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Examples: while loop, Markov chain

Bull
market

Bear
market

Stagnant
market

0.9 0.8
0.075

0.050.25
0.025 0.25

0.15

State: X = (pbull ,pbear ,pstag) ∈ [0,1]3

Transitions:

A =

 0.9 0.15 0.25
0.075 0.8 0.25
0.025 0.05 0.5


→ Linear dynamical system

Xn+1 = AXn

Linear loop

pbull := 0
pbear := 1
pstag := 0
while pbull ⩽ 1/2 do pbull

pbear
pstag

 := A

 pbull
pbear
pstag


The loop terminates if and
only if the probability of a bull
market is > 1/2.
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Termination Linear Loops
Does this loop terminate?

Linear Loop

x := 2−10, y := 1
until ϕ(x) do[

x
y

]
:=

[
2 0
7
4

1
4

] [
x
y

]

;

Reachability problem

Given
▶ initial point: x0 ∈ Qd ,
▶ transition matrix: A ∈ Qd×d ,
▶ target set: S ⊆ Rd

decide if ∃n ∈ N.Anx0 ∈ S.

Natural choices for S:
▶ point:

∃n ∈ N Anx0 = y
▶ affine subspace:

∃n ∈ N MAnx0 = b
▶ polyhedron:

∃n ∈ N MAnx0 ⩾ b

▶ (semi-)algebraic sets

∃n ∈ N p(Anx0) ⩾ 0
▶ boolean combinations
▶ replace x0 by an initial set X

∃x0 ∈ X∃n ∈ N Anx0 ∈ S
∀x0 ∈ X∃n ∈ N Anx0 ∈ S
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Termination Linear Loops
Does this loop terminate?

Linear Loop

x := 2−10, y := 1
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x
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1
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Termination Linear Loops
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Termination Linear Loops
Does this loop terminate?

Linear Loop

x ∈ [0,1], y ∈ [1,2]
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x
y
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7
4

1
4
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x
y
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What is decidable about linear loops?

Problem: given x0, A and S, decide if ∃n ∈ N such that Anx0 ∈ S.

Theorem (Orbit problem; Kannan and Lipton 1980, 1986)

Decidable in polynomial time when S is a singleton.

Already nontrivial proof using algebraic number theory!

Theorem (Chonev, Ouaknine and Worrell, 2016)

Decidable (in NPRP) when S is a linear subspace of dimension ⩽ 3.
Decidable (in PSPACE) when S is a polytope of dimension ⩽ 3.

Problem: given X , A and S, decide if ∃n ∈ N such that AnX ∩ S ≠ ∅.

Theorem (Almagor, Ouaknine and Worrell, 2017)

Decidable (in PSPACE) when X ,S are polytopes of dimension ⩽ 3.

Why do we need the dimension to be small?

4 / 30



What is decidable about linear loops?

Problem: given x0, A and S, decide if ∃n ∈ N such that Anx0 ∈ S.

Theorem (Orbit problem; Kannan and Lipton 1980, 1986)

Decidable in polynomial time when S is a singleton.

Already nontrivial proof using algebraic number theory!

Theorem (Chonev, Ouaknine and Worrell, 2016)

Decidable (in NPRP) when S is a linear subspace of dimension ⩽ 3.
Decidable (in PSPACE) when S is a polytope of dimension ⩽ 3.

Problem: given X , A and S, decide if ∃n ∈ N such that AnX ∩ S ≠ ∅.
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From loops to recurrent sequences

Linear Loop

x := x0
until 3x1 − 7x2 + 4x3 = 0 do
x := Ax

;
Half-space reachability

Given x , y ∈ Qd , A ∈ Qd×d ,
decide if ∃n ∈ N. yT Anx0 = 0.

Consider the sequence un = yT Anx .

Lemma
There exists a0, . . . ,ad−1 ∈ Q such that

un+d = ad−1un+d−1 + · · ·+ a0un, ∀n ∈ N.

In other words, (un)n is a linear recurrent sequence (LRS).

Conversely,

▶ Fibonacci: Fn+2 = Fn+1 + Fn

▶ Pell numbers: Pn+2 = 2Pn+1 + Pn

▶ very common in combinatorics
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Linear Loop

x := x0
until yT x = 0 do x := Ax

;
Half-space reachability

Given x , y ∈ Qd , A ∈ Qd×d ,
decide if ∃n ∈ N. yT Anx0 = 0.

Consider the sequence un = yT Anx .

Lemma
There exists a0, . . . ,ad−1 ∈ Q such that

un+d = ad−1un+d−1 + · · ·+ a0un, ∀n ∈ N.

In other words, (un)n is a linear recurrent sequence (LRS). Conversely,

Lemma
For any LRS (un)n, there exists x0, y and A such that un = yT Anx0.

5 / 30



Skolem and posivity problems

Linear recurrent sequence (LRS) of order d :

un+d = ad−1un+d−1 + · · ·+ a0un, ∀n ∈ N.

Remark: entirely determined by u0, . . . ,ud−1 and a0, . . . ,ad−1

Skolem Problem
Given a LRS (un)n, decide if un = 0 for some n ∈ N.

This problem has been open for 70 years!

Positivity Problem

Given a LRS (un)n, decide if un ⩾ 0 for all n ∈ N.

Harder than Skolem
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Skolem-Mahler-Lech theorem

Skolem Problem
Given a LRS (un)n, decide if un = 0 for some n ∈ N.

Theorem (Skolem, Mahler, and Lech, 1933, 1953, 1957)

The set {n ∈ N : un = 0} is a union of finitely arithmetic progression
and a finite set.

0

pattern

finite set

The regular patterm is computable. Nothing is known about the finite
set: the proof is nonconstructive and uses p-adic analysis.
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Skolem in low dimension

Theorem (Mignotte, Shorey, Tijdeman; Vereshchagin, 1985)

The Skolem problem is decidable for LRS of order 4.

Theorem (Blondel and Portier, 2002)

The Skolem problem is NP-hard.

For any x ∈ R, the (homogeneous Diophantine approximation) type

L(x) = inf
{

c ∈ R :
∣∣∣x − n

m

∣∣∣ < c
m2 for some n,m ∈ Z

}
.

Intuitively, if L(x) > 0 then x is badly approximable by rationals. Almost
nothing known for any concrete x except that L(x) ∈ [0,1/

√
5].

Theorem (Ouaknine and Worrell, 2013)

If Skolem is decidable at order 5 then one can approximate L(x) with
arbitrary precision for a large class of numbers x.
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Positivity and eventual posivity

Positivity Problem

Given a LRS (un)n, decide if un ⩾ 0 for all n ∈ N.

Theorem (Laohakosol and Tangsupphathawat, 2009)

The positivity problem is decidable at order 3.

Ultimate positivity Problem

Given a LRS (un)n, decide if ∃N ∈ N, such that un ⩾ 0 for all n ⩾ N.

Theorem (Ouaknine and Worrell, 2014)

The ultimate positivity problem is decidable for simple* LRS. It is at
least as hard as deciding ∃R.

9 / 30



Positivity and eventual posivity

Positivity Problem

Given a LRS (un)n, decide if un ⩾ 0 for all n ∈ N.

Theorem (Laohakosol and Tangsupphathawat, 2009)

The positivity problem is decidable at order 3.

Ultimate positivity Problem

Given a LRS (un)n, decide if ∃N ∈ N, such that un ⩾ 0 for all n ⩾ N.

Theorem (Ouaknine and Worrell, 2014)

The ultimate positivity problem is decidable for simple* LRS. It is at
least as hard as deciding ∃R.

9 / 30



Positivity and eventual posivity

Positivity Problem

Given a LRS (un)n, decide if un ⩾ 0 for all n ∈ N.

Theorem (Laohakosol and Tangsupphathawat, 2009)

The positivity problem is decidable at order 3.

Ultimate positivity Problem

Given a LRS (un)n, decide if ∃N ∈ N, such that un ⩾ 0 for all n ⩾ N.

Theorem (Ouaknine and Worrell, 2014)

The ultimate positivity problem is decidable for simple* LRS. It is at
least as hard as deciding ∃R.

9 / 30



Positivity and eventual posivity

Positivity Problem

Given a LRS (un)n, decide if un ⩾ 0 for all n ∈ N.

Theorem (Laohakosol and Tangsupphathawat, 2009)

The positivity problem is decidable at order 3.

Ultimate positivity Problem

Given a LRS (un)n, decide if ∃N ∈ N, such that un ⩾ 0 for all n ⩾ N.

Theorem (Ouaknine and Worrell, 2014)

The ultimate positivity problem is decidable for simple* LRS. It is at
least as hard as deciding ∃R.

*The associated characteristic polynomial has no repeated roots.
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First-order queries on orbits

First-order orbit query (FOOQ): fully quantified first-order sentence
whose atomic proposition are of the form

p(x) ⩾ 0, Anx ∈ T (T semialgebraic set).

Examples: ∃n ∈ N such that...
▶ Anx = y : Anx ∈ {y}
▶ AnS ∩ T ̸= ∅: ∃x ∈ Rd . x ∈ S ∧ Anx ∈ T
▶ AnS ⊆ T : ∀x ∈ Rd . x ∈ S → Anx ∈ T

Theorem (Almagor, Ouaknine and Worrell, 2021)

Given A and Φ(n) a FOOQ, it is decidable whether ∃n ∈ N.Φ(n) in
dimension ⩽ 3.
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MSO model-checking

Given x ∈ Qd and A ∈ Qn×n and T1, . . . , Tk ⊆ Rd semialgebraic sets.

Let Σ = {0,1}k and define w ∈ ΣN by

wn =
(
Anx ∈ T1, . . . ,Anx ∈ Tk ).

Intuition: wn records to which sets Anx belongs to at eact step n.
Problem: given an MSO formula Ψ over (N, <), decide whether w |= Ψ.

Theorem (Karimov, Lefaucheux, Ouaknine, Purser, Varonka, Whiteland, Worrell)

This is decidable if all Ti either have intrinsic dimension 1 or are
included in a subspace of dimension 3.

Examples: Pi(n) means Anx ∈ Ti
▶ Ti is reachable: ∃n.Pi(n)
▶ whenever Ti is visited Tj is visited some point later:

∀n : Pi(n)⇒ (∃m > n : Pj(m))
▶ in target Ti at every odd position:

∃O ⊆ N : formula to define odd numbers ∧ ∀x : x ∈ O ⇒ Pi(x)
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Continuous linear dynamical systems

m

kb R L

CqV

Linear differential equation:

x ′(t) = Ax(t) x(0) = x0
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Linear differential equation:

x ′(t) = Ax(t) x(0) = x0

Example:

x ′(t) = 7x(t)

; x(t) = e7t

{
x ′

1(t)= x2(t)
x ′

2(t)= −x1(t)
⇔

[
x1
x2

]′
=

[
0 1
−1 0

] [
x1
x2

]

;
{

x1(t)= sin(t)
x2(t)= cos(t)
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Continuous linear dynamical systems

m

kb R L

CqV

Linear differential equation:

x ′(t) = Ax(t) x(0) = x0

General solution form:
x(t) = eAtx0

where eM =
∞∑

n=0

Mn

n!

12 / 30



Continuous reachability

Continuous Skolem problem

Given x , y and A, decide if ∃t ∈ R such that xT eAty = 0.

Bounded continuous Skolem problem

Given x , y and A, decide if ∃t ∈ [0,1] such that xT eAty = 0.

Continuous positivity Problem

Given x , y and A, decide whether xT eAty ⩾ 0 for all t ⩾ 0.

Continuous positivity is inter-reducible with continuous Skolem.

The decidability of all these problems is also open!
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A link with number theory

Some reachability questions look like this :

∃t ∈ R. 42t7 = 56 ∧ e3t − et = 9

Claim: impossible except possibly for t = 0 (easy to check)

Algebraic number: root of polynomial with integer coefficients
Transcendental number: not algebraic, e.g. e, π

Theorem (Special case of Lindemann–Weierstrass)

If t is a nonzero algebraic number then et is transcendental.

▶ P(t) = 0 so t is algebraic (by definition)
▶ Lindemann–Weierstrass: et transcendental (unless t = 0)
▶ hence Q(et) ̸= 0 (except maybe if t = 0)
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Exponential polynomial

In general,

xT eAty =
d∑

i=1

Pi(t)eλi t

where Pi polynomial, λi ∈ C eigenvalues of A.

Lindemann–Weierstrass’s theorem is not enough to solve the
continuous Skolem problem.

Theorem (Wilkie and MacIntyre)

If Schanuel’s conjecture is true, then, for each k ∈ N, the first-order
theory of the structure (R,0,1, <,+, ·, exp, cos ↾[0,k ], sin ↾[0,k ]) is
decidable.

▶ algorithm always correct, only termination requires the conjecture
▶ this makes many problem (inc. continuous Skolem) decidable!

What is Schanuel’s conjecture?
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Schanuel’s conjecture

Schanuel’s conjecture

If z1, . . . , zn that are linearly independent over Q, then at least n
numbers among z1, . . . , zn,ez1 , . . . ,ezn are algebraically independent.

Example: π and e are algebraically independent

z1 = iπ, z2 = 1 ; ez1 = −1,ez2 = e.

Clearly z1 and z2 are linearly independent over Q. So at least 2 of
iπ,1,−1,e are algebraically independent. But 1 is algebraic so π and e
are algebraically independent.

Summary:
▶ Schanuel implies that π, e, π + e, eπ, ... are transcendental.
▶ π and e are known to be transcendental
▶ π + e is not known to be transcendental
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Continuous reachability

Bounded continuous Skolem problem: given x , y and A, decide if
▶ unbounded: ∃t ∈ [0,1] such that xT eAty = 0.
▶ bounded: ∃t ∈ R such that xT eAty = 0.

Theorem (Chonev, Ouaknine and Worrell, 2016)

The bounded continuous Skolem Problem is decidable subject to
Schanuel’s conjecture.

Theorem (Chonev, Ouaknine and Worrell, 2016)

If the (unbounded) continuous Skolem Problem is decidable then the
Diophantine-approximation types of all real algebraic numbers is
computable.

In other words: it requires new mathematics...
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More complicated programs

Linear loop with if

x := 2−10

y := 1
while y ⩾ x do

if y ⩾ 2x then[
x
y

]
:=

[
2 0
1 4

] [
x
y

]
else[

x
y

]
:=

[
2 3
−3 7

] [
x
y

]

;

Nondeterminic loop

x := 2−10

y := 1
while true do

non deterministically do[
x
y

]
:=

[
2 0
1 4

] [
x
y

]
or [

x
y

]
:=

[
2 3
−3 7

] [
x
y

]
Reachability is trivially
undecidable by simulating two
counter automata

▶ Overapproximate behaviours
▶ Nondeterminic
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Example: 2D robot

(xθ,yθ)

(x ,y)

θ

ℓ

State: u⃗ = (xθ, yθ, x , y)

Discretized actions:
▶ rotate arm by ψ
▶ change arm length by δ

; Linear transformations

Rotate arm by ψ:(
x
y

)
←

(
cosψ − sinψ
sinψ cosψ

)(
x
y

)
(

xθ
yθ

)
←

(
cosψ − sinψ
sinψ cosψ

)(
xθ
yθ

)
Change arm length by δ:(

x
y

)
←

(
x
y

)
+ δ

(
xθ
yθ

)
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Matrix problems

Input: A,C ∈ Qd×d matrices
Output: ∃n ∈ N such that An = C ?

✓ Decidable (PTIME)

Input: A,B,C ∈ Qd×d matrices
Output: ∃n,m ∈ N such that AnBm = C ?

✓ Decidable

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output: ∃n1, . . . ,nk ∈ N such that

∏k
i=1 Ani

i = C ?

✓ Decidable if Ai commute × Undecidable in general

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output: C ∈ ⟨semigroup generated by A1, . . . ,Ak ⟩ ?

✓ Decidable if Ai commute × Undecidable in general

Example: ∃n ∈ N such that[
1 1
0 1

]n

=

[
1 100
0 1

]
?
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Discrete reachability problems

Every nontrivial extension of simple linear loops seems to lead to
undecidable problems.

What about the continuous setting?
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RC circuit

OPEN

I CLOSED IR

R

VR

VC
Q

C
V

switch

t

İ = 0
İR = − 1

RC IR
V̇R = − 1

C IR
Q̇ = IR
V̇C = 1

C IR

OPEN

İ = − 1
RC IR

İR = − 1
RC IR

V̇R = − 1
C IR

Q̇ = IR
V̇C = 1

C IR

CLOSED
I := 1

R (V−VC)

IR := 1
R (V−VC)

VR :=V−VC

I :=0

IR :=− 1
R VC

VR :=−VC
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Switching systems

x ′ = A1x x ′ = A2x

x ′ = A3xx ′ = A4x

Restricted hybrid system:
▶ linear dynamics
▶ no guards (nondeterministic)
▶ no discrete updates

switchx1(t)

t
x ′ = A1x

t1

x ′ = A2x

t2

x ′ = A3x

t3

x ′ = A4x

t4
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t
x ′ = A1x

t1

x ′ = A2x

t2

x ′ = A3x

t3

x ′ = A4x
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Dynamics:
eA4t4eA3t3eA2t2eA1t1
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Switching systems

x ′ = A1x x ′ = A2x

x ′ = A3xx ′ = A4x

Restricted hybrid system:
▶ linear dynamics
▶ no guards (nondeterministic)
▶ no discrete updates

switchx1(t)

t
x ′ = A1x

t1

x ′ = A2x

t2

x ′ = A3x

t3

x ′ = A4x

t4

Problem:
eA4t4eA3t3eA2t2eA1t1 = C ?

What we control: t1, t2, t3, t4 ∈ R⩾0
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Related work in the continuous case

Input: A,C ∈ Qd×d matrices
Output: ∃t ∈ R such that eAt = C ?

✓ Decidable (PTIME)

Input: A,B,C ∈ Qd×d matrices
Output: ∃t ,u ∈ N such that eAteBu = C ?

× Unknown

Example: ∃t ∈ R such that

exp

([
1 1
0 1

]
t
)

=

[
1 100
0 1

]
?
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Switching system

x ′ = A1x x ′ = A2x

x ′ = A3xx ′ = A4x

What about a loop ?
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Switching system

x ′ = A1x x ′ = A2x

x ′ = A3xx ′ = A4x

What about a loop ?

x1(t)

tt1 t2 t3 t4 t ′1 t ′2 t ′3 t ′4

A1 A2 A3 A4 A1 A2 A3 A4

Dynamics:
eA4t ′4eA3t ′3eA2t ′2eA1t ′1eA4t4eA3t3eA2t2eA1t1
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Switching system

x ′ = A1x x ′ = A2x

x ′ = A3xx ′ = A4x

Loop⇔ clique

x1(t)

tt1 t4 t3 t2t2=t3=0 t1=t2=0 t4=t1=0

A1 A4 A3 A2

Remark:
zero time dynamics (ti = 0) are allowed
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Switching system

x ′ = A1x x ′ = A2x

x ′ = A3xx ′ = A4x

x1(t)

tt1 t4 t3 t2

A1 A4 A3 A2

Dynamics:

any finite product of eAi t ; semigroup!

25 / 30



Switching system

x ′ = A1x x ′ = A2x

x ′ = A3xx ′ = A4x

x1(t)

tt1 t4 t3 t2

A1 A4 A3 A2

Problem:
C ∈ G ?

where G = ⟨semigroup generated by eAi t for all t ⩾ 0⟩
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Reachability for switching systems

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output: ∃t1, . . . , tk ⩾ 0 such that

n∏
i=1

eAi ti = C ?

Input: A1, . . . ,Ak ,C ∈ Qd×d matrices
Output:

C ∈ ⟨semigroup generated by eA1t , . . . ,eAk t : t ⩾ 0⟩ ?

Theorem (Ouaknine, P, Sous-Pinto, Worrell)

Both problems are:
▶ Undecidable in general
▶ Decidable when all the Ai commute
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Some words about the proof (commuting case)

Product Problem

∃t1, . . . , tk ⩾ 0 s.t.∏n
i=1 eAi ti = C ?

Semigroup Problem

C ∈ ⟨eA1t , . . . ,eAk t : t ⩾ 0⟩ ?

Integer Linear Programming

∃n ∈ Zd s.t. πBn ⩽ s

equivalent

reduce

! s of the form:

a0 + log(a1) + · · ·+ log(ak )

✓ B,a0, . . . ,ak are algebraic

How did we get from reals to integers with π ?

eit = α ⇔ t ∈ log(α) + 2πZ
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Integer Linear Programming

∃n ∈ Zd such that πBn ⩽ s ?

where s is a linear form in logarithms of algebraic numbers

Key ingredient: Diophantine approximations
▶ Finding integer points in cones: Kronecker’s theorem

▶ Compare linear forms in logs: Baker’s theorem
√

2 + log
√

3− 3 log
√

7 ?
= 1 + log 9− log

42
√

666
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Some words about the proof (general case)

Product Problem

∃t1, . . . , tk ⩾ 0 s.t.∏n
i=1 eAi ti = C ?

Semigroup Problem

C ∈ ⟨eA1t , . . . ,eAk t : t ⩾ 0⟩ ?

Hilbert’s Tenth Problem

∃n ∈ Zd s.t. p(n) = 0

reduce

reduce
Theorem (Matiyasevich)

Hilbert’s Tenth Problem is
undecidable
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Summary on reachability

Exact reachability is hard:
▶ Skolem/Positivity problem for linear loops (Open for 70 years)
▶ Every mild extension is undecidable
▶ Decidability requires very strong assumptions (commuting

matrices)

Continuous vs discrete setting
▶ similar results
▶ different techniques
▶ continuous setting can leverage powerful results/conjectures
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