Linear Dynamical Systems

Reachability
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Examples: while loop, Markov chain

Bull
market

market

Pour =0
Poear =1
Pstag := 0
market while ppyy < 1/2 do
3 Pbul Pbull
State: X = (Ppull, Poear: Pstag) € [0, 1] Poear | := A | Poear
Transitions: Pstag Pstag

09 0.15 0.25
A=10075 08 025 The loop terminates if and
0.025 0.05 0.5 only if the probability of a bull
— Linear dynamical system market is > 1/2.

Xn+1 = AXp
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Termination Linear Loops

Does this loop terminate?

x:=2"10y.=1
until ¢(x) do

=1z 1]

3/30



Termination Linear Loops

Does this loop terminate? ™
' P ' Reachability problem

X =2710 y.—1 ~ » initial point: xy € Q°,

until ¢(x) do > transition matrix: A € Q9%9,
X] - [3 ? {X > target set: S C RY
il 2l decide if 3n € N. A"xy € S.

i 1%
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Termination Linear Loops

. . ?
Does this loop terminate* Reachability problem
> initial point: xp € QY,

x:=2"10y.=1 ~

» transition matrix: A € Q9%9,

until x =42 and y = 36 do
X] - [3 (1) {X > target set: S C RY
y 7 4l decide if 3n € N. A"xg € S.

Natural choices for S:
> point:
dneN AnXO =Yy
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Termination Linear Loops

. . "
Does this loop terminate* Reachability problem

X =210 y .= 1 ~ » initial point: X € QY,

until x = y do > transition matrix: A € Q9%9,
X] _ [3 (1) {X > target set: S C R
y i 7] Y

decide if 3n e N. A"xg € S.
Natural choices for S:

> point:
IneNAXy =y
» affine subspace:
IneNMA"xy =b
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Termination Linear Loops

. . "
Does this loop terminate* Reachability problem

X =210 y .= 1 ~ » initial point: X € QY,

until x > y do > transition matrix: A € Q9%9,
X] _ [3 (1) {X > target set: S C R
y i 7] Y

decide if 3n e N. A"xg € S.
Natural choices for S:

> point:
IneNAXy =y
» affine subspace:
IneNMA"xy =b
» polyhedron:
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Termination Linear Loops

Does this loop terminate* Reachability problem
> initial point: xp € QY,

x:=2"10y.=1 ~

until x?y > 1 do > transition matrix: A € Q9%9,
X] - [3 (1) {X > target set: S C RY
y i 1V decide if 3n € N. A"xg € S.

Natural choices for S:
» (semi-)algebraic sets

IneNA'x =y dne N p(A'x) >0

> point:

» affine subspace:
IneNMA"xy =b

» polyhedron:
dne NMA"x) > b .



Termination Linear Loops

Does this loop terminate* Reachability problem
> initial point: xp € QY,

x:=2"10y.=1 ~

until X2y > 1 or x = y do > transition matrix: A € Q9%9,
X] - [3 (1) {X > target set: S C RY
y i 1V decide if 3n € N. A"xg € S.

Natural choices for S:
» (semi-)algebraic sets

IneNA'x =y dne N p(A'x) >0
» boolean combinations

> point:

» affine subspace:
IneNMA"xy =b
» polyhedron:
dne NMA"x) > b .



Termination Linear Loops

Does this loop terminate?

Reachability problem

x €[0,1],y €[1,2] ~
until ¢(x) do

{x

y

x}__{Z 0
vIm i g

Natural choices for S:

> initial point: xg € Q°,
> transition matrix: A € Q9%9,
> target set: S C RY

decide if 3n e N. A"xg € S.

» point: » (semi-)algebraic sets

dne N p(A'"x) >0
» boolean combinations

IneNAXy =y
» affine subspace:
IneNMA"xy =b
» polyhedron:

dne NMA"x) > b

> replace xp by an initial set X’

g e XINeNAX €S
VX € XAneNAxg € S
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What is decidable about linear loops?

Problem: given xg, A and S, decide if 3n € N such that A"xy € S.

4/30



What is decidable about linear loops?

Problem: given xg, A and S, decide if 3n € N such that A"xy € S.

Theorem (Orbit problem; Kannan and Lipton 1980, 1986)

Decidable in polynomial time when S is a singleton.

Already nontrivial proof using algebraic number theory!
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Problem: given xg, A and S, decide if 3n € N such that A"xy € S.

Theorem (Orbit problem; Kannan and Lipton 1980, 1986)

Decidable in polynomial time when S is a singleton.

Already nontrivial proof using algebraic number theory!

Theorem (Chonev, Ouaknine and Worrell, 2016)
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What is decidable about linear loops?

Problem: given xg, A and S, decide if 3n € N such that A"xy € S.

Theorem (Orbit problem; Kannan and Lipton 1980, 1986)

Decidable in polynomial time when S is a singleton.

Already nontrivial proof using algebraic number theory!

Theorem (Chonev, Ouaknine and Worrell, 2016)

Decidable (in NPF) when S is a linear subspace of dimension < 3.
Decidable (in PSPACE) when S is a polytope of dimension < 3.

Problem: given X', Aand S, decide if 3n € N such that A"X N S # @.

Theorem (Almagor, Ouaknine and Worrell, 2017)
Decidable (in PSPACE) when X', S are polytopes of dimension < 3.

Why do we need the dimension to be small?



From loops to recurrent sequences

Linear Loop

X = Xo
until 3x; — 7x> + 4x3 = 0 do
X = Ax
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From loops to recurrent sequences
Half-space reachability

a4

X = Xo Given x,y € Q9, A e Q9%9,
until y"x = 0 do x := Ax decide if 3n € N. yTA"x, = 0.
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From loops to recurrent sequences
Half-space reachability

X :=Xp Given x,y € Q9, A € Q9%9,
until y"x = 0 do x := Ax decide if 3n € N. yTA"xq = 0.

Consider the sequence u, = y T Ax.

Lemma
There exists ag, . ..,a4_1 € Q such that
Unig = 8d—1Unyg—1 + - -+ aoln, vn e N.

In other words, (un) is a linear recurrent sequence (LRS).
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From loops to recurrent sequences
Half-space reachability

X :=Xp Given x,y € Q9, A € Q9%9,
until y"x = 0 do x := Ax decide if 3n € N. yTA"xq = 0.

Consider the sequence u, = y T Ax.

Lemma
There exists ag, . ..,a4_1 € Q such that
Unig = 8d—1Unyg—1 + - -+ aoln, vn e N.

In other words, (un) is a linear recurrent sequence (LRS).
» Fibonacci: Fpip = Fpi1 + Fp
» Pell numbers: Ppip = 2P, 1 + Pp
» very common in combinatorics
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From loops to recurrent sequences

Half-space reachability

a4

X = Xo Given x,y € Q9, A e Q9%9,
until y"x = 0 do x := Ax decide if 3In € N. yTA"xy = 0.

Consider the sequence u, = y T Ax.

Lemma
There exists ag, . ..,a4_1 € Q such that
Unig = 8d—1Unyg—1 + - -+ aoln, vn e N.

In other words, (un)n is a linear recurrent sequence (LRS). Conversely,

Lemma

For any LRS (un)n, there exists xo, y and A such that u, = yT A"x,.



Skolem and posivity problems

Linear recurrent sequence (LRS) of order d:
Unyd = @d—1Unyd—1 + -+ aoln, vneN.
Remark: entirely determined by uy, ..., Ug_1 and ay, .. ., ag—1
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Linear recurrent sequence (LRS) of order d:
Untag = @d—1Untg—1 + -+ + aoln, vn e N.
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Skolem Problem
Given a LRS (un)n, decide if u, = 0 for some n € N.
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Skolem and posivity problems

Linear recurrent sequence (LRS) of order d:
Unyg = @d—1Unyg—1 + -+ + aoln, vn e N.
Remark: entirely determined by uy, ..., Uq—1 and ag, ..., a4_1

Skolem Problem
Given a LRS (un)n, decide if u, = 0 for some n € N.

This problem has been open for 70 years!

Positivity Problem

Given a LRS (up)n, decide if u, > 0 for all n € N.

Harder than Skolem
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Skolem-Mahler-Lech theorem

Skolem Problem
Given a LRS (up)n, decide if u, = 0 for some n € N.

Theorem (Skolem, Mahler, and Lech, 1933, 1953, 1957)

The set {n € N : u, = 0} is a union of finitely arithmetic progression
and a finite set.

pattern

finite set

~
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Skolem-Mahler-Lech theorem

Skolem Problem
Given a LRS (up)n, decide if u, = 0 for some n € N.

Theorem (Skolem, Mahler, and Lech, 1933, 1953, 1957)

The set {n € N : u, = 0} is a union of finitely arithmetic progression
and a finite set.

pattern

finite set

~

The regular patterm is computable. Nothing is known about the finite

set: the proof is nonconstructive and uses p-adic analysis.
7/30



Skolem in low dimension

Theorem (Mignotte, Shorey, Tijdeman; Vereshchagin, 1985)

The Skolem problem is decidable for LRS of order 4.
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Skolem in low dimension

Theorem (Mignotte, Shorey, Tijdeman; Vereshchagin, 1985)
The Skolem problem is decidable for LRS of order 4.

Theorem (Blondel and Portier, 2002)
The Skolem problem is NP-hard.

How can we show hardness without proving undecidability?
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Skolem in low dimension

Theorem (Mignotte, Shorey, TijJdeman; Vereshchagin, 1985)

The Skolem problem is decidable for LRS of order 4.

Theorem (Blondel and Portier, 2002)
The Skolem problem is NP-hard.

For any x € R, the (homogeneous Diophantine approximation) type
: n c
L(x) = mf{ceR. ‘x— E‘ < Wforsome n,meZ}.

Intuitively, if L(x) > 0 then x is badly approximable by rationals. Almost
nothing known for any concrete x except that L(x) € [0,1/+/5].

Theorem (Ouaknine and Worrell, 2013)

If Skolem is decidable at order 5 then one can approximate L(x) with
arbitrary precision for a large class of numbers x.
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Positivity and eventual posivity

Positivity Problem

Given a LRS (up)n, decide if u, > 0 for all n € N.

9/30



Positivity and eventual posivity

Positivity Problem

Given a LRS (up)n, decide if u, > 0 for all n € N.

Theorem (Laohakosol and Tangsupphathawat, 2009)

The positivity problem is decidable at order 3.

9/30



Positivity and eventual posivity

Positivity Problem

Given a LRS (up)n, decide if u, > 0 for all n € N.

Theorem (Laohakosol and Tangsupphathawat, 2009)

The positivity problem is decidable at order 3.

Ultimate positivity Problem

Given a LRS (up)p, decide if 3N € N, such that u, > 0 for all n > N.



Positivity and eventual posivity

Positivity Problem

Given a LRS (up)n, decide if u, > 0 for all n € N.

Theorem (Laohakosol and Tangsupphathawat, 2009)
The positivity problem is decidable at order 3.

Ultimate positivity Problem
Given a LRS (up)n, decide if 3N € N, such that u, > 0 for all n > N.

Theorem (Ouaknine and Worrell, 2014)

The ultimate positivity problem is decidable for simple* LRS. It is at
least as hard as deciding 3R.

“The associated characteristic polynomial has no repeated roots.




First-order queries on orbits

First-order orbit query (FOOQ): fully quantified first-order sentence
whose atomic proposition are of the form

p(x) =0, A"x € T (T semialgebraic set).
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First-order queries on orbits

First-order orbit query (FOOQ): fully quantified first-order sentence
whose atomic proposition are of the form

p(x) =0, A"x € T (T semialgebraic set).
Examples: 3n € N such that...
> A'x =y : A'x € {y}
> A'SNT#@:3xeRIxe SAAXeT
> A'SCT:¥xeR¥IxecS—AxeT

Theorem (Almagor, Ouaknine and Worrell, 2021)

Given A and ®(n) a FOOQ, it is decidable whether 3n € N.®(n) in
dimension < 3.
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MSO model-checking

Given x e Q9 and A e Q™" and Ty, ..., Tx C RY semialgebraic sets.
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Given x e Q9 and A e Q™" and Ty, ..., Tx C RY semialgebraic sets.
Let = = {0,1}* and define w € TN by
wh=(A"X€Ty,...,A"x € Tg).

Intuition: wj, records to which sets A"x belongs to at eact step n.
Problem: given an MSO formula V¥ over (N, <), decide whether w = V.

Examples: Pi(n) means A"x € T;
» 7;is reachable: 3n. P;i(n)
> whenever 7 is visited 7 is visited some point later:
vn: Pi(n) = (3m> n: Pi(m))
> in target 7; at every odd position:

JOCN: \formula to define odd numbers \/\ Vx:x e O= Pi(x
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MSO model-checking

Givenx e Q9and Ac Q™" and Ty, ..., Tx C RY semialgebraic sets.
Let = = {0,1}* and define w € TN by

wh=(A"X€Ty,...,A"x € Tg).

Intuition: wj, records to which sets A"x belongs to at eact step n.
Problem: given an MSO formula V¥ over (N, <), decide whether w = V.

Theorem (Karimov, Lefaucheux, Ouaknine, Purser, Varonka, Whiteland, Worrell)

This is decidable if all T; either have intrinsic dimension 1 or are
included in a subspace of dimension 3.

Examples: P;(n) means A"x € T;
» 7;is reachable: 3n. P;i(n)
» whenever 7; is visited 7; is visited some point later:
vn: Pi(n) = (3m> n: Pi(m))
> in target 7; at every odd position:

30 C N : |formula to define odd numbers|AVx : x € O = P;(x)
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Continuous linear dynamical systems

12/30



Continuous linear dynamical systems

Linear differential equation:
X'(t)=Ax(t)  x(0)=xo
Example:

X'(t) = 7x(t)

~ x(t) = et
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Continuous linear dynamical systems

Linear differential equation:
X'(t)=Ax(t)  x(0)=xo
Example:

oo {3 o [0

Xé(t): —X1(t) Xo X2

~ x(t) = et N {x1(t) sin(f)
Xo(t)= cos(t)
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Continuous linear dynamical systems

Linear differential equation:
X'(t)=Ax(t)  x(0)=xo
General solution form:
x(t) = e*xg

M= M"
where eM = Z =
n=0
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Continuous reachability

Continuous Skolem problem

Given x, y and A, decide if 3t € R such that x” e/ly = 0.
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Continuous reachability

Continuous Skolem problem

Given x, y and A, decide if 3t € R such that x” e/ly = 0.

Bounded continuous Skolem problem

Given x, y and A, decide if 37 < [0, 1] such that x"eAly = 0.

Continuous positivity Problem

Given x, y and A, decide whether x"e/ly > 0 for all t > 0.

Continuous positivity is inter-reducible with continuous Skolem.

The decidability of all these problems is also open!
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A link with number theory

Some reachability questions look like this :
JteR. 42t' =56 A e — el =9
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A link with number theory

Some reachability questions look like this (P, Q polynomials):
JteR. P(t)=0AQ(e")=0
Claim: impossible except possibly for t = 0 (easy to check)

Algebraic number: root of polynomial with integer coefficients
Transcendental number: not algebraic, e.g. e,

Theorem (Special case of Lindemann—Weierstrass)

If t is a nonzero algebraic number then €' is transcendental.

» P(t) =0 so tis algebraic (by definition)
» Lindemann—Weierstrass: e' transcendental (unless t = 0)
» hence Q(e!) # 0 (except maybe if t = 0)
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Exponential polynomial

In general,
d
xTefly = Z P;(t)eM!
i=1

where P; polynomial, \; € C eigenvalues of A.
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Exponential polynomial

In general,

d
xTefly = Z P;(t)eM!

i=1
where P; polynomial, \; € C eigenvalues of A.

Lindemann—Weierstrass’s theorem is not enough to solve the
continuous Skolem problem.

Theorem (Wilkie and Maclntyre)

If Schanuel’s conjecture is true, then, for each k € N, the first-order
theory of the structure (R,0,1, <, +, -, exp, cos [[o k], Sin [[0,x]) IS
decidable.

» algorithm always correct, only termination requires the conjecture
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Exponential polynomial

In general,
d
XTeAty _ Z Pl_(t)ek,'t
i=1

where P; polynomial, \; € C eigenvalues of A.

Lindemann—Weierstrass’s theorem is not enough to solve the
continuous Skolem problem.

Theorem (Wilkie and Maclntyre)

If Schanuel’s conjecture is true, then, for each k € N, the first-order
theory of the structure (R,0,1, <, +, -, exp, cos [[o k], Sin [[0,x]) IS
decidable.

> algorithm always correct, only termination requires the conjecture
» this makes many problem (inc. continuous Skolem) decidable!
What is Schanuel’s conjecture?

15/30



Schanuel’s conjecture

Schanuel’s conjecture

If z1,..., 2, that are linearly independent over Q, then at least n
numbers among z1, ..., 2z, €4,...,€* are algebraically independent.
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Schanuel’s conjecture

Schanuel’s conjecture

If z1,..., 2, that are linearly independent over Q, then at least n
numbers among z1, ..., 2z, €4,...,€* are algebraically independent.
Example: w and e are algebraically independent

zi=ln, 2o =1 ~ ef'=-1,e2=e.

Clearly zy and z are linearly independent over Q. So at least 2 of
im,1,—1, e are algebraically independent. But 1 is algebraic so = and e
are algebraically independent.

Summary:
» Schanuel implies that =, e,  + e, e, ... are transcendental.
» 7 and e are known to be transcendental
» 7+ eis not known to be transcendental
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Continuous reachability

Bounded continuous Skolem problem: given x, y and A, decide if
» unbounded: 3t € [0, 1] such that x"eA'y = 0.
» bounded: 3t € R such that x"e#ly = 0.

Theorem (Chonev, Ouaknine and Worrell, 2016)

The bounded continuous Skolem Problem is decidable subject to
Schanuel’s conjecture.
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Continuous reachability

Bounded continuous Skolem problem: given x, y and A, decide if
» unbounded: 3t € [0, 1] such that x"eA'y = 0.
» bounded: 3t € R such that x"e#ly = 0.

Theorem (Chonev, Ouaknine and Worrell, 2016)

The bounded continuous Skolem Problem is decidable subject to
Schanuel’s conjecture.

Theorem (Chonev, Ouaknine and Worrell, 2016)

If the (unbounded) continuous Skolem Problem is decidable then the
Diophantine-approximation types of all real algebraic numbers is
computable.

In other words: it requires new mathematics...
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More complicated programs

Linear loop with if

=Y

y =1
while y > x do
if y > 2x then

J-Eap
D . [—23 3} ﬂ
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Reachability is trivially
undecidable by simulating two
counter automata
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More complicated programs

Linear loop with if

=Y

y =1
while y > x do

if y > 2x then ~
x| .12 0] |x
yl [1 4 [y

else
x| |2 3||x
vl [—3 7] Y]

Reachability is trivially
undecidable by simulating two
counter automata

Nondeterminic loop

x =210
y =1
while true do

NI
-1 90
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More complicated programs
Linear loop with if Nondeterminic loop

x =210 x =210
y =1 y =1
while y > x do while true do
if y > 2x then o~ non deterministically do
x| .12 0] |x x| {2 0 |x
vl [1 4 [y M - [1 4] M
else or
x] [2 3][x x| 2 3||x
=% AL b= 150

Reachability is trivially
undecidable by simulating two
counter automata » Nondeterminic

» Overapproximate behaviours
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Example: 2D robot

Rotate arm by v:
X cos v
(y) < <sin¢
X cos
<y9> < <sinzp

—siny\ [(x
cos Y ) y
—siny\ (X
cos 1) ) Yo

State: 0 = (X, ¥, X, ¥)

Discretized actions:

> rotate arm by

» change arm length by §
~» Linear transformations

Change arm length by 4:
X X Xp
+6
(y) . <y) (Ye)
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Matrix problems

Input: A, C € Q9*9 matrices
Output: 3ne€ Nsuchthat A”=C 7

Example: 3n € N such that
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Matrix problems

Input: A, C € Q9% matrices

Output: 3n € Nsuchthat A" =C 7 v Decidable (PTIME)
Input: A, B, C € Q9% matrices

Output: 3n,m € N such that A"B™ =C ? v Decidable
Input: Ay, ..., Ak, C € Q9%9 matrices

Output: 3ny,...,n, € Nsuchthat [[< A" =C 7

Example: 3n,m, p € N such that
2 31" 31" [2 5]°_[81 260],
01 (0 1] [0 1 o 1]
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Matrix problems

Input: A, C € Q9% matrices
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Input: A, B, C € Q9% matrices
Output: 3n,m € N such that A"B™ =C ? v Decidable

Input: Ay, ..., Ak, C € Q9%9 matrices
Output: 3ny,...,n, € Nsuchthat [[< A" =C 7
v Decidable if A; commute x Undecidable in general

Input: A, ..., Ak, C € Q9% matrices
Output: C € (semigroup generated by A¢,... , Ac) ?

Semigroup: (Ay, ..., Ak) = all finite products of A¢, ..., Ak
Examples:
AlAsAy  AjAA1Ay  ASALASAY?
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Discrete reachability problems

Every nontrivial extension of simple linear loops seems to lead to
undecidable problems.
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Discrete reachability problems

Every nontrivial extension of simple linear loops seems to lead to
undecidable problems. What about the continuous setting?
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| cLosep Ir VR
. .« o N
OPEN R

IV
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| cLosep Ir Vr

OPEN R
TV
t
OPEN

I =0
lg = _RLCIR
Ve = —¢lr
@ =1
Ve = &Ir
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| cLosep Ir VR

OPEN R
TV
t
OPEN CLOSED

I =0 I =—4clr
Ip _RLCIR {R = _RLCIF('
Ve = —Llg Ve =—¢lr
Q = Ir Q =
Ve = &ir Ve = &lr
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| cLosep Ir
. . o .
OPEN
TV
t
OPEN ] CLOSED
I =g(V-Ve)
I =0 In = (V—=Vc) I =—4slr
Ip _RLCIR Vp:=V-Ve Ir = _RLC/R
Vg = —lC/R ¢ 1 Vg = —%/R
Q = Ip I =0 Q = Ir
Ve = &ir Ip == Ve Ve = &lr
Vg :::—-Vb
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Switching systems

— X = Ax ] X = Axx Restricted hybrid system:

» linear dynamics

+ > no guards (nondeterministic)
X' = Agx » no discrete updates

x1 (1) switch

—x = Asx

AN
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Switching systems

— X = Ax ] X = Axx Restricted hybrid system:

» linear dynamics

+ > no guards (nondeterministic)
X' = Agx » no discrete updates

x1 (1) switch

—x = Asx

AN

Dynamics:
eMls gAsls ghalo gAY
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Switching systems

— X = Ax ] X = Axx Restricted hybrid system:

» linear dynamics

+ > no guards (nondeterministic)
X' = Agx » no discrete updates

x1 (1) switch

—x = Asx

AN

Problem:
Mlighsligholo Attt — 0 2
What we control: t, b, f3, t4 € R>p
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Related work in the continuous case

Input: A, C € Q9*9 matrices
Output: 3t e Rsuchthate = C 7

Example: 3t € R such that

(s 1))
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Input: A, B, C € Q9% matrices
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Example: 3t, u € R such that
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Related work in the continuous case

Input: A, C € Q9*9 matrices
Output: 3t € Rsuch that At = C 7 v Decidable (PTIME)

Input: A, B, C € Q9% matrices
Output: 3t, u € N such that e#tefV = C 7 x Unknown

Example: 3t, u € R such that

oo 3o 95

24/30



Switching system

— X' = Ayx

A

~

X' = Asx

What about a loop ?

v

x' = Asx

A

x' = Asx
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Switching system

—

X' = Aix

~

X' = Asx

A

What about a loop ?

Dynamics:

eA4 fé eA3 fé eAg fé eA1 f1, eA4 Iy eA3 t3 eAg 1) eA1 t
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Switching system

— X = A xk—| X' = Axx

>< Loop <> clique

As

Az

f3 t4:t‘1 =0 b
Remark:
zero time dynamics (& = 0) are allowed
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Switching system

— X' = Ayx

~

X' = Asx

><\
I
>
5
>
><\
I
™
w
>

Dynamics:

any finite product of %'~ semigroup!
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Switching system

— X' = Aix

~

X' = Asx

><\
I
>
5
>
><\
I
™
w
>

Problem:

Ceg 7

where G = (semigroup generated by e*! for all t > 0)
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Reachability for switching systems

Input: Ay, ..., Ak, C € Q9% matrices
Output: 3t,..., t > 0 such that

n
[[¢*=c
i=1

Input: A, ..., Ak, C € Q9% matrices
Output:

C e (semigroup generated by e*! ... %! t>0) ?

Theorem (Ouaknine, P, Sous-Pinto, Worrell)

Both problems are:
» Undecidable in general
» Decidable when all the A; commute
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Some words about the proof (commuting case)

Product Problem

- = 0 st equivalent Semigroup Problem
;.. k=08t < >
H1'.71eAft/,-(:C 2 Ce(eM,. ..., e t>0) ?
i .
reduce

Integer Linear Programming

dneZ9st. 71Bn<s
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Some words about the proof (commuting case)

Product Problem

equivalent Semigroup Problem
dfy,... .tk >0st |« > A ;
H7:16A"t":C ? CE(G‘,,eAkt20> ?
reduce
A s of the form:
Integer Linear Programming ap + log(at) + - - - + log(ax)

dnez9st 7Bn< s v B.ao, ... ax are algebraic
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Some words about the proof (commuting case)

Product Problem

equivalent Semigroup Problem
Ht%,...;‘tk>Os.t. < ’Ce<eA1’ 15 0) 7
Hi:1eiti:C ? Sy > !
reduce
A s of the form:
Integer Linear Programming ap + log(at) + - - - + log(ax)
dnez9st 7Bn< s v B.ao, ... ax are algebraic

How did we get from reals to integers with 7 ?

e'=a o telog(a)+2rZ

27/30



Integer Linear Programming

Ine zZ%suchthattBn<s ?
where s is a linear form in logarithms of algebraic numbers
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Integer Linear Programming

Ine zZ%suchthattBn<s ?
where s is a linear form in logarithms of algebraic numbers

Key ingredient: Diophantine approximations

» Finding integer points in cones: Kronecker’s theorem
® ® ) ) o,

v’ 7

4
® ® ) o,’,) @
¢z 7
¢ 7
7 7
7 7
4
° ° ° ° °
° ° ° °
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Integer Linear Programming

dnez9suchthattBn<s ?
where s is a linear form in logarithms of algebraic numbers

Key ingredient: Diophantine approximations

» Finding integer points in cones: Kronecker’s theorem
® ® ) ) o,

R
[ ] [ ] ([ ] e,’,” o
s
s
A
,
’
[ J [ J [ ] [ ] [ ]
[ J [ J [ ] [ ]
[ J [ J [ ] [ ] [ ]

» Compare linear forms in logs: Baker’s theorem
V2 4+ 1ogV3 —3logV7 = 1+1og9—log U666 .



Some words about the proof (general case)

Product Problem

reduce

Semigroup Problem

dfy, ..., = 0 s.t.
[l et =C 7

reduce

Hilbert's Tenth Problem

dnez9s.t. p(n)=0

TloeeMt. . eMtit=0) ?

Theorem (Matiyasevich)

Hilbert's Tenth Problem is
undecidable
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Summary on reachability

Exact reachability is hard:
» Skolem/Positivity problem for linear loops (Open for 70 years)
» Every mild extension is undecidable

» Decidability requires very strong assumptions (commuting
matrices)

Continuous vs discrete setting
» similar results
> different techniques
> continuous setting can leverage powerful results/conjectures
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