transcendental number: not algebraic, e.g. e,

Theorem (Gelfond—Schneider theorem)

If a, b are algebraic numbers with a # 0,1 and b irrational, then (any
value of) aP transcendental.

Example: 2V2 s transcendental.
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Transcendental number: not algebraic, e.g. e,

Theorem (Gelfond—Schneider theorem)

If a, b are algebraic numbers with a # 0,1 and b irrational, then (any
value of) aP transcendental.

Example: 2V2 s transcendental.

Why is this related to reachability?
> target is usually rational/algebraic
» reachability creates constraints between numbers

Example: given a,b € Q, P € Q[X] polynomial, find t such that
P(ty=a and e'=b
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Algebraic numbers and conjectures

Algebraic number: root of polynomial with integer coefficients
Transcendental number: not algebraic, e.g. e,

Theorem (Gelfond—Schneider theorem)

If a, b are algebraic numbers with a # 0,1 and b irrational, then (any
value of) aP transcendental.

Example: 2V2 s transcendental.

Why is this related to reachability?
> target is usually rational/algebraic
» reachability creates constraints between numbers
Example: given a,b € Q, P € Q[X] polynomial, find t such that
P(ty=a and e'=b -~ impossible unless =0
Biggest open question in this field: Schanuel’'s conjecture
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Transcendental number theory

Many problems boil down to diophantine equations/approximations:
» Finding integer points in cones: Kronecker’s theorem

,
° ° ° ° e,
7 7
¢ 7
z 7/
4
¢ 7
° ° ° e, @
7z 7
7/
7 7
7 7
4
° ° ° ° °
° ° ° °
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Transcendental number theory

Many problems boil down to diophantine equations/approximations:
» Finding integer points in cones: Kronecker’s theorem

° ° ° °
7 7
¢ 7
z 7/
7 7
¢ 7
° ° ° o,’,” @
7z 7
7/
7 7
7 7
4
° ° ° ° °
° ° ° °
° °® ° ° °

» Compare linear forms in logarithms: Baker’s theorem

V2 +log V3 — 3log V7 z 1+ log9 — log V666
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(Semi-)group theory

Finitely generated matrix semigroup:
Ay, ..., Ax € Q"™ generate a semigroup S = (A4, ..., Ak)

Example: SLy(Z) = <[? _01] ’ {(1) _11}>

20/23



(Semi-)group theory

Finitely generated matrix semigroup:
Ay, ..., Ax € Q"™ generate a semigroup S = (A4, ..., Ak)

Example: SLy(Z) = <[? _01] ’ {(1) _11}>

Problems:
» finitness: is S finite ?
» mortality: does0e€ S?
» identity: does I, € S ?
» membership: does M € S where M € Q"*" is given as input ?
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(Semi-)group theory

Finitely generated matrix semigroup:
Ay, ..., Ax € Q"™ generate a semigroup S = (A4, ..., Ak)

Example: SLy(Z) = <[? _01] ’ {(1) _11}>

Problems:
» finitness: is S finite ?
» mortality: does0e€ S?
» identity: does I, € S ?
» membership: does M € S where M € Q"*" is given as input ?

Undecidable in general, many decidable subclasses are known.
Equivalent to reachability of affine programs.
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Algebraic geometry

Study systems of multivariate polynomial equations using abstract
algebraic techniques, with applications to geometry.
Examples

xX24+y?24+22-1=0 sphere in R®

XA L2 =1 AXxt+y+z=1 ~  “sliced” sphere in R®
X2 4+1=0 ~ @inR
XX+1=0 ~ {i,—i}inC
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Algebraic geometry

Study systems of multivariate polynomial equations using abstract
algebraic techniques, with applications to geometry.
Examples

xX24+y?24+22-1=0 sphere in R®

XCry2+ 22 =1 Axty+z=1 ~  “sliced” sphere in R®
X2—|—1:O ~ ZginR
XX+1=0 ~ {i,—i}inC

The field K is very important:

» real algebraic geometry: more “intuitive” but more difficult, really
requires the study of semi-algebraic sets

» mainstream algebraic geometry: K is algebraically closedt, e.g. C

TK is algebraically closed if every non-constant polynomial has a root in K.
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First-order theory of the reals

Many questions expressible in first-order logical theories:
> Ry = (R,0,1,<,+,-): decidable

nyeRTy/\/x_y
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First-order theory of the reals

Many questions expressible in first-order logical theories:
> Ry = (R,0,1,<,+,-): decidable

nyeRTy/\/x_y

> Rexp = (R,0,1, <, +,,exp, cos [[g,1]): decidable subject to
Schanuel’s conjecture

VX e Rx #0=t+ tel — 436> £ 1
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First-order theory of the reals

Many questions expressible in first-order logical theories:
> Ry = (R,0,1,<,+,-): decidable

vx,y € R Qy/\/x_y

> Rexp = (R,0,1, <, +,,exp, cos [[g,1]): decidable subject to
Schanuel’s conjecture

VX € Rx #0=t+te! — 43€% + 1
» Presburger arithmetic (N, 0,1, <, +): decidable
dxeN'"Ax > b
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Linear dynamical systems are ubiquitous and exact reachability
guestions lead to very interesting mathematical and logical questions.
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Linear dynamical systems are ubiquitous and exact reachability
guestions lead to very interesting mathematical and logical questions.

But...
» some systems are fundamentally nonlinear

2
Xnt1 = Xp

» real programs manipulate data structures:
trees, arrays, ...
» some programs are not sequential / nondeterministic
probabilistic, concurrent/parallell, ...
» exact reachability is not the only approach
testing, probabilistic model checking, incomplete algorithms, ...
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