
Computational complexity of solving polynomial
differential equations over unbounded domains

Amaury Pouly
Joint work with Daniel Graça

10 May 2018

−∞ / 19

Ordinary Differential Equations (ODEs)

System of ODEs:
y1(0)= y0,1

...
yn(0)= y0,n


y ′1(t)= f1(y1(t), . . . , yn(t), t)

...
y ′n(t)= fn(y1(t), . . . , yn(t), t)

More compactly:

y(0) = y0 y ′(t) = f (y(t), t)

Get rid of the time:{
y(0) = y0
z(0) = 0

{
y ′(t) = f (y(t), z(t))
z ′(t) = 1

In this talk: autonomous first order explicit system of ODEs

y(0) = y0 y ′ = f (y) y : (a,b)→ Rn

1 / 19

Ordinary Differential Equations (ODEs)

System of ODEs:
y1(0)= y0,1

...
yn(0)= y0,n


y ′1(t)= f1(y1(t), . . . , yn(t), t)

...
y ′n(t)= fn(y1(t), . . . , yn(t), t)

More compactly:

y(0) = y0 y ′(t) = f (y(t), t)

Get rid of the time:{
y(0) = y0
z(0) = 0

{
y ′(t) = f (y(t), z(t))
z ′(t) = 1

In this talk: autonomous first order explicit system of ODEs

y(0) = y0 y ′ = f (y) y : (a,b)→ Rn

1 / 19

Ordinary Differential Equations (ODEs)

System of ODEs:
y1(0)= y0,1

...
yn(0)= y0,n


y ′1(t)= f1(y1(t), . . . , yn(t), t)

...
y ′n(t)= fn(y1(t), . . . , yn(t), t)

More compactly:

y(0) = y0 y ′(t) = f (y(t), t)

Get rid of the time:{
y(0) = y0
z(0) = 0

{
y ′(t) = f (y(t), z(t))
z ′(t) = 1

In this talk: autonomous first order explicit system of ODEs

y(0) = y0 y ′ = f (y) y : (a,b)→ Rn

1 / 19

A word on computability for real functions

Classical computability (Turing machine): compute on words, integers,
rationals, ...

Real computability: at least two different notions
BSS (Blum-Shub-Smale) machine: register machine that can
store arbitrary real numbers and that can compute rational
functions over reals at unit cost. Comparisons between reals
are allowed.
Computable Analysis: reals are represented as converging
Cauchy sequences, computations are carried out by rational
approximations using Turing machines. Comparisons between
reals is not decidable in general. Computable implies
continuous.

In this talk (unless specified)
We use Computable Analysis.

2 / 19

A word on computability for real functions

Classical computability (Turing machine): compute on words, integers,
rationals, ...

Real computability: at least two different notions
BSS (Blum-Shub-Smale) machine: register machine that can
store arbitrary real numbers and that can compute rational
functions over reals at unit cost. Comparisons between reals
are allowed.

Computable Analysis: reals are represented as converging
Cauchy sequences, computations are carried out by rational
approximations using Turing machines. Comparisons between
reals is not decidable in general. Computable implies
continuous.

In this talk (unless specified)
We use Computable Analysis.

2 / 19

A word on computability for real functions

Classical computability (Turing machine): compute on words, integers,
rationals, ...

Real computability: at least two different notions
BSS (Blum-Shub-Smale) machine: register machine that can
store arbitrary real numbers and that can compute rational
functions over reals at unit cost. Comparisons between reals
are allowed.
Computable Analysis: reals are represented as converging
Cauchy sequences, computations are carried out by rational
approximations using Turing machines. Comparisons between
reals is not decidable in general. Computable implies
continuous.

In this talk (unless specified)
We use Computable Analysis.

2 / 19

A word on computability for real functions

Classical computability (Turing machine): compute on words, integers,
rationals, ...

Real computability: at least two different notions
BSS (Blum-Shub-Smale) machine: register machine that can
store arbitrary real numbers and that can compute rational
functions over reals at unit cost. Comparisons between reals
are allowed.
Computable Analysis: reals are represented as converging
Cauchy sequences, computations are carried out by rational
approximations using Turing machines. Comparisons between
reals is not decidable in general. Computable implies
continuous.

In this talk (unless specified)
We use Computable Analysis.

2 / 19

Computability of solutions: the theory

Let I = (a,b) and f ∈ C0(Rd). Assume y ∈ C1(I,Rd) satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)). (1)

Given t ∈ I and n ∈ N, can we compute q ∈ Qd s.t. ‖q − y(t)‖ 6 2−n ?

Theorem (Pour-El and Richards)
There exists a computable (hence continuous) f such that none of the
solutions to (1) is computable.

Theorem (Ruohonen)
If f is computable and (1) has a unique solution, then it is computable.

Theorem (Buescu, Campagnolo and Graça)

Computing the maximum interval of life (or deciding if it is bounded) is
undecidable, even if f is a polynomial.

Theorem (Collins and Graça)

The map f 7→ y(·) for those f where y is unique, is computable.

3 / 19

Computability of solutions: the theory

Let I = (a,b) and f ∈ C0(Rd). Assume y ∈ C1(I,Rd) satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)). (1)

Is y computable?

Theorem (Pour-El and Richards)
There exists a computable (hence continuous) f such that none of the
solutions to (1) is computable.

Theorem (Ruohonen)
If f is computable and (1) has a unique solution, then it is computable.

Theorem (Buescu, Campagnolo and Graça)

Computing the maximum interval of life (or deciding if it is bounded) is
undecidable, even if f is a polynomial.

Theorem (Collins and Graça)

The map f 7→ y(·) for those f where y is unique, is computable.

3 / 19

Computability of solutions: the theory

Let I = (a,b) and f ∈ C0(Rd). Assume y ∈ C1(I,Rd) satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)). (1)

Is y computable?
Theorem (Pour-El and Richards)
There exists a computable (hence continuous) f such that none of the
solutions to (1) is computable.

Theorem (Ruohonen)
If f is computable and (1) has a unique solution, then it is computable.

Theorem (Buescu, Campagnolo and Graça)

Computing the maximum interval of life (or deciding if it is bounded) is
undecidable, even if f is a polynomial.

Theorem (Collins and Graça)

The map f 7→ y(·) for those f where y is unique, is computable.

3 / 19

Computability of solutions: the theory

Let I = (a,b) and f ∈ C0(Rd). Assume y ∈ C1(I,Rd) satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)). (1)

Is y computable?
Theorem (Pour-El and Richards)
There exists a computable (hence continuous) f such that none of the
solutions to (1) is computable.

Theorem (Ruohonen)
If f is computable and (1) has a unique solution, then it is computable.

Theorem (Buescu, Campagnolo and Graça)

Computing the maximum interval of life (or deciding if it is bounded) is
undecidable, even if f is a polynomial.

Theorem (Collins and Graça)

The map f 7→ y(·) for those f where y is unique, is computable.

3 / 19

Computability of solutions: the theory

Let I = (a,b) and f ∈ C0(Rd). Assume y ∈ C1(I,Rd) satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)). (1)

Is y computable?
Theorem (Pour-El and Richards)
There exists a computable (hence continuous) f such that none of the
solutions to (1) is computable.

Theorem (Ruohonen)
If f is computable and (1) has a unique solution, then it is computable.

Theorem (Buescu, Campagnolo and Graça)

Computing the maximum interval of life (or deciding if it is bounded) is
undecidable, even if f is a polynomial.

Theorem (Collins and Graça)

The map f 7→ y(·) for those f where y is unique, is computable.

3 / 19

Computability of solutions: the theory

Let I = (a,b) and f ∈ C0(Rd). Assume y ∈ C1(I,Rd) satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)). (1)

Is y computable?
Theorem (Pour-El and Richards)
There exists a computable (hence continuous) f such that none of the
solutions to (1) is computable.

Theorem (Ruohonen)
If f is computable and (1) has a unique solution, then it is computable.

Theorem (Buescu, Campagnolo and Graça)

Computing the maximum interval of life (or deciding if it is bounded) is
undecidable, even if f is a polynomial.

Theorem (Collins and Graça)

The map f 7→ y(·) for those f where y is unique, is computable.
3 / 19

Complexity of solutions: typical textbook result

Assume f Lipschitz and computable, and y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)).

Theorem (Folklore, simplified)
The classical Runge–Kutta method is a fourth-order method: given
a time t ∈ I and a time step h, the algorithm returns q ∈ Qd s.t.
‖q − y(t)‖ 6 O

(
h4) and has running time O

(1
h4

)
.

Usually followed by benchmarks.

Problems with this approach:
Accuracy of the result? O

(
h4) 6 Ah4 but A is unknown

Same problem with complexity
f is Lipschitz: typically only holds over compact domains

4 / 19

Complexity of solutions: typical textbook result

Assume f Lipschitz and computable, and y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)).

Theorem (Folklore, simplified)
The classical Runge–Kutta method is a fourth-order method:

given
a time t ∈ I and a time step h, the algorithm returns q ∈ Qd s.t.
‖q − y(t)‖ 6 O

(
h4) and has running time O

(1
h4

)
.

Usually followed by benchmarks.

Problems with this approach:
Accuracy of the result? O

(
h4) 6 Ah4 but A is unknown

Same problem with complexity
f is Lipschitz: typically only holds over compact domains

4 / 19

Complexity of solutions: typical textbook result

Assume f Lipschitz and computable, and y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)).

Theorem (Folklore, simplified)
The classical Runge–Kutta method is a fourth-order method: given
a time t ∈ I and a time step h, the algorithm returns q ∈ Qd s.t.
‖q − y(t)‖ 6 O

(
h4) and has running time O

(1
h4

)
.

Usually followed by benchmarks.

Problems with this approach:
Accuracy of the result? O

(
h4) 6 Ah4 but A is unknown

Same problem with complexity
f is Lipschitz: typically only holds over compact domains

4 / 19

Complexity of solutions: typical textbook result

Assume f Lipschitz and computable, and y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)).

Theorem (Folklore, simplified)
The classical Runge–Kutta method is a fourth-order method: given
a time t ∈ I and a time step h, the algorithm returns q ∈ Qd s.t.
‖q − y(t)‖ 6 O

(
h4) and has running time O

(1
h4

)
.

Usually followed by benchmarks.

Problems with this approach:
Accuracy of the result? O

(
h4) 6 Ah4 but A is unknown

Same problem with complexity
f is Lipschitz: typically only holds over compact domains

4 / 19

Complexity of solutions: typical textbook result

Assume f Lipschitz and computable, and y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)).

Theorem (Folklore, simplified)
The classical Runge–Kutta method is a fourth-order method: given
a time t ∈ I and a time step h, the algorithm returns q ∈ Qd s.t.
‖q − y(t)‖ 6 O

(
h4) and has running time O

(1
h4

)
.

Usually followed by benchmarks.

Problems with this approach:
Accuracy of the result? O

(
h4) 6 Ah4 but A is unknown

Same problem with complexity
f is Lipschitz: typically only holds over compact domains

4 / 19

Complexity of solutions: typical textbook result

Assume f computable and K -Lipschitz, and y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)).

Theorem (Folklore, simplified)
Euler’s method global truncation error is:

hM
2K

(
eKt − 1

)

= O (h)

where M = sup
u∈I

∥∥y ′′(u)
∥∥ .

In particular it has order 1 over compact time (I) domains.

This bound is “useless” unless:
you know K : f must be Lipschitz on “{y(u) : u ∈ I}” or globally
you know M: but it depends on y !!

Chicken-and-egg problem: the constant in the accuracy bound
depends on computing the solution.

5 / 19

Complexity of solutions: typical textbook result

Assume f computable and K -Lipschitz, and y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)).

Theorem (Folklore, simplified)
Euler’s method global truncation error is:

hM
2K

(
eKt − 1

)

= O (h)

where M = sup
u∈I

∥∥y ′′(u)
∥∥ .

In particular it has order 1 over compact time (I) domains.

This bound is “useless” unless:
you know K : f must be Lipschitz on “{y(u) : u ∈ I}” or globally
you know M: but it depends on y !!

Chicken-and-egg problem: the constant in the accuracy bound
depends on computing the solution.

5 / 19

Complexity of solutions: typical textbook result

Assume f computable and K -Lipschitz, and y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)).

Theorem (Folklore, simplified)
Euler’s method global truncation error is:

hM
2K

(
eKt − 1

)
= O (h) where M = sup

u∈I

∥∥y ′′(u)
∥∥ .

In particular it has order 1 over compact time (I) domains.

This bound is “useless” unless:
you know K : f must be Lipschitz on “{y(u) : u ∈ I}” or globally
you know M: but it depends on y !!

Chicken-and-egg problem: the constant in the accuracy bound
depends on computing the solution.

5 / 19

Complexity of solutions: typical textbook result

Assume f computable and K -Lipschitz, and y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)).

Theorem (Folklore, simplified)
Euler’s method global truncation error is:

hM
2K

(
eKt − 1

)
= O (h) where M = sup

u∈I

∥∥y ′′(u)
∥∥ .

In particular it has order 1 over compact time (I) domains.

This bound is “useless” unless:
you know K : f must be Lipschitz on “{y(u) : u ∈ I}” or globally

you know M: but it depends on y !!
Chicken-and-egg problem: the constant in the accuracy bound
depends on computing the solution.

5 / 19

Complexity of solutions: typical textbook result

Assume f computable and K -Lipschitz, and y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)).

Theorem (Folklore, simplified)
Euler’s method global truncation error is:

hM
2K

(
eKt − 1

)
= O (h) where M = sup

u∈I

∥∥y ′′(u)
∥∥ .

In particular it has order 1 over compact time (I) domains.

This bound is “useless” unless:
you know K : f must be Lipschitz on “{y(u) : u ∈ I}” or globally
you know M: but it depends on y !!

Chicken-and-egg problem: the constant in the accuracy bound
depends on computing the solution.

5 / 19

Complexity of solutions: the rescaling “myth”

Assume f computable and K -Lipschitz, and y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)) with unbounded I = [0,+∞).

To compute y(T) we could:
1 Define z(u) = y(Tu), then

y(T) = z(1)

2 Observe that

z ′(u) = Tf (z) =: fT (z)

3 Solve z(0) = y0, z ′ = fT (z)
[0,1] is a compact!

Bad analysis: y(T) = z(1)
Accuracy: O(h) (compact)

Better analysis:
Accuracy: AKT ,Mz h where

KT = Lipschitz constant of fT
Mz = max

u∈[0,1]

∥∥z ′′(u)
∥∥ = max

t∈[0,T]

∥∥y ′′(t)
∥∥

Note: now f really needs to be
globally Lipschitz.

Conclusion
This tells us nothing about the complexity of the problem.

6 / 19

Complexity of solutions: the rescaling “myth”

Assume f computable and K -Lipschitz, and y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)) with unbounded I = [0,+∞).

To compute y(T) we could:
1 Define z(u) = y(Tu), then

y(T) = z(1)

2 Observe that

z ′(u) = Tf (z) =: fT (z)

3 Solve z(0) = y0, z ′ = fT (z)
[0,1] is a compact!

Bad analysis: y(T) = z(1)
Accuracy: O(h) (compact)

Better analysis:
Accuracy: AKT ,Mz h where

KT = Lipschitz constant of fT
Mz = max

u∈[0,1]

∥∥z ′′(u)
∥∥ = max

t∈[0,T]

∥∥y ′′(t)
∥∥

Note: now f really needs to be
globally Lipschitz.

Conclusion
This tells us nothing about the complexity of the problem.

6 / 19

Complexity of solutions: the rescaling “myth”

Assume f computable and K -Lipschitz, and y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)) with unbounded I = [0,+∞).

To compute y(T) we could:
1 Define z(u) = y(Tu), then

y(T) = z(1)

2 Observe that

z ′(u) = Tf (z) =: fT (z)

3 Solve z(0) = y0, z ′ = fT (z)
[0,1] is a compact!

Bad analysis: y(T) = z(1)
Accuracy: O(h) (compact)

Better analysis:
Accuracy: AKT ,Mz h where

KT = Lipschitz constant of fT
Mz = max

u∈[0,1]

∥∥z ′′(u)
∥∥ = max

t∈[0,T]

∥∥y ′′(t)
∥∥

Note: now f really needs to be
globally Lipschitz.

Conclusion
This tells us nothing about the complexity of the problem.

6 / 19

Complexity of solutions: the rescaling “myth”

Assume f computable and K -Lipschitz, and y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)) with unbounded I = [0,+∞).

To compute y(T) we could:
1 Define z(u) = y(Tu), then

y(T) = z(1)

2 Observe that

z ′(u) = Tf (z) =: fT (z)

3 Solve z(0) = y0, z ′ = fT (z)
[0,1] is a compact!

Bad analysis: y(T) = z(1)
Accuracy: O(h) (compact)

Better analysis:
Accuracy: AKT ,Mz h where

KT = Lipschitz constant of fT
Mz = max

u∈[0,1]

∥∥z ′′(u)
∥∥ = max

t∈[0,T]

∥∥y ′′(t)
∥∥

Note: now f really needs to be
globally Lipschitz.

Conclusion
This tells us nothing about the complexity of the problem.

6 / 19

Complexity of solutions: the rescaling “myth”

Assume f computable and K -Lipschitz, and y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)) with unbounded I = [0,+∞).

To compute y(T) we could:
1 Define z(u) = y(Tu), then

y(T) = z(1)

2 Observe that

z ′(u) = Tf (z) =: fT (z)

3 Solve z(0) = y0, z ′ = fT (z)
[0,1] is a compact!

Bad analysis: y(T) = z(1)
Accuracy: O(h) (compact)

Better analysis:
Accuracy: AKT ,Mz h where

KT = Lipschitz constant of fT
Mz = max

u∈[0,1]

∥∥z ′′(u)
∥∥ = max

t∈[0,T]

∥∥y ′′(t)
∥∥

Note: now f really needs to be
globally Lipschitz.

Conclusion
This tells us nothing about the complexity of the problem.

6 / 19

Complexity of solutions: the rescaling “myth”

Assume f computable and K -Lipschitz, and y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)) with unbounded I = [0,+∞).

To compute y(T) we could:
1 Define z(u) = y(Tu), then

y(T) = z(1)

2 Observe that

z ′(u) = Tf (z) =: fT (z)

3 Solve z(0) = y0, z ′ = fT (z)
[0,1] is a compact!

Bad analysis: y(T) = z(1)
Accuracy: O(h) (compact)

Better analysis:
Accuracy: AKT ,Mz h where

KT = Lipschitz constant of fT
Mz = max

u∈[0,1]

∥∥z ′′(u)
∥∥ = max

t∈[0,T]

∥∥y ′′(t)
∥∥

Note: now f really needs to be
globally Lipschitz.

Conclusion
This tells us nothing about the complexity of the problem.

6 / 19

Side note on practical methods

Assume y : [0,1]→ Rd satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

There exists methods of the form:
given h and t , compute q ∈ Qd and ε > 0 such that ‖y(t)− q‖ 6 ε with
the guarantee that ε→ 0 as h→ 0.

These methods have no upper bound on complexity.

They usually rely on interval arithmetic.

7 / 19

Nonuniform complexity-theoretic approach

Assume y : [0,1]→ Rd satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y
computable arbitrary computable if unique

PTIME arbitrary computable
PTIME + Lipschitz PSPACE-hard PSPACE

PTIME + C1 PSPACE-hard PSPACE
PTIME + Ck , k > 2 CH-hard PSPACE
PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yd (0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yd−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

8 / 19

Nonuniform complexity-theoretic approach

Assume y : [0,1]→ Rd satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y
computable arbitrary computable if unique

PTIME arbitrary computable

PTIME + Lipschitz PSPACE-hard PSPACE
PTIME + C1 PSPACE-hard PSPACE

PTIME + Ck , k > 2 CH-hard PSPACE
PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yd (0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yd−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

8 / 19

Nonuniform complexity-theoretic approach

Assume y : [0,1]→ Rd satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y
computable arbitrary computable if unique

PTIME arbitrary computable
PTIME + Lipschitz PSPACE-hard PSPACE

PTIME + C1 PSPACE-hard PSPACE
PTIME + Ck , k > 2 CH-hard PSPACE
PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yd (0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yd−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

8 / 19

Nonuniform complexity-theoretic approach

Assume y : [0,1]→ Rd satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y
computable arbitrary computable if unique

PTIME arbitrary computable
PTIME + Lipschitz PSPACE-hard PSPACE

PTIME + C1 PSPACE-hard PSPACE

PTIME + Ck , k > 2 CH-hard PSPACE
PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yd (0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yd−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

8 / 19

Nonuniform complexity-theoretic approach

Assume y : [0,1]→ Rd satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y
computable arbitrary computable if unique

PTIME arbitrary computable
PTIME + Lipschitz PSPACE-hard PSPACE

PTIME + C1 PSPACE-hard PSPACE
PTIME + Ck , k > 2 CH-hard PSPACE

PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yd (0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yd−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

8 / 19

Nonuniform complexity-theoretic approach

Assume y : [0,1]→ Rd satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y
computable arbitrary computable if unique

PTIME arbitrary computable
PTIME + Lipschitz PSPACE-hard PSPACE

PTIME + C1 PSPACE-hard PSPACE
PTIME + Ck , k > 2 CH-hard PSPACE
PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yd (0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yd−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

8 / 19

Nonuniform complexity-theoretic approach

Assume y : [0,1]→ Rd satisfies ∀t ∈ [0,1]:

y(0) = 0, y ′(t) = f (y(t)).

Assumption on f Lower bound on y Upper bound on y
computable arbitrary computable if unique

PTIME arbitrary computable
PTIME + Lipschitz PSPACE-hard PSPACE

PTIME + C1 PSPACE-hard PSPACE
PTIME + Ck , k > 2 CH-hard PSPACE
PTIME + analytic — PTIME

But those results can be deceiving...
y1(0)= 1
y2(0)= 1

...
yd (0)= 1


y ′1= y1
y ′2= y1y2
...

y ′n= yd−1yn

→ y(t) = O

(
ee. .

.e
t)

y is PTIME over [0,1]

8 / 19

Nonuniform complexity: limitation

Example:

f PTIME analytic ⇒ y PTIME ⇒ y(t)± 2−n in time Ank

But:

“Hides” some of the complexity: A,k could be arbitrarily horrible
depending on the dimension and f .
Nonconstructive: might be a different algrithm for each f , or
depend on uncomputable constants.

Conclusion
This only slightly better than the previous approach.

9 / 19

Nonuniform complexity: limitation

Example:

f PTIME analytic ⇒ y PTIME ⇒ y(t)± 2−n in time Ank

But:
“Hides” some of the complexity: A,k could be arbitrarily horrible
depending on the dimension and f .

Nonconstructive: might be a different algrithm for each f , or
depend on uncomputable constants.

Conclusion
This only slightly better than the previous approach.

9 / 19

Nonuniform complexity: limitation

Example:

f PTIME analytic ⇒ y PTIME ⇒ y(t)± 2−n in time Ank

But:
“Hides” some of the complexity: A,k could be arbitrarily horrible
depending on the dimension and f .
Nonconstructive: might be a different algrithm for each f , or
depend on uncomputable constants.

Conclusion
This only slightly better than the previous approach.

9 / 19

Nonuniform complexity: limitation

Example:

f PTIME analytic ⇒ y PTIME ⇒ y(t)± 2−n in time Ank

But:
“Hides” some of the complexity: A,k could be arbitrarily horrible
depending on the dimension and f .
Nonconstructive: might be a different algrithm for each f , or
depend on uncomputable constants.

Conclusion
This only slightly better than the previous approach.

9 / 19

Uniform (operator) complexity approach

Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rd → Rd is Then y(t)± 2−n can be computed in time

T (t ,n,Kd ,Kf)

where
Kd : depends on the dimension d
Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T
computable arbitrary computable if unique

PTIME + analytic arbitrary computable
PTIME + polynomial arbitrary computable

PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f only.

10 / 19

Uniform (operator) complexity approach

Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rd → Rd is Then y(t)± 2−n can be computed in time

T (t ,n,Kd ,Kf)

where
Kd : depends on the dimension d
Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T

computable arbitrary computable if unique
PTIME + analytic arbitrary computable

PTIME + polynomial arbitrary computable
PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f only.

10 / 19

Uniform (operator) complexity approach

Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rd → Rd is Then y(t)± 2−n can be computed in time

T (t ,n,Kd ,Kf)

where
Kd : depends on the dimension d
Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T
computable arbitrary computable if unique

PTIME + analytic arbitrary computable
PTIME + polynomial arbitrary computable

PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f only.

10 / 19

Uniform (operator) complexity approach

Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rd → Rd is Then y(t)± 2−n can be computed in time

T (t ,n,Kd ,Kf)

where
Kd : depends on the dimension d
Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T
computable arbitrary computable if unique

PTIME + analytic arbitrary computable

PTIME + polynomial arbitrary computable
PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f only.

10 / 19

Uniform (operator) complexity approach

Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rd → Rd is Then y(t)± 2−n can be computed in time

T (t ,n,Kd ,Kf)

where
Kd : depends on the dimension d
Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T
computable arbitrary computable if unique

PTIME + analytic arbitrary computable
PTIME + polynomial arbitrary computable

PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f only.

10 / 19

Uniform (operator) complexity approach

Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rd → Rd is Then y(t)± 2−n can be computed in time

T (t ,n,Kd ,Kf)

where
Kd : depends on the dimension d
Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T
computable arbitrary computable if unique

PTIME + analytic arbitrary computable
PTIME + polynomial arbitrary computable

PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f only.

10 / 19

Uniform (operator) complexity approach

Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rd → Rd is Then y(t)± 2−n can be computed in time

T (t ,n,Kd ,Kf)

where
Kd : depends on the dimension d
Kf : depends on f and its representation

Assumption on f Lower bound on T Upper bound on T
computable arbitrary computable if unique

PTIME + analytic arbitrary computable
PTIME + polynomial arbitrary computable

PTIME + linear — exponential?

Problem: we cannot predict the behaviour of y based on f only.
10 / 19

Are you confused?

You should be!
practical methods: “no complexity”
nonuniform complexity: misleading
uniform worst-case complexity: everything looks hard

Question: are we looking at the problem the wrong way?

11 / 19

Are you confused?

You should be!
practical methods: “no complexity”
nonuniform complexity: misleading
uniform worst-case complexity: everything looks hard

Question: are we looking at the problem the wrong way?

11 / 19

Parametrized complexity approach

Goal: Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rd → Rd is nice. Then y(t)± 2−n can be computed in time

poly(t ,n,Kd ,Kf ,Ky (t))

Kd : depends on the dimension d
Kf : depends on f and its representation
Ky : is a reasonable parameter of y that must be unknown to the
algorithm (i.e. not part of the input)

Important differences with “textbook” approach:
Result is always correct
Ky not assumed to be known (e.g. K and M of previous slides)

12 / 19

Parametrized complexity approach

Goal: Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rd → Rd is nice. Then y(t)± 2−n can be computed in time

poly(t ,n,Kd ,Kf ,Ky (t))

Kd : depends on the dimension d
Kf : depends on f and its representation
Ky : is a reasonable parameter of y that must be unknown to the
algorithm (i.e. not part of the input)

Important differences with “textbook” approach:
Result is always correct
Ky not assumed to be known (e.g. K and M of previous slides)

12 / 19

Parametrized complexity approach

Goal: Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = f (y(t)),

where f : Rd → Rd is nice. Then y(t)± 2−n can be computed in time

poly(t ,n,Kd ,Kf ,Ky (t))

Kd : depends on the dimension d
Kf : depends on f and its representation
Ky : is a reasonable parameter of y that must be unknown to the
algorithm (i.e. not part of the input)

Important differences with “textbook” approach:
Result is always correct
Ky not assumed to be known (e.g. K and M of previous slides)

12 / 19

Parametrized complexity result

Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = p(y(t)),

where p : Rd → Rd is vector of multivariate polynomials.
Theorem (TCS 2016)

Assuming t ∈ I, computing y(t)± 2−n takes time:

poly(deg p, log Σp,n, `y (t))d

where:
Σp: sum of absolute value of coefficients of p

`y (t): “length” of y over [0, t]

`y (t) =

∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

Note: the algorithm find `(t) automatically, it is not part of the input

13 / 19

Parametrized complexity result

Assume y : I → Rd satisfies ∀t ∈ I:

y(0) = 0, y ′(t) = p(y(t)),

where p : Rd → Rd is vector of multivariate polynomials.
Theorem (TCS 2016)

Assuming t ∈ I, computing y(t)± 2−n takes time:

poly(deg p, log Σp,n, `y (t))d

where:
Σp: sum of absolute value of coefficients of p
`y (t): “length” of y over [0, t]

`y (t) =

∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

Note: the algorithm find `(t) automatically, it is not part of the input
13 / 19

Euler method

y(0) = 0 y ′(t) = p(y(t))

Time step h, discretize and compute ỹ i ≈ y(ih):

y(t + h) ≈ y(t) + hy ′(t) ; ỹ i+1 = ỹ i + hp(ỹ i)

Linear approximation at each step.

Does not work well in practice.

14 / 19

Euler method

y(0) = 0 y ′(t) = p(y(t))

Time step h, discretize and compute ỹ i ≈ y(ih):

y(t + h) ≈ y(t) + hy ′(t) ; ỹ i+1 = ỹ i + hp(ỹ i)

Linear approximation at each step. Does not work well in practice.

14 / 19

Taylor method

y(0) = 0 y ′(t) = p(y(t))

Time step h, discretize and compute ỹ i ≈ y(ih):

y(t + h) ≈ y(t) +
ω∑

i=1

hiy (i)(t) using y (i)(t) = polyi(y(t))

Do a ω-th order Taylor approximation at each step.

Works well for ω > 3 but
How to choose h and ω ? One more parameter to choose!
Error analysis is less obvious
Complexity increases with ω

15 / 19

Taylor method

y(0) = 0 y ′(t) = p(y(t))

Time step h, discretize and compute ỹ i ≈ y(ih):

y(t + h) ≈ y(t) +
ω∑

i=1

hiy (i)(t) using y (i)(t) = polyi(y(t))

Do a ω-th order Taylor approximation at each step.

Works well for ω > 3 but
How to choose h and ω ? One more parameter to choose!
Error analysis is less obvious
Complexity increases with ω

15 / 19

Adaptive Taylor method

Adapt h and ω at each step.

y(0) = 0 y ′(t) = p(y(t))

Time step hi , discretize and compute ỹ i ≈ y(
∑

j6i hi):

y(t + hi) ≈ y(t) +

ωi∑
i=1

hi
i y

(i)(t) using y (i)(t) = polyi(y(t))

Do a ωi -th order Taylor approximation at each step.

Adapt the amount of computation to the hardness of the problem but
Many more parameters to choose
Error analysis is challenging
Complexity analysis usually not done

16 / 19

Adaptive Taylor method

Adapt h and ω at each step.

y(0) = 0 y ′(t) = p(y(t))

Time step hi , discretize and compute ỹ i ≈ y(
∑

j6i hi):

y(t + hi) ≈ y(t) +

ωi∑
i=1

hi
i y

(i)(t) using y (i)(t) = polyi(y(t))

Do a ωi -th order Taylor approximation at each step.

Adapt the amount of computation to the hardness of the problem but
Many more parameters to choose
Error analysis is challenging
Complexity analysis usually not done

16 / 19

Adaptive Taylor method: parameter choice

How to choose the time steps hi and orders ωi :
hi : estimate the radius of convergence
ωi : try to guess the accuracy loss

Use voodoo magic and interval arithmetic to ensure correctness.

It works but most complexity insights are lost because we have no idea
what we are doing.

Our idea: we need to choose hi , ωi based on some high-level
geometrical feature.

Our algorithm in one sentence: choose hi , ωi so that

at each step, we increase the length of the solution by 1

17 / 19

Adaptive Taylor method: parameter choice

How to choose the time steps hi and orders ωi :
hi : estimate the radius of convergence
ωi : try to guess the accuracy loss

Use voodoo magic and interval arithmetic to ensure correctness.

It works but most complexity insights are lost because we have no idea
what we are doing.

Our idea: we need to choose hi , ωi based on some high-level
geometrical feature.

Our algorithm in one sentence: choose hi , ωi so that

at each step, we increase the length of the solution by 1

17 / 19

Adaptive Taylor method: parameter choice

How to choose the time steps hi and orders ωi :
hi : estimate the radius of convergence
ωi : try to guess the accuracy loss

Use voodoo magic and interval arithmetic to ensure correctness.

It works but most complexity insights are lost because we have no idea
what we are doing.

Our idea: we need to choose hi , ωi based on some high-level
geometrical feature.

Our algorithm in one sentence: choose hi , ωi so that

at each step, we increase the length of the solution by 1

17 / 19

Adaptive Taylor method: parameter choice

How to choose the time steps hi and orders ωi :
hi : estimate the radius of convergence
ωi : try to guess the accuracy loss

Use voodoo magic and interval arithmetic to ensure correctness.

It works but most complexity insights are lost because we have no idea
what we are doing.

Our idea: we need to choose hi , ωi based on some high-level
geometrical feature.

Our algorithm in one sentence: choose hi , ωi so that

at each step, we increase the length of the solution by 1

17 / 19

Interesting (practical ?) consequences

Compute y(t)± ε

Method Max. Order Number of steps
Fixed ω ω − 1 O

(
L

ω+1
ω−1 ε−

1
ω−1

)

Euler (ω = 2) 1 O
(

L3

ε

)
Taylor2 (ω = 3) 2 O

(
L2
√
ε

)
Taylor4 (ω = 5) 4 O

(
L3/2

4√ε

)
Smart

(
ω = 1 + log L

ε

)
log L

ε O
(
L∼1)

Taylor∞ (ω =∞) ∞ O (L)

Variable O
(

log
L
ε

)
O (L)

where L ≈
∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

18 / 19

Interesting (practical ?) consequences

Compute y(t)± ε

Method Max. Order Number of steps
Fixed ω ω − 1 O

(
L

ω+1
ω−1 ε−

1
ω−1

)
Euler (ω = 2) 1 O

(
L3

ε

)

Taylor2 (ω = 3) 2 O
(

L2
√
ε

)
Taylor4 (ω = 5) 4 O

(
L3/2

4√ε

)
Smart

(
ω = 1 + log L

ε

)
log L

ε O
(
L∼1)

Taylor∞ (ω =∞) ∞ O (L)

Variable O
(

log
L
ε

)
O (L)

where L ≈
∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

18 / 19

Interesting (practical ?) consequences

Compute y(t)± ε

Method Max. Order Number of steps
Fixed ω ω − 1 O

(
L

ω+1
ω−1 ε−

1
ω−1

)
Euler (ω = 2) 1 O

(
L3

ε

)
Taylor2 (ω = 3) 2 O

(
L2
√
ε

)

Taylor4 (ω = 5) 4 O
(

L3/2

4√ε

)
Smart

(
ω = 1 + log L

ε

)
log L

ε O
(
L∼1)

Taylor∞ (ω =∞) ∞ O (L)

Variable O
(

log
L
ε

)
O (L)

where L ≈
∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

18 / 19

Interesting (practical ?) consequences

Compute y(t)± ε

Method Max. Order Number of steps
Fixed ω ω − 1 O

(
L

ω+1
ω−1 ε−

1
ω−1

)
Euler (ω = 2) 1 O

(
L3

ε

)
Taylor2 (ω = 3) 2 O

(
L2
√
ε

)
Taylor4 (ω = 5) 4 O

(
L3/2

4√ε

)

Smart
(
ω = 1 + log L

ε

)
log L

ε O
(
L∼1)

Taylor∞ (ω =∞) ∞ O (L)

Variable O
(

log
L
ε

)
O (L)

where L ≈
∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

18 / 19

Interesting (practical ?) consequences

Compute y(t)± ε

Method Max. Order Number of steps
Fixed ω ω − 1 O

(
L

ω+1
ω−1 ε−

1
ω−1

)
Euler (ω = 2) 1 O

(
L3

ε

)
Taylor2 (ω = 3) 2 O

(
L2
√
ε

)
Taylor4 (ω = 5) 4 O

(
L3/2

4√ε

)
Smart

(
ω = 1 + log L

ε

)
log L

ε O
(
L∼1)

Taylor∞ (ω =∞) ∞ O (L)

Variable O
(

log
L
ε

)
O (L)

where L ≈
∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

18 / 19

Interesting (practical ?) consequences

Compute y(t)± ε

Method Max. Order Number of steps
Fixed ω ω − 1 O

(
L

ω+1
ω−1 ε−

1
ω−1

)
Euler (ω = 2) 1 O

(
L3

ε

)
Taylor2 (ω = 3) 2 O

(
L2
√
ε

)
Taylor4 (ω = 5) 4 O

(
L3/2

4√ε

)
Smart

(
ω = 1 + log L

ε

)
log L

ε O
(
L∼1)

Taylor∞ (ω =∞) ∞ O (L)

Variable O
(

log
L
ε

)
O (L)

where L ≈
∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

18 / 19

Interesting (practical ?) consequences

Compute y(t)± ε

Method Max. Order Number of steps
Fixed ω ω − 1 O

(
L

ω+1
ω−1 ε−

1
ω−1

)
Euler (ω = 2) 1 O

(
L3

ε

)
Taylor2 (ω = 3) 2 O

(
L2
√
ε

)
Taylor4 (ω = 5) 4 O

(
L3/2

4√ε

)
Smart

(
ω = 1 + log L

ε

)
log L

ε O
(
L∼1)

Taylor∞ (ω =∞) ∞ O (L)

Variable O
(

log
L
ε

)
O (L)

where L ≈
∫ t

0
max(1,

∥∥y ′(u)
∥∥)du

18 / 19

Conclusion

Solving Ordinary Differential Equations numerically:
vastly different algorithms/results for vastly different expectations
practical methods: no complexity
nonuniform complexity: imprecise/misleading
uniform worst-case complexity: everything is hard
uniform parametrized complexity: encouraging

Questions:
how far can we push parametrized complexity?
can theory bring insight to practice?
geometric complexity?

∞ / 19

Taylor method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Lemma: y (k)(t) = Pk (y(t)) = poly(y(t))

Order K , time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈
K∑

j=0

hj

j!
y (j)(t) ; ỹ i+1 =

K∑
j=0

hj

j!
Pk (ỹ i)

Fixed order K : theoretically not enough
Variable order K : choose K depending on i ,p,n and ỹ i

What about h ?
Fixed h: wasteful
Adaptive h: choose h depending on i ,p,n and ỹ i

∞ / 19

Taylor method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Lemma: y (k)(t) = Pk (y(t)) = poly(y(t))

Order K , time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈
K∑

j=0

hj

j!
y (j)(t) ; ỹ i+1 =

K∑
j=0

hj

j!
Pk (ỹ i)

Fixed order K : theoretically not enough
Variable order K : choose K depending on i ,p,n and ỹ i

What about h ?
Fixed h: wasteful
Adaptive h: choose h depending on i ,p,n and ỹ i

∞ / 19

Taylor method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Lemma: y (k)(t) = Pk (y(t)) = poly(y(t))

Order K , time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈
K∑

j=0

hj

j!
y (j)(t) ; ỹ i+1 =

K∑
j=0

hj

j!
Pk (ỹ i)

Fixed order K : theoretically not enough

Variable order K : choose K depending on i ,p,n and ỹ i

What about h ?
Fixed h: wasteful
Adaptive h: choose h depending on i ,p,n and ỹ i

∞ / 19

Taylor method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Lemma: y (k)(t) = Pk (y(t)) = poly(y(t))

Order K , time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈
K∑

j=0

hj

j!
y (j)(t) ; ỹ i+1 =

K∑
j=0

hj

j!
Pk (ỹ i)

Fixed order K : theoretically not enough
Variable order K : choose K depending on i ,p,n and ỹ i

What about h ?
Fixed h: wasteful
Adaptive h: choose h depending on i ,p,n and ỹ i

∞ / 19

Taylor method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Lemma: y (k)(t) = Pk (y(t)) = poly(y(t))

Order K , time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈
K∑

j=0

hj

j!
y (j)(t) ; ỹ i+1 =

K∑
j=0

hj

j!
Pk (ỹ i)

Fixed order K : theoretically not enough
Variable order K : choose K depending on i ,p,n and ỹ i

What about h ?
Fixed h: wasteful

Adaptive h: choose h depending on i ,p,n and ỹ i

∞ / 19

Taylor method

y(0) = 0 y ′(t) = p(y(t)) t ∈ I

Lemma: y (k)(t) = Pk (y(t)) = poly(y(t))

Order K , time step h, discretize compute ỹ i ≈ y(ih):

y(t + h) ≈
K∑

j=0

hj

j!
y (j)(t) ; ỹ i+1 =

K∑
j=0

hj

j!
Pk (ỹ i)

Fixed order K : theoretically not enough
Variable order K : choose K depending on i ,p,n and ỹ i

What about h ?
Fixed h: wasteful
Adaptive h: choose h depending on i ,p,n and ỹ i

∞ / 19

Choice of the parameters

Choice of h based on an effective lower bound on radius of
convergence of the Taylor series:

Lemma: If y ′ = p(y), α = max(1, ‖y0‖), k = deg(p),
M = (k − 1)Σpαk−1 then:∥∥∥y (k)(t)− Pk (y(t))

∥∥∥ 6
α(Mt)k

1−Mt

Choose Mt ≈ 1
2 :

t ≈ 1
M : adaptive step size

local error ≈ (Mt)k ≈ 2−k : order gives the number of correct bits
I spare you the analysis of the global error !

∞ / 19

Choice of the parameters

Choice of h based on an effective lower bound on radius of
convergence of the Taylor series:

Lemma: If y ′ = p(y), α = max(1, ‖y0‖), k = deg(p),
M = (k − 1)Σpαk−1 then:∥∥∥y (k)(t)− Pk (y(t))

∥∥∥ 6
α(Mt)k

1−Mt

Choose Mt ≈ 1
2 :

t ≈ 1
M : adaptive step size

local error ≈ (Mt)k ≈ 2−k : order gives the number of correct bits

I spare you the analysis of the global error !

∞ / 19

Choice of the parameters

Choice of h based on an effective lower bound on radius of
convergence of the Taylor series:

Lemma: If y ′ = p(y), α = max(1, ‖y0‖), k = deg(p),
M = (k − 1)Σpαk−1 then:∥∥∥y (k)(t)− Pk (y(t))

∥∥∥ 6
α(Mt)k

1−Mt

Choose Mt ≈ 1
2 :

t ≈ 1
M : adaptive step size

local error ≈ (Mt)k ≈ 2−k : order gives the number of correct bits
I spare you the analysis of the global error !

∞ / 19

But wait...

This is impossible, right ?!

Example 
x(t)= tu(t)

u(t)= e−t − (1− e−t) 1
v(t)

v(t)= v0

;


x(t)∼ t

1
v0

u(t)→ 1
v0

v(t)= v0

Remark
All parameters are fixed except y0 = (1,1, v0)

Value are time t = 2 can be arbitrary large for arbitrary small v0

Theorem
There is no universal bound in p, y0, t0, t and µ.

∞ / 19

But wait...

This is impossible, right ?!
Example 

x(t)= tu(t)

u(t)= e−t − (1− e−t) 1
v(t)

v(t)= v0

;


x(t)∼ t

1
v0

u(t)→ 1
v0

v(t)= v0

Remark
All parameters are fixed except y0 = (1,1, v0)

Value are time t = 2 can be arbitrary large for arbitrary small v0

Theorem
There is no universal bound in p, y0, t0, t and µ.

∞ / 19

But wait...

This is impossible, right ?!
Example 

x(t)= tu(t)

u(t)= e−t − (1− e−t) 1
v(t)

v(t)= v0

;


x(t)∼ t

1
v0

u(t)→ 1
v0

v(t)= v0

Remark
All parameters are fixed except y0 = (1,1, v0)

Value are time t = 2 can be arbitrary large for arbitrary small v0

Theorem
There is no universal bound in p, y0, t0, t and µ.

∞ / 19

But wait...

This is impossible, right ?!
Example 

x(t)= tu(t)

u(t)= e−t − (1− e−t) 1
v(t)

v(t)= v0

;


x(t)∼ t

1
v0

u(t)→ 1
v0

v(t)= v0

Remark
All parameters are fixed except y0 = (1,1, v0)

Value are time t = 2 can be arbitrary large for arbitrary small v0

Theorem
There is no universal bound in p, y0, t0, t and µ.

∞ / 19

But wait...

This is impossible, right ?!
Example 

x(t)= tu(t)

u(t)= e−t − (1− e−t) 1
v(t)

v(t)= v0

;


x(t)∼ t

1
v0

u(t)→ 1
v0

v(t)= v0

Remark
All parameters are fixed except y0 = (1,1, v0)

Value are time t = 2 can be arbitrary large for arbitrary small v0

Theorem
There is no universal bound in p, y0, t0, t and µ.

∞ / 19

