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Universal differential algebraic equation (Rubel)
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Theorem (Rubel, 1981)

Forany f € CO(R) and ¢ € C°(R,R~), there exists a solution y : R — R
to
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Theorem (Rubel, 1981)

There exists a fixed k and nontrivial polynomial p such that for any
f € CO(R) and ¢ € C°(R,R+q), there exists a solution y : R — R to

py.y,....y%) =0
such that Vt € R,

y () = ()] < e(b).




Universal differential algebraic equation (Rubel)

/\ Open Problem

1(x)\ Can we have unicity of
/ X the solution with initial

v conditions ?
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Theorem (Rubel, 1981)

There exists a fixed k and nontrivial polynomial p such that for any
f € CO(R) and ¢ € C°(R,R+), there exists a solution y : R — R to

p(y.y,....y9) =0
such that Vt € R,

y () — ()] < e(1).




Rubel’s ("disappointing") proof in one slide

—1
@ Take f(t) = e'-2 for —1 < t < 1 and f(t) = 0 otherwise.

It satisfies (1 — t2)2f (t) + 2tf(t) = 0.
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Rubel’s ("disappointing") proof in one slide

—1
o Take f(t) = e’ for —1 < t < 1 and f(t) = 0 otherwise.

It satisfies (1 — t2)?f (t) + 2tf(t) = 0.
@ Forany a,b,c € R, y(t) = cf(at + b) satisfies
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Rubel’s ("disappointing") proof in one slide

—1
o Take f(t) = e’ for —1 < t < 1 and f(t) = 0 otherwise.

It satisfies (1 — t2)?f (t) + 2tf(t) = 0.
@ Forany a,b,c € R, y(t) = cf(at + b) satisfies
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7
3y Ty Yy —ay Ty Sy ey Sy Sy Y 28y Sy Yy =29y Sy Py 12y =0

@ Can glue together arbitrary many such pieces
~»crucial (and tricky) part of the proof
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Rubel’s ("disappointing") proof in one slide

—1
o Take f(t) = e’ for —1 < t < 1 and f(t) = 0 otherwise.

It satisfies (1 — t2)?f (t) + 2tf(t) = 0.
@ Forany a,b,c € R, y(t) = cf(at + b) satisfies

14 11 11012 14 112 1111 5 13102 101 11 2 //4y////_12y/3 11,0113 12 113 1112

7
3y Ty Yy —ay Ty Sy ey Sy Sy Y 28y Sy Yy =29y Sy Py 12y =0

@ Can glue together arbitrary many such pieces
~~crucial (and tricky) part of the proof
@ Can arrange so that | f is solution : piecewise pseudo-linear

N
! t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C°




The problem with Rubel’s DAE

The solution y is not unique, even with added initial conditions :

p(y,ys....y*K) =0, y(0) =ag,y'(0) = as,...,y*(0) = ax

In fact, this is fundamental for Rubel’s proof to work !
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The problem with Rubel’s DAE

The solution y is not unique, even with added initial conditions :

p(y,y....y*) =0, y(0)=ag,y'(0) = as,...,yR(0) = ax

In fact, this is fundamental for Rubel’s proof to work !

@ Rubel’s statement : this DAE is universal
@ More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y’ = p(y)?
Note : explicit polynomial ODE = unique solution




Universal explicit ordinary differential equation
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Main result

There exists a fixed (vector of) polynomial p such that for any f € C°(R)
and e € CO(R,R-q), there exists o € RY such that

y(0)=a,  y'(t)=py(t)
has a unique solution y : R — R? and Vt € R,

1 (1) = F(O)] < ().




Universal explicit ordinary differential equation

Notes :
Yi(x) @ system of ODEs,

X
\ / / @ y must be analytic,
@ we need d ~ 300.

Main result

There exists a fixed (vector of) polynomial p such that for any f € C°(R)
and e € CO(R,R-q), there exists o € RY such that

y(0)=aqa,  y'(t)=py(t)

has a unique solution y : R — R? and Vt € R,

1 (1) = F(O)] < ().




Universal explicit ordinary differential equation

Notes :
Yi(x) @ system of ODEs,

X
\ / / @ y must be analytic,
@ we need d ~ 300.

Main result

There exists a fixed (vector of) polynomial p such that for any f € C°(R)
and e € CO(R,R-q), there exists o € RY such that

y0)=a,  y'(t)=py(t))

has a unique solution y : R — R? and Vt € R,

1 (1) = F(O)] < ().

Futhermore, a is computable T from f and «.

y

1. This statement can be made precise with the theory of Computable Analysis.
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Universal DAE, again but better
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Corollary of main result

|<

There exists a fixed k and nontrivial polynomial p such that for any
f € CO(R) and ¢ € CO(R,R-yq), there exists ay, ..., ax € R such that

P,y y* ) =0, ¥(0)=ag,y'(0) = as,...,y"(0) = ax
has a unique analytic solution y : R — R and Vt € R,

() — ()] < e(b).




Some motivation

Polynomial ODEs correspond to analog computers :

Differential Analyser British Navy mecanical computer
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Some motivation

Polynomial ODEs correspond to analog computers :

Differential Analyser British Navy mecanical computer

@ They are equivalent to Turing machines!
@ One can characterize P with pODEs (ICALP 2016)

Take away : polynomial ODEs are a natural programming language.



Example of differential equation

Y2

)4

=]

General Purpose Analog Computer (GPAC)
Shannon’s model of the Differential Analyser

yi="ye yi=190
Yo=-%s _ Jye=10

/ .
Y3 = YoYa y3 = sin(6)

Ya = Yoy ¥a = cos()
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A brief stop

Before | can explain the proof, you need to know more of polynomial
ODEs and what | mean by programming with ODEs.
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Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension

and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)

satisfies f(x) = y;(x) for all x € R. @ oK y:R—>R?

y(0)=yo,  y'(x)=py(Xx))

Note : existence and unicity of y by Cauchy-Lipschitz theorem.
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Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)

satisfies f(x) = y;(x) for all x € R. @ oK y:R—>R?

y(0)=yo,  y'(x)=py(Xx))

Example : f(x) = x » identity

y(0)=0, y' =1 ~ yKx)=x
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Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension

and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)

y(0)=yo,  y'(x)=py(Xx))

satisfies f(x) = y;(x) for all x € R. @ oK y:R—>R?
f(x) = x2
11(0)=0,  yi=2y ~ y(x)=x
200=0,  y=1 ~ ya(x)=x
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Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension

and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)

y(0)=yo,  y'(x)=py(Xx))

satisfies f(x) = y;(x) for all x € R. @ oK y:R—>R?
f(x) = x"
y1(0)=0,  yj=nye ~ yi(x)=x"

2(0)=0,  y=(n=1)ys ~ ya(x)=x""

yn(0)= 10, Yn=1 ~  Yn(x)=x

10/20



Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension

and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)

satisfies f(x) = y;(x) for all x € R. @ oK y:R—>R?

y(0)=yo,  y'(x)=py(Xx))

DN

Example : f(x) = exp(x) » exponential

y(0)=1, y'=y ~ y(x)=exp(x)
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Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension

and yp such that the solution y to @ Q CKCR:field
K9[R" : pol ial
yO) =y0.  ¥(x)=py(x) o oot e
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>R?

f(x) = sin(x) or f(x) = cos(x)

y1(0)=0, yi=y» ~ yi(x)=sin(x)
¥2(0)=1,  yi=—y1 ~ yo(X)= cos(x)

10/20



Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension

and yp such that the solution y to @ Q CKCR:field
K9[R" : pol ial
yO) =y0.  ¥(x)=py(x) o oot e
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>R?

Example : f(x) = tanh(x) » hyperbolic tangent

y(0)=0, y'=1-y? ~ y(x)=tanh(x)

L

tanh(x)
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Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension

and yp such that the solution y to @ Q CKCR:field
dpn - i
0) = yo, 5] — o @ p € K9R"] : polynomial
¥(0) = yo y'(x) = p(y(x)) vector (coef, in K)
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>R?
f(X) = 115
f'(x) = ﬁ = —2xf(x)?
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Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension

and yp such that the solution y to @ Q CKCR:field
dpn - i
0) = yo, 5] — o @ p € K9R"] : polynomial
y(0) =y y (%) =py()) vector (coef. in K)
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>R?
f=g+th
(g+h) =g +H
2(0)= 2, Z'= p(2) ~ =g
w(0)= wp, w'= g(w) ~ wy=h

¥(0)= 201 + Wo 1, V=pi1(2) £ q1(w) ~ y=2z1+w

10/20



Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension

and yp such that the solution y to @ Q CKCR:field
dpn - i
0) = yo, 5] — o @ p € K9R"] : polynomial
y(0) =y y (%) =py()) vector (coef. in K)
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>R?
f=gh
(9h) =g'h+ gl
2(0)= 2, Z=p(2) ~ =g
w(0)= wp, w'= q(w) ~ wy=h

y(0)=z01wo1,  Y=p1(@2)W +z1g1(W) ~ y=zw

10/20



Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension

and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)

y(0)=yo,  y'(x)=py(Xx))

satisfies f(x) = y;(x) for all x € R. @ oK y:R—>R?
_ 1
f=3
f — _?g _ _g/fz
2(0)= 2z, Z'=p(2) ~ =g

10/20



Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension

and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)

satisfies f(x) = y;(x) for all x € R. @ oK y:R—>R?

y(0)=yo,  y'(x)=py(Xx))

f=Jg
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Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension

and yp such that the solution y to @ Q CKCR:field
K9[R" : pol ial
YO =y, ¥ =py(x) o oot e
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>R?
f=¢g

z(0)= 2o, Z'=p(z) ~ Z1=(g

y(0)=pi(20), y'=Vpi(2)-p(2) ~ y=2{
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Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension

and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)

satisfies f(x) = y;(x) for all x € R. @ oK y:R—>R?

y(0)=yo,  y'(x)=py(Xx))

DN v

f=goh
(zoh) = (2 o h)i = p(zo h)H
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Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)

satisfies f(x) = y;(x) for all x € R. @ oK y:R—>R?

y(0)=yo,  y'(x)=py(Xx))

f=goh
(zoh) = (2 o h)i = p(zo h)H

2(0)= 2z, Z=p(z) ~ z=g
w(0)= wp, w'=qg(w) ~ w=h
y(0)=z(wo), y'=p)z1 ~ y=2zoh
Is this coefficient in K ?
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Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension
and yp such that the solution y to @ Q CKCR:field

@ p € KIR"] : polynomial
vector (coef. in K)

satisfies f(x) = y;(x) for all x € R. @ oK y:R—>R?

y(0)=yo,  y'(x)=py(Xx))

f=goh
(zoh) = (2 o h)i = p(zo h)H

2(0)= 2o, Z=p(z) ~ z=g
w(0)= wp, w'=qg(w) ~ w=h

y(0)=z(w),  y'=p(y)z1 ~ y=2zoh
Is this coefficient in K ? Fields with this property are called generable.
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Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension

and yp such that the solution y to @ Q CKCR:field
K9[R" : pol ial
YO =%, ¥ =py(x) o oot e
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>R?
f' = tanhof

" = (tanh’ of)f' = (1 — (tanh of)?)f’

y1(0)= 1(0), Yi=Yo ~  yi(x)=f(x)
¥2(0)=tanh(f(0)),  y4=(1—y5)y2 ~ ya(X)= tanh(f(x))

10/20



Generable functions (total, univariate)

Definition Types

f: R — R is generable if there exists d,p @ d € N : dimension

and yp such that the solution y to @ Q CKCR:field
K9[R" : pol ial
yO) =y0.  ¥(x)=py(x) o oot e
satisfies f(x) = y;(x) for all x € R. @ oK y:R—>R?

f(O):anf,:gof
f'=9"=(pi1(2)) =Vpi(2)- 2

/

z(0)= 2o, Z'=p(z) ~ Z1=(g

y(0)=pi(20), y'=Vpi(2)-p(2) ~ y=2{

10/20



Generable functions : a first summary

Nice theory for the class of total and univariate generable functions :

@ analytic

@ contains polynomials, sin, cos, tanh, exp

@ stable under £, x, /, o and Initial Value Problems (IVP)

@ technicality on the field K of coefficients for stability under o
@ solutions to polynomial ODEs form a very large class
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Generable functions : a first summary

Nice theory for the class of total and univariate generable functions :

@ analytic

@ contains polynomials, sin, cos, tanh, exp

@ stable under £, x, /, o and Initial Value Problems (IVP)

@ technicality on the field K of coefficients for stability under o
@ solutions to polynomial ODEs form a very large class

Limitations :
@ total functions
@ univariate
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Generable functions (generalization)

Definition Types

f: X CR" — Ris generable if X isopen @ ne N :input dimension

connected and 3d, p, xo, o, y such that @ d e N : dimension
dxdRd] -
X) = Yo Jolx) = 7 @ p € KI*R] :
y(X) = yo y(x) = p(y(x)) SeliTaE] e
and f(x) = yq(x) for all x € X. @ xp € K”
Jy(x) = Jacobian matrix of y at x ® oK% y: X—>RY |

Notes :
@ Partial differential equation !
@ Unicity of solution y...
@ ... but not existence (ie you have to show it exists)

12/20



Generable functions (generalization)

Definition Types

f: X CR" — Ris generable if X isopen @ ne N :input dimension

connected and 3d, p, xo, o, y such that @ d e N : dimension
dxdRd] -
X) = Yo Jolx) = 7 @ p € KI*R] :
y(X) = yo y(x) = p(y(x)) SeliTaE] e
and f(x) = yq(x) for all x € X. @ xp € K”
Jy(x) = Jacobian matrix of y at x ® oK% y: X—>RY |

f(x1, %) =x1x2 (n=2,d=23)
0 ¥2 3yoys X1 X2
y(0,0)=10|, Jy=11 0 ~ yx)=1 x
0 0 1 Xo
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Generable functions (generalization)

Definition Types

f: X CR" — Ris generable if X is open
connected and 3d, p, Xp, Vo, ¥ such that

y(X0) = Yo,

and f(x) = yq(x) for all x € X.

Jy(x) = Jacobian matrix of y at x

f(x1,X2) = X1 X3

(070) ax1}/1:}’§7 8X2y1:
(0, 0): (9)(1 y2: 1 5 8)(2}/2: 0
(07 O) 8X1 Ya= 07 6X2y3: 1

This is tedious!

@ n < N :input dimension

@ d € N :dimension

@ p c KI¥IRI]:
polynomial matrix

@ xo e K"

@ ek y: X - R4

3yays ~  yi(X) = x1X5

2

~  yo(X) = x
~ y3(X) = X2
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Generable functions (generalization)

Definition Types

f: X CR" — Ris generable if X isopen @ ne N :input dimension

connected and 3d, p, xo, o, y such that @ d e N : dimension
dxdRd] -
X) = Yo Jolx) = 7 @ p € KI*R] :
y(X) = yo y(x) = p(y(x)) SeliTaE] e
and f(x) = yq(x) for all x € X. @ xp € K”
Jy(x) = Jacobian matrix of y at x ® oK% y: X—>RY |
f(x) = 1 for x € (0, )
y()=1, dy=-y2 ~ y(x)=1

12/20



Generable functions : summary

Nice theory for the class of multivariate generable functions (over
connected domains) :

@ analytic

@ contains polynomials, sin, cos, tanh, exp, ...

@ stable under +, x, /, o and Initial Value Problems (IVP)

@ technicality on the field K of coefficients for stability under o
@ requires partial differential equations
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Exercice : are all analytic functions generable ?
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Generable functions : summary

Nice theory for the class of multivariate generable functions (over
connected domains) :

@ analytic

@ contains polynomials, sin, cos, tanh, exp, ...

@ stable under +, x, /, o and Initial Value Problems (IVP)

@ technicality on the field K of coefficients for stability under o
@ requires partial differential equations

Exercice : are all analytic functions generable ? No
Riemann I and ¢ are not generable.

13/20



Why is this useful ?

Writing polynomial ODEs by hand is hard.
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Why is this useful ?

Writing polynomial ODEs by hand is hard.
Using generable functions, we can build complicated multivariate

partial functions using other operations, and we know they are
solutions to polynomial ODEs by construction.
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Why is this useful ?

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated multivariate
partial functions using other operations, and we know they are
solutions to polynomial ODEs by construction.

Example (almost rounding function)

There exists a generable function round such that forany n € Z, x € R,
A>2and > 0:

@ ifxe [n—%,n+%] then |round(x, p, A) — n| < %,
eifxe[n—%+ 1 n+l—1]then |round(x,p,\) —n| < et

14/20



Reminder of the result

Main result (reminder)

There exists a fixed (vector of) polynomial p such that for any f € C°(R)
and ¢ € CO(R,R-q), there exists o € RY such that

y(0)=a,  y'(t)=py(t))
has a unique solution y : R — R? and Vt € R,

1 (1) — ()] < ().

15/20



A simplified proof

binary stream

aeR

generator digits of «
Jof[1 1]o[1]o[1]0 0

This is the ideal curve, the real
one is an approximation of it.
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A simplified proof

binary stream

aeR

generator digits of «
ODE}— [0[1 1]o[1]o[1]o of1 1 1...
T \/\V/\\ t ODE

“Digital” to Analog
Converter (fixed frequency)

functions with fixed precision.

Approximate Lipschitz and bounded}

That’s the trickiest part. ]

16/20



A simplified proof

binary stream

generator digits of «
a€R ODE|—— [0[1 1lo[1]o[r]o o[t 1 1...
T \/\dﬁ\f ODE

“Digital” to Analog
Converter (fixed frequency)

ODE?—

We need something more :
a fast-growing ODE.




A simplified proof

binary stream

digits of «

generator
acR ODE|—— [0[1 1]o[1]o[1]0 0[1 1 1...
] /i /ot ——[ODE

“Digital” to Analog
Converter (fixed frequency)

ODE?—

We need something more :
an arbitrarily fast-growing ODE.




A less simplified proof

binary stream generator : digits of « € R
1 1 1 1
0 0 0 0 ;

f(e, p, A t) = 5 + S tanh(u sin(2ar4 (=142 4 47 /3))

It’s horrible, but generable

round is the mysterious rounding function... 7120



A less simplified proof

binary stream generator : digits of « € R

PR PN P

ﬂﬂﬂﬂ 1 e
RN

dyadic stream generator : d; = m;2™ g a,_9/+Z/<,d,
f(a,v, t) = sin(2am2roundt= 14, )

round is the mysterious rounding function... 7120



A less simplified proof

a>

2
]
Q
~
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A less simplified proof

PR PR S P

copy signal

F__ -

Od
0 d

a>
ao a > as

]
Q
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A less simplified proof

mo 0ﬂ0ﬂot

‘copy signal copy signal
a ﬂ
do

| % | % |[] "

ao 1 > as

A

¢«

DL
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A less simplified proof

A

0

(I

1

=]
o
~

copy signal hc y signal copy signal
cdr ﬂ
0
Ch Lﬁ cﬁz (1
dl0 é1 Eig d3 t

17/20



A less simplified proof

1

A

! ﬂ
() ‘ () ‘ () t

do
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This copy operation is the “non-trivial” part.
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A less simplified proof

We can do almost piecewise constant functions...
o ...that are bounded by 1...
@ ...and have super slow changing frequency.

How do we go to arbitrarily large and growing functions ? Can a
polynomial ODE even have arbitrary growth ?
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An old question on growth

Building a fast-growing ODE, that exists over R :

Yi=W ~ y1(t) = exp(t)
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Building a fast-growing ODE, that exists over R :

Y1 = Y1 ~ y1(t) = exp(t)
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Conjecture (Emil Borel, 1899)
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An old question on growth

en(t) = exp(---exp(t)---) (ncompositions)
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Counter-example (Vijayaraghavan, 1932)
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Sequence of arbitrarily

growing spikes. But not
good enough for us.
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An old question on growth

en(t) = exp(---exp(t)---) (ncompositions)
Conjecture (Emil Borel, 1899)
With n variables, cannot do better than Oy(en(AtX)).

Counter-example (Vijayaraghavan, 1932)

1
2 — cos(t) — cos(at)

Theorem (In the paper)

There exists a polynomial p : R? — R such that for any continuous
function f : R>o — R, we can find a € RY such that

y(0)=a,  y'(t)=p(y())

satisfies

yi(t) = f(t), vt > 0.




An old question on growth

en(t) = exp(---exp(t)---) (ncompositions)
Conjecture (Emil Borel, 1899)
With n variables, cannot do better than Oy(en(AtX)).

Counter-example (Vijayaraghavan, 1932)

1
2 — cos(t) — cos(at)

Theorem (In the paper)

There exists a polynomial p : R? — R such that for any continuous
function f : R>o — R, we can find a € RY such that

y(0)=a,  y'(t)=p(y())

satisfies

yi(t) = f(t), vt > 0.

Note : both results require « to be transcendental. Conjecture still
open for rational (or algebraic) coefficients. 1520



Proof gem : iteration with differential equations

Assume f is generable, can we iterate f with an ODE ?
That is, build a generable y such that y(x, n) ~ f"l(x) forall n € N
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Main result, remark and end

Main result (reminder)

There exists a fixed (vector of) polynomial p such that for any f € C°(R)
and e € C%(R, R+g), there exists o € R? such that

y(0)=a,  y'(t)=p(y(t))
has a unique solution y : R — R? and Vt € R,
lyr(t) — £(t)] < (1)

Futhermore, a is computable from f and e.

Remarks :
@ if f and ¢ are computable then « is computable
@ if f or ¢ is not computable then « is not computable
@ in all cases « is a horrible transcendental number
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Non-unicity of solutions of DAEs even with conditions

Lot H(t) {(e)xp(—tan(t)z) it |t < 3 W

elsewhere ‘ ¢

Lemma: f € C*(R) and for all a,\ € R, g := t — \f(a+ t) satisfies

—2y’6+6y”y’4y—6y”2y’2y2+31y’4y2+2y”3y3—8y//y’2y3+4y”2y4+16y’2y4:0. (1)
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Non-unicity of solutions of DAEs even with conditions

Lot H(t) {;xp(—tan(t)z) it |t < 3 W

elsewhere
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Lemma: f € C*(R) and for all a,\ € R, g := t — \f(a+ t) satisfies

_2y/5+6y//y/4y_6y//2y/2y2+31y/4y2+2y//3y3_8y”y/2y3+4y//2y4+1Gy/2y4:O_ (1)

Lemma : if y, z satisfy (1) and have disjoint support, y + z satisfies (1).

A set of conditions for (1) is a collection of constraints of the form
y®(@ =b  forsomekeNanda,beR.

Example : y(0) =1,y/(0) =0,y"(42) =«

Lemma : for any finite set of conditions, either (1) has no solution or at
least one with bounded support.

Theorem : for any finite set of conditions, if (1) has a solution then it
has infinitely many.
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