Linear Dynamical Systems Overview

Amaury Pouly

State: $X = (p_{bull}, p_{bear}, p_{stag}) \in [0, 1]^3$ Transitions:

	0.9	0.15	0.25]
A =	0.075	0.8	0.25
	0.025	0.05	0.5

 \rightarrow Linear dynamical system

 $X_{n+1} = AX_n$

State: $X = (p_{bull}, p_{bear}, p_{stag}) \in [0, 1]^3$ Transitions:

	0.9	0.15	0.25]	
A =	0.075	0.8	0.25	
	0.025	0.05	0.5	

 \rightarrow Linear dynamical system

 $X_{n+1} = AX_n$

Linear loop

$$\begin{array}{l} p_{bull} := 0\\ p_{bear} := 1\\ p_{stag} := 0\\ \text{while } p_{bull} \leqslant 1/2 \text{ do}\\ \begin{bmatrix} p_{bull}\\ p_{bear}\\ p_{stag} \end{bmatrix} := A \begin{bmatrix} p_{bull}\\ p_{bear}\\ p_{stag} \end{bmatrix}$$

State: $X = (p_{bull}, p_{bear}, p_{stag}) \in [0, 1]^3$ Transitions:

	0.9	0.15	0.25	
A =	0.075	0.8	0.25	
	0.025	0.05	0.5	

 \rightarrow Linear dynamical system

 $X_{n+1} = AX_n$

Linear loop

$$\begin{array}{l} p_{bull} := 0\\ p_{bear} := 1\\ p_{stag} := 0\\ \text{while } p_{bull} \leqslant 1/2 \text{ do}\\ \begin{bmatrix} p_{bull}\\ p_{bear}\\ p_{stag} \end{bmatrix} := A \begin{bmatrix} p_{bull}\\ p_{bear}\\ p_{stag} \end{bmatrix}$$

The loop terminates if and only if the probability of a bull market is > 1/2.

State: $X = z \in \mathbb{R}$

Equation of motion:

$$mz'' = -kz - bz' + mg$$

State: $X = z \in \mathbb{R}$

Equation of motion:

$$mz'' = -kz - bz' + mg$$

 \rightarrow Affine but not first order

State: $X = z \in \mathbb{R}$

Equation of motion:

$$mz'' = -kz - bz' + mg$$

 \rightarrow Affine but not first order

State: $X = (z, z', 1) \in \mathbb{R}^3$

Equation of motion:

$$\begin{bmatrix} z \\ z' \\ 1 \end{bmatrix}' = \begin{bmatrix} z' \\ -\frac{k}{m}z - \frac{b}{m}z' + g \\ 0 \end{bmatrix}$$

State: $X = z \in \mathbb{R}$

Equation of motion:

$$mz'' = -kz - bz' + mg$$

 \rightarrow Affine but not first order

State:
$$X = (z, z', 1) \in \mathbb{R}^3$$

Equation of motion:

 \rightarrow Linear dynamical system X' = AX

$$\begin{bmatrix} z \\ z' \\ 1 \end{bmatrix}' = \begin{bmatrix} z' \\ -\frac{k}{m}z - \frac{b}{m}z' + g \\ 0 \end{bmatrix}$$

with external input u(t).

State: $X = z \in \mathbb{R}$

Equation of motion:

$$mz'' = -kz - bz' + mg + u$$

State:
$$X = (z, z', 1) \in \mathbb{R}^3$$

Equation of motion:

$$\begin{bmatrix} z \\ z' \\ 1 \end{bmatrix}' = \begin{bmatrix} z' \\ -\frac{k}{m}z - \frac{b}{m}z' + g \\ 0 \end{bmatrix}$$

State: $X = z \in \mathbb{R}$

Equation of motion:

$$mz'' = -kz - bz' + mg + u$$

State: $X = (z, z', 1) \in \mathbb{R}^3$

Equation of motion:

$$\begin{bmatrix} z \\ z' \\ 1 \end{bmatrix}' = \begin{bmatrix} z' \\ -\frac{k}{m}z - \frac{b}{m}z' + g \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \\ 0 \end{bmatrix} u$$

with external input u(t). \rightarrow Linear time invariant system X' = AX + Bu

with external input u(t).

State: $X = z \in \mathbb{R}$

Equation of motion:

$$mz'' = -kz - bz' + mg + u$$

State: $X = (z, z', 1) \in \mathbb{R}^3$

Equation of motion:

$$\rightarrow$$
 Linear time invariant system
 $X' = AX + Bu$

$$\begin{bmatrix} z \\ z' \\ 1 \end{bmatrix}' = \begin{bmatrix} z' \\ -\frac{k}{m}z - \frac{b}{m}z' + g \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \\ 0 \end{bmatrix} u$$

Can be used to model a car suspension.

Linear dynamical systems

Discrete case

$$x(n+1) = Ax(n)$$

- biology,
- software verification,
- probabilistic model checking,
- combinatorics,

Continuous case

$$x'(t) = Ax(t)$$

- biology,
- physics,
- probabilistic model checking,
- electrical circuits,

- **Typical questions**
 - reachability
 - safety

. . . .

Linear dynamical systems

Discrete case

$$x(n+1) = Ax(n) + \frac{Bu(n)}{Bu(n)}$$

- biology,
- software verification,
- probabilistic model checking,
- combinatorics,

Continuous case

$$x'(t) = Ax(t) + \frac{Bu(t)}{Bu(t)}$$

- biology,
- physics,
- probabilistic model checking,
- electrical circuits,

Typical questions

- reachability
- safety

. . . .

controllability

Linear dynamical systems

Discrete case

$$x(n+1) = Ax(n) + Bu(n)$$

- biology,
- software verification,
- probabilistic model checking,
- combinatorics,

Continuous case

$$x'(t) = Ax(t) + \frac{Bu(t)}{Bu(t)}$$

- biology,
- physics,
- probabilistic model checking,
- electrical circuits,

Typical questions

- reachability
- safety

. . . .

controllability

- optimal control
- feedback control

Linear loop with if

 $x := 2^{-10}$ y := 1while $y \ge x$ do if $y \ge 2x$ then $\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ else $\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 3 \\ -3 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

Linear loop with if

 $x := 2^{-10}$ y := 1while $y \ge x$ do if $y \ge 2x$ then $\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ else $\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 3 \\ -3 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

Very challenging to analyze!

- reachability is undecidable
- invariant* synthesis also hard

*Will be defined later, think "approximate reachability".

More complicated programs

Linear loop with if

 $x := 2^{-10}$ y := 1while $y \ge x$ do if $y \ge 2x$ then $\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ else $\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 3 \\ -3 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

Nondeterminic loop

$$x := 2^{-10}$$

$$y := 1$$
while true do
non deterministically do
$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
or
$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 3 \\ -3 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Very challenging to analyze!

- reachability is undecidable
- invariant* synthesis also hard

*Will be defined later, think "approximate reachability".

More complicated programs

Linear loop with if

 $x := 2^{-10}$ y := 1while $y \ge x$ do if $y \ge 2x$ then $\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ else $\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 3 \\ -3 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

Very challenging to analyze!

- reachability is undecidable
- invariant* synthesis also hard

Nondeterminic loop

$$x := 2^{-10}$$

$$y := 1$$
while true do
non deterministically do
$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 0 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
or
$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 3 \\ -3 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Overapproximate behaviours

- reachability still undecidable
- invariant synthesis possible

*Will be defined later, think "approximate reachability".

$$x := 2^{-10}$$

$$y := 1$$

while $y \ge x$ do

$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 0 \\ \frac{7}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$x := 2^{-10}$$

$$y := 1$$

while $y \ge x$ do

$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 0 \\ \frac{7}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$x := 2^{-10}$$

$$y := 1$$

while $y \ge x$ do

$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 0 \\ \frac{7}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$x := 2^{-10}$$

$$y := 1$$

while $y \ge x$ do

$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 0 \\ \frac{7}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$x := 2^{-10}$$

$$y := 1$$

while $y \ge x$ do

$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 0 \\ \frac{7}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$x := 2^{-10}$$

$$y := 1$$

while $y \ge x$ do

$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 0 \\ \frac{7}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Affine program

$$x := 2^{-10}$$

$$y := 1$$

while $y \ge x$ do

$$\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 0 \\ \frac{7}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Certificate of non-termination:

$$x^2y - x^3 = \frac{1023}{1073741824} \tag{1}$$

Affine program

 $x := 2^{-10}$ y := 1while $y \ge x$ do $\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 0 \\ \frac{7}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

Certificate of non-termination:

$$x^2y - x^3 = \frac{1023}{1073741824} \tag{1}$$

 (1) is an invariant: it holds at every step

Affine program

 $x := 2^{-10}$ y := 1while $y \ge x$ do $\begin{bmatrix} x \\ y \end{bmatrix} := \begin{bmatrix} 2 & 0 \\ \frac{7}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ Certificate of non-termination:

$$x^2y - x^3 = \frac{1023}{1073741824} \tag{1}$$

- (1) is an invariant: it holds at every step
- (1) implies the guard is true

invariant = overapproximation of the reachable states

invariant = overapproximation of the reachable states

inductive invariant = invariant preserved by the transition relation

The classical approach to the verification of temporal safety properties of programs requires the construction of **inductive invariants** [...]. Automation of this construction is the main challenge in program verification.

D. Beyer, T. Henzinger, R. Majumdar, and A. Rybalchenko Invariant Synthesis for Combined Theories, 2007

Nondeterministic branching (no guards)

- Nondeterministic branching (no guards)
- All assignments are affine

- Nondeterministic branching (no guards)
- All assignments are affine
- Allow nondeterministic assignments (x := *)

Affine programs

- Nondeterministic branching (no guards)
- All assignments are affine
- Allow nondeterministic assignments (x := *)

- Can overapproximate complex programs
- Covers existing formalisms: finite, probabilistic, quantum, quantitative automata

OPEN

$$\begin{array}{rcl}
\dot{I} &= 0 \\
\dot{I}_{R} &= -\frac{1}{RC}I_{R} \\
\dot{V}_{R} &= -\frac{1}{C}I_{R} \\
\dot{Q} &= I_{R} \\
\dot{V}_{C} &= \frac{1}{C}I_{R}
\end{array}$$

OPEN

$$\dot{I} = 0$$

$$\dot{I}_{R} = -\frac{1}{RC}I_{R}$$

$$\dot{V}_{R} = -\frac{1}{C}I_{R}$$

$$\dot{Q} = I_{R}$$

$$\dot{V}_{C} = \frac{1}{C}I_{R}$$

CLOSED

$$\dot{I} = -\frac{1}{RC}I_R$$

$$\dot{I}_R = -\frac{1}{RC}I_R$$

$$\dot{V}_R = -\frac{1}{C}I_R$$

$$\dot{Q} = I_R$$

$$\dot{V}_C = \frac{1}{C}I_R$$

OPEN

$$i = 0$$

$$i_R = -\frac{1}{RC}I_R$$

$$\dot{V}_R = -\frac{1}{C}I_R$$

$$\dot{Q} = I_R$$

$$\dot{V}_C = \frac{1}{C}I_R$$

$$\dot{V}_C = \frac{1}{C}I_R$$

$$V_R := -\frac{1}{R}V_C$$

$$V_R := -V_C$$

$$CLOSED$$

$$i_R = -\frac{1}{RC}I_R$$

$$\dot{I}_R = -\frac{1}{RC}I_R$$

$$\dot{V}_R = -\frac{1}{C}I_R$$

Switching systems

Switching systems

- reachability also undecidable
- invariant synthesis possible

Going hybrid: a bouncing ball

Going hybrid: a bouncing ball

$$v_{y} := -v_{y}$$

$$t := 0$$

$$x := 0$$

$$y := h$$

$$v_{x} := c$$

$$v_{y} := 0$$

$$\dot{x} = v_{x}$$

$$\dot{y} = v_{y}$$

$$\dot{y} = v_{y}$$

$$\dot{v}_{x} = 0$$

$$\dot{v}_{y} = -g$$

$$\dot{t} = 1$$

- affine program: collision
- + linear differential equation: mechanics
- = linear hybrid automaton

Going hybrid: a bouncing ball

$$t := 0$$

$$x := 0$$

$$y := h$$

$$\dot{x} = v_x$$

$$\dot{y} = v_y$$

$$\dot{y} = 0$$

$$\dot{y} = -g$$

$$\dot{v}_y = -g$$

$$\dot{t} = 1$$

$$k = tc$$

$$v_y^2 + 2g(y - h) = 0$$

Linear Hybrid Automata

- Nondeterministic branching (no guards)
- All assignments are affine
- Linear differential equations in each location

Linear Hybrid Automata

- Nondeterministic branching (no guards)
- All assignments are affine
- Linear differential equations in each location

- More general than affine programs
- More general than linear differential equations

Which invariants?

Rounding: $\lfloor \cdot \rceil =$ round to nearest integer

$$\boldsymbol{A} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \in \mathbb{Q}^{2 \times 2}, \qquad \begin{bmatrix} \boldsymbol{x}\\ \boldsymbol{y} \end{bmatrix} = \begin{pmatrix} \lfloor \boldsymbol{x} \\ \lfloor \boldsymbol{y} \end{bmatrix}$$

Rounding: $\lfloor \cdot \rceil =$ round to nearest integer

$$\boldsymbol{A} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \in \mathbb{Q}^{2 \times 2}, \qquad \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{y} \end{bmatrix} = \begin{pmatrix} \lfloor \boldsymbol{x} \\ \lfloor \boldsymbol{y} \end{bmatrix}$$

Problem: given $X_0 \in \mathbb{Q}^2$, define $X_{n+1} = \lfloor AX_n \rceil$

- is reachability decidable ?
- is $(X_n)_n$ eventually periodic?
- what does the reachable set look like?

Rounding: $\lfloor \cdot \rceil =$ round to nearest integer

$$\boldsymbol{A} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \in \mathbb{Q}^{2 \times 2}, \qquad \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{y} \end{bmatrix} = \begin{pmatrix} \lfloor \boldsymbol{x} \\ \lfloor \boldsymbol{y} \end{bmatrix}$$

Problem: given $X_0 \in \mathbb{Q}^2$, define $X_{n+1} = \lfloor AX_n \rceil$

is reachability decidable ?
is (X_n)_n eventually periodic?

what does the reachable set look like?

Rounding: $\lfloor \cdot \rceil$ = round to nearest integer

$$\boldsymbol{A} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \in \mathbb{Q}^{2 \times 2}, \qquad \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{y} \end{bmatrix} = \begin{pmatrix} \lfloor \boldsymbol{x} \\ \lfloor \boldsymbol{y} \end{bmatrix}$$

Problem: given $X_0 \in \mathbb{Q}^2$, define $X_{n+1} = \lfloor AX_n \rceil$

is reachability decidable ?
is (X_n)_n eventually periodic?

what does the reachable set look like?

Rounding: $\lfloor \cdot \rceil$ = round to nearest integer

$$\boldsymbol{A} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \in \mathbb{Q}^{2 \times 2}, \qquad \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{y} \end{bmatrix} = \begin{pmatrix} \lfloor \boldsymbol{x} \\ \lfloor \boldsymbol{y} \end{bmatrix}$$

Problem: given $X_0 \in \mathbb{Q}^2$, define $X_{n+1} = \lfloor AX_n \rceil$

is reachability decidable ?
is (X_n)_n eventually periodic?

Rounding: $\lfloor \cdot \rceil$ = round to nearest integer

$$\boldsymbol{A} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \in \mathbb{Q}^{2 \times 2}, \qquad \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{y} \end{bmatrix} = \begin{pmatrix} \lfloor \boldsymbol{x} \\ \lfloor \boldsymbol{y} \end{bmatrix}$$

Problem: given $X_0 \in \mathbb{Q}^2$, define $X_{n+1} = \lfloor AX_n \rceil$

- is reachability decidable ?
 is (X_n)_n eventually periodic?
- what does the reachable set look like?

Rounding: $\lfloor \cdot \rceil =$ round to nearest integer

$$\boldsymbol{A} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \in \mathbb{Q}^{2 \times 2}, \qquad \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{y} \end{bmatrix} = \begin{pmatrix} \lfloor \boldsymbol{x} \\ \lfloor \boldsymbol{y} \end{bmatrix}$$

Problem: given $X_0 \in \mathbb{Q}^2$, define $X_{n+1} = \lfloor AX_n \rceil$

- is reachability decidable ?
 is (X_n)_n eventually periodic?
- what does the reachable set look like?

Open problems! Only known for a few specific values of θ .

Linear dynamical systems are ubiquitous...

... and lead to very interesting mathematics!

Interesting related mathematics

Linear recurrent sequences (LRS)

$$x_{n+k} = a_{k-1}a_{n+k-1} + \dots + x_0x_n$$

Fibonacci: $F_{n+2} = F_{n+1} + F_n$

$$x_{n+k} = a_{k-1}a_{n+k-1} + \cdots + x_0x_n$$

Fibonacci: $F_{n+2} = F_{n+1} + F_n$

Skolem/Positivity problem (Open for more than 70 years!) decide if a given LRS has a zero/is always positive

$$x_{n+k} = a_{k-1}a_{n+k-1} + \cdots + x_0x_n$$

Fibonacci: $F_{n+2} = F_{n+1} + F_n$

- Skolem/Positivity problem (Open for more than 70 years!) decide if a given LRS has a zero/is always positive
- Exponential polynomials:

$$f(t) = P_1(t)e^{\lambda_1 t} + \cdots + P_n(t)e^{\lambda_n t}$$

Examples: polynomials, e^t , sin(t), $t^2 sin(t) - e^{-t}$

$$x_{n+k} = a_{k-1}a_{n+k-1} + \cdots + x_0x_n$$

Fibonacci: $F_{n+2} = F_{n+1} + F_n$

- Skolem/Positivity problem (Open for more than 70 years!) decide if a given LRS has a zero/is always positive
- Exponential polynomials:

$$f(t) = P_1(t)e^{\lambda_1 t} + \cdots + P_n(t)e^{\lambda_n t}$$

Examples: polynomials, e^t , $\sin(t)$, $t^2 \sin(t) - e^{-t}$

 Continuous Skolem/Positivity (Also open) decide if an exponential polynomial has a zero/is always positive

$$x_{n+k} = a_{k-1}a_{n+k-1} + \cdots + x_0x_n$$

Fibonacci: $F_{n+2} = F_{n+1} + F_n$

- Skolem/Positivity problem (Open for more than 70 years!) decide if a given LRS has a zero/is always positive
- Exponential polynomials:

$$f(t) = P_1(t)e^{\lambda_1 t} + \cdots + P_n(t)e^{\lambda_n t}$$

Examples: polynomials, e^t , $\sin(t)$, $t^2 \sin(t) - e^{-t}$

 Continuous Skolem/Positivity (Also open) decide if an exponential polynomial has a zero/is always positive

Reachability often harder/reduces to of these problems!

Algebraic number: root of polynomial with integer coefficients Transcendental number: not algebraic, e.g. e, π

Algebraic number: root of polynomial with integer coefficients Transcendental number: not algebraic, e.g. e, π

Theorem (Gelfond–Schneider theorem)

If a, b are algebraic numbers with $a \neq 0, 1$ and b irrational, then (any value of) a^{b} transcendental.

Example: $2^{\sqrt{2}}$ is transcendental.

Algebraic number: root of polynomial with integer coefficients Transcendental number: not algebraic, e.g. e, π

Theorem (Gelfond–Schneider theorem)

If a, b are algebraic numbers with $a \neq 0, 1$ and b irrational, then (any value of) a^{b} transcendental.

Example: $2^{\sqrt{2}}$ is transcendental.

Why is this related to reachability?

- target is usually rational/algebraic
- reachability creates constraints between numbers

Example: given $a, b \in \mathbb{Q}$, $P \in \mathbb{Q}[X]$ polynomial, find t such that

$$P(t) = a$$
 and $e^t = b$

Algebraic number: root of polynomial with integer coefficients Transcendental number: not algebraic, e.g. e, π

Theorem (Gelfond–Schneider theorem)

If a, b are algebraic numbers with $a \neq 0, 1$ and b irrational, then (any value of) a^{b} transcendental.

Example: $2^{\sqrt{2}}$ is transcendental.

Why is this related to reachability?

- target is usually rational/algebraic
- reachability creates constraints between numbers

Example: given $a, b \in \mathbb{Q}$, $P \in \mathbb{Q}[X]$ polynomial, find t such that

$$P(t) = a$$
 and $e^t = b$ \rightarrow impossible unless $t = 0$

Algebraic number: root of polynomial with integer coefficients Transcendental number: not algebraic, e.g. e, π

Theorem (Gelfond–Schneider theorem)

If a, b are algebraic numbers with $a \neq 0, 1$ and b irrational, then (any value of) a^{b} transcendental.

Example: $2^{\sqrt{2}}$ is transcendental.

Why is this related to reachability?

- target is usually rational/algebraic
- reachability creates constraints between numbers

Example: given $a, b \in \mathbb{Q}$, $P \in \mathbb{Q}[X]$ polynomial, find t such that

P(t) = a and $e^t = b$ \rightarrow impossible unless t = 0

Biggest open question in this field: Schanuel's conjecture

Many problems boil down to diophantine equations/approximations:

Finding integer points in cones: Kronecker's theorem

Many problems boil down to diophantine equations/approximations:

Finding integer points in cones: Kronecker's theorem

Compare linear forms in logarithms: Baker's theorem

 $\sqrt{2} + \log \sqrt{3} - 3 \log \sqrt{7} \stackrel{?}{=} 1 + \log 9 - \log \sqrt[42]{666}$

Finitely generated matrix semigroup: $A_1, \ldots, A_k \in \mathbb{Q}^{n \times n}$ generate a semigroup $S = \langle A_1, \ldots, A_k \rangle$

Example:
$$SL_2(\mathbb{Z}) = \left\langle \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} \right\rangle$$

Finitely generated matrix semigroup:

 $A_1, \ldots, A_k \in \mathbb{Q}^{n imes n}$ generate a semigroup $S = \langle A_1, \ldots, A_k \rangle$

Example:
$$SL_2(\mathbb{Z}) = \left\langle \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} \right\rangle$$

Problems:

- ▶ finitness: is *S* finite ?
- mortality: does $0 \in S$?
- identity: does $I_n \in S$?
- membership: does $M \in S$ where $M \in \mathbb{Q}^{n \times n}$ is given as input ?

Finitely generated matrix semigroup:

 $A_1, \ldots, A_k \in \mathbb{Q}^{n \times n}$ generate a semigroup $S = \langle A_1, \ldots, A_k \rangle$

Example:
$$SL_2(\mathbb{Z}) = \left\langle \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} \right\rangle$$

Problems:

- finitness: is S finite ?
- mortality: does $0 \in S$?
- let identity: does $I_n \in S$?
- membership: does $M \in S$ where $M \in \mathbb{Q}^{n \times n}$ is given as input ?

Undecidable in general, many decidable subclasses are known. Equivalent to reachability of affine programs.
Algebraic geometry

Study systems of multivariate polynomial equations using abstract algebraic techniques, with applications to geometry.

Examples

 $\begin{aligned} x^2 + y^2 + z^2 - 1 &= 0 & \longrightarrow & \text{sphere in } \mathbb{R}^3 \\ x^2 + y^2 + z^2 &= 1 & \wedge & x + y + z = 1 & \longrightarrow & \text{"sliced" sphere in } \mathbb{R}^3 \\ x^2 + 1 &= 0 & \longrightarrow & \varnothing \text{ in } \mathbb{R} \\ x^2 + 1 &= 0 & \longrightarrow & \{i, -i\} \text{ in } \mathbb{C} \end{aligned}$

Study systems of multivariate polynomial equations using abstract algebraic techniques, with applications to geometry.

Examples

 $\begin{aligned} x^2 + y^2 + z^2 - 1 &= 0 & \longrightarrow & \text{sphere in } \mathbb{R}^3 \\ x^2 + y^2 + z^2 &= 1 & \wedge x + y + z = 1 & \longrightarrow & \text{"sliced" sphere in } \mathbb{R}^3 \\ x^2 + 1 &= 0 & \longrightarrow & \emptyset \text{ in } \mathbb{R} \\ x^2 + 1 &= 0 & \longrightarrow & \{i, -i\} \text{ in } \mathbb{C} \end{aligned}$

The field \mathbb{K} is very important:

- real algebraic geometry: more "intuitive" but more difficult, really requires the study of *semi-algebraic sets*
- ► mainstream algebraic geometry: K is algebraically closed[†], e.g. C

[†] \mathbb{K} is algebraically closed if every non-constant polynomial has a root in \mathbb{K} .

Many questions expressible in first-order logical theories:

▶ $\mathfrak{R}_0 = (\mathbb{R}, 0, 1, <, +, \cdot)$: decidable

$$\forall x, y \in \mathbb{R} \, \frac{x+y}{2} \geqslant \sqrt{xy}$$

Many questions expressible in first-order logical theories:

▶ $\mathfrak{R}_0 = (\mathbb{R}, 0, 1, <, +, \cdot)$: decidable

$$\forall x, y \in \mathbb{R} \, \frac{x+y}{2} \geqslant \sqrt{xy}$$

 ℜ_{exp} = (ℝ, 0, 1, <, +, ·, exp, cos ↾_[0,1]): decidable subject to Schanuel's conjecture

$$\forall x \in \mathbb{R} \, x \neq 0 \Rightarrow t + t e^t - 43 e^{3t} \neq 1$$

Many questions expressible in first-order logical theories:

▶ $\mathfrak{R}_0 = (\mathbb{R}, 0, 1, <, +, \cdot)$: decidable

$$\forall x, y \in \mathbb{R} \, \frac{x+y}{2} \geqslant \sqrt{xy}$$

 ℜ_{exp} = (ℝ, 0, 1, <, +, ·, exp, cos ↾_[0,1]): decidable subject to Schanuel's conjecture

$$\forall x \in \mathbb{R} \, x \neq 0 \Rightarrow t + te^t - 43e^{3t} \neq 1$$

• Presburger arithmetic $(\mathbb{N}, 0, 1, <, +)$: decidable

$$\exists x \in \mathbb{N}^n Ax \ge b$$

Summary

Linear dynamical systems are ubiquitous and exact reachability questions lead to very interesting mathematical and logical questions.

Summary

Linear dynamical systems are ubiquitous and exact reachability questions lead to very interesting mathematical and logical questions.

But...

some systems are fundamentally nonlinear

 $x_{n+1} = x_n^2$

Summary

Linear dynamical systems are ubiquitous and exact reachability questions lead to very interesting mathematical and logical questions.

But...

some systems are fundamentally nonlinear

 $x_{n+1} = x_n^2$

real programs manipulate data structures: trees, arrays, ... Linear dynamical systems are ubiquitous and exact reachability questions lead to very interesting mathematical and logical questions.

But...

some systems are fundamentally nonlinear

 $x_{n+1} = x_n^2$

real programs manipulate data structures:

trees, arrays, ...

some programs are not sequential / nondeterministic probabilistic, concurrent/parallell, ... Linear dynamical systems are ubiquitous and exact reachability questions lead to very interesting mathematical and logical questions.

But...

some systems are fundamentally nonlinear

 $x_{n+1} = x_n^2$

real programs manipulate data structures:

trees, arrays, ...

some programs are not sequential / nondeterministic

probabilistic, concurrent/parallell, ...

 exact reachability is not the only approach testing, probabilistic model checking, incomplete algorithms, ...