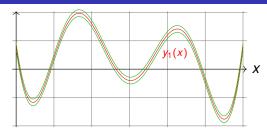
A truly universal ordinary differential equation

Amaury Pouly¹ Joint work with Olivier Bournez²

¹Max Planck Institute for Software Systems, Germany ²LIX, École Polytechnique, France

11 May 2018

Universal differential algebraic equation (Rubel)



Theorem (Rubel, 1981)

For any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

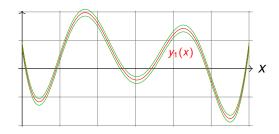
$$3y'^{4}y''y'''^{2} -4y'^{4}y'''^{2}y'''' + 6y'^{3}y''^{2}y'''y'''' + 24y'^{2}y''^{4}y''''$$

$$-12y'^{3}y''y'''^{3} - 29y'^{2}y''^{3}y'''^{2} + 12y''^{7} = 0$$

such that $\forall t \in \mathbb{R}$,

$$|y(t)-f(t)|\leqslant \varepsilon(t).$$

Universal differential algebraic equation (Rubel)



Theorem (Rubel, 1981)

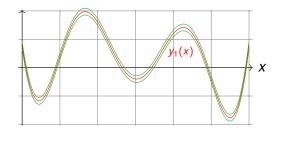
There exists a **fixed** k and nontrivial polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y,y',\ldots,y^{(k)})=0$$

such that $\forall t \in \mathbb{R}$,

$$|y(t)-f(t)| \leq \varepsilon(t)$$
.

Universal differential algebraic equation (Rubel)



Open Problem

Can we have unicity of the solution with initial conditions?

Theorem (Rubel, 1981)

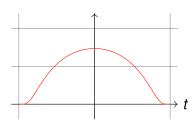
There exists a **fixed** k and nontrivial polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y,y',\ldots,y^{(k)})=0$$

such that $\forall t \in \mathbb{R}$,

$$|y(t)-f(t)| \leq \varepsilon(t).$$

• Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise.
It satisfies $(1 - t^2)^2 f'(t) + 2tf(t) = 0$.

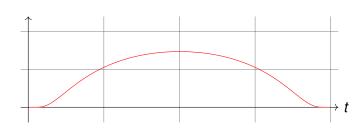


• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies
$$(1-t^2)^2 f'(t) + 2tf(t) = 0$$
.

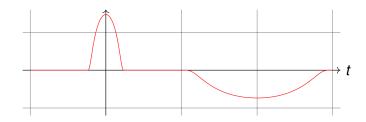
• For any $a,b,c\in\mathbb{R}$, y(t)=cf(at+b) satisfies

$$3y'^4y'''y''''^2 -4y'^4y''^2y'''' + 6y'^3y''^2y'''y'''' + 24y'^2y'''^4y'''' -12y'^3y''y''^3 - 29y'^2y''^3y'''^2 + 12y''^7 = 0$$

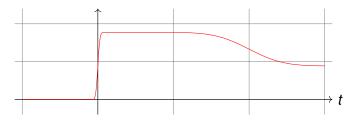


• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise. It satisfies $(1 - t^2)^2 f'(t) + 2tf(t) = 0$.

• For any $a,b,c\in\mathbb{R}$, y(t)=cf(at+b) satisfies ${}_{3v'^4v''v''''^2-4v'^4v'''^2v'''+6v'^3v''^2v'''+24v'^2v''^4v''''-12v'^3v''v'''^3-29v'^2v''^3v'''^2+12v''^7=0}$



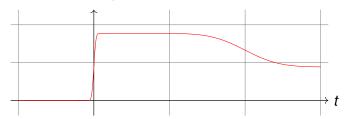
- Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise. It satisfies $(1 - t^2)^2 f'(t) + 2tf(t) = 0$.
- For any $a,b,c\in\mathbb{R}$, y(t)=cf(at+b) satisfies ${}_{3v'^4v''v''''^2-4v'^4v''^2v'''+6v'^3v''^2v'''+24v'^2v''^4v''''-12v'^3v''v'''^3-29v'^2v''^3v'''^2+12v''^7=0}$
- Can glue together arbitrary many such pieces
 crucial (and tricky) part of the proof
- Can arrange so that ∫ f is solution : piecewise pseudo-linear



- Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.
- It satisfies $(1-t^2)^2f'(t)+2tf(t)=0$. • For any $a,b,c\in\mathbb{R},\ y(t)=cf(at+b)$ satisfies

$$3v'^4v''v'''^2 - 4v'^4v''^2v'''' + 6v'^3v''^2v'''v''' + 24v'^2v''^4v'''' - 12v'^3v''v'''^3 - 29v'^2v''^3v'''^2 + 12v''^7 = 0$$

- Can glue together arbitrary many such pieces
 →crucial (and tricky) part of the proof
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear



Conclusion: Rubel's equation allows any piecewise pseudo-linear functions, and those are **dense in** C^0

The problem with Rubel's DAE

The solution *y* is not unique, **even with added initial conditions** :

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel's proof to work!

The problem with Rubel's DAE

The solution *y* is not unique, **even with added initial conditions** :

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

In fact, this is fundamental for Rubel's proof to work!

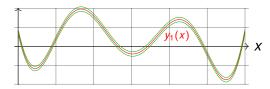
- Rubel's statement : this DAE is universal
- More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y' = p(y)?

Note: explicit polynomial ODE ⇒ unique solution

Universal explicit ordinary differential equation



Main result

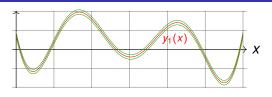
There exists a **fixed** (vector of) polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha,$$
 $y'(t) = \rho(y(t))$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t)-f(t)| \leq \varepsilon(t).$$

Universal explicit ordinary differential equation



Notes:

- system of ODEs,
- y must be analytic,
- we need $d \approx 300$.

Main result

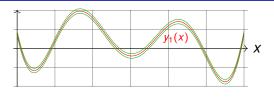
There exists a **fixed** (vector of) polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha,$$
 $y'(t) = p(y(t))$

has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t)-f(t)| \leq \varepsilon(t).$$

Universal explicit ordinary differential equation



Notes:

- system of ODEs,
- y must be analytic,
- we need $d \approx 300$.

Main result

There exists a **fixed** (vector of) polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha,$$
 $y'(t) = p(y(t))$

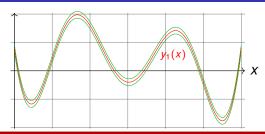
has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t)-f(t)|\leqslant \varepsilon(t).$$

Futhermore, α is computable \dagger from f and ε .

†. This statement can be made precise with the theory of Computable Analysis.

Universal DAE, again but better



Corollary of main result

There exists a **fixed** k and nontrivial polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha_0, \ldots, \alpha_k \in \mathbb{R}$ such that

$$p(y, y', ..., y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, ..., y^{(k)}(0) = \alpha_k$$

has a unique analytic solution $y : \mathbb{R} \to \mathbb{R}$ and $\forall t \in \mathbb{R}$,

$$|y(t)-f(t)|\leqslant \varepsilon(t).$$

Some motivation

Polynomial ODEs correspond to analog computers :

Differential Analyser

British Navy mecanical computer

Some motivation

Polynomial ODEs correspond to analog computers :

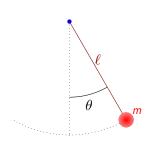
Differential Analyser

British Navy mecanical computer

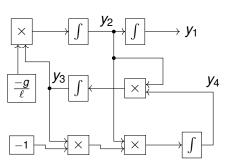
- They are equivalent to Turing machines!
- One can characterize P with pODEs (ICALP 2016)

Take away: polynomial ODEs are a natural programming language.

Example of differential equation



$$\ddot{\theta} + \tfrac{g}{\ell} \sin(\theta) = 0$$



General Purpose Analog Computer (GPAC) Shannon's model of the Differential Analyser

$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{\ell} y_3 \\ y_3' = y_2 y_4 \\ y_4' = -y_2 y_3 \end{cases} \Leftrightarrow \begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases}$$

A brief stop

Before I can explain the proof, you need to know more of polynomial ODEs and what I mean by programming with ODEs.

Definition

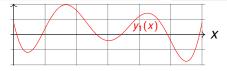
 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- ullet $d\in\mathbb{N}$: dimension
- ullet $\mathbb{Q}\subseteq\mathbb{K}\subseteq\mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$



Note: existence and unicity of *y* by Cauchy-Lipschitz theorem.

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0) = y_0,$$
 $y'(x) = \rho(y(x))$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- ullet $\mathbb{Q}\subseteq\mathbb{K}\subseteq\mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f(x) = x$$
 identity

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- ullet $\mathbb{Q}\subseteq\mathbb{K}\subseteq\mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f(x) = x^2$$
 squaring

$$y_1(0) = 0,$$
 $y'_1 = 2y_2 \sim y_1(x) = x^2$
 $y_2(0) = 0,$ $y'_2 = 1 \sim y_2(x) = x$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- ullet $\mathbb{Q}\subseteq\mathbb{K}\subseteq\mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f(x) = x^n \rightarrow n^{th}$$
 power

$$y_1(0) = 0,$$
 $y'_1 = ny_2$ \rightsquigarrow $y_1(x) = x^n$
 $y_2(0) = 0,$ $y'_2 = (n-1)y_3$ \rightsquigarrow $y_2(x) = x^{n-1}$
... ...
 $y_n(0) = 0,$ $y_n = 1$ \rightsquigarrow $y_n(x) = x$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- $d \in \mathbb{N}$: dimension
- ullet $\mathbb{Q}\subseteq\mathbb{K}\subseteq\mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f(x) = \exp(x)$$

exponential

$$y(0)=1, \quad y'=y \quad \rightsquigarrow \quad y(x)=\exp(x)$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

$$y(0)=y_0,$$
 $y'(x)=p(y(x))$

Example:
$$f(x) = \sin(x)$$
 or $f(x) = \cos(x)$

$$y_1(0)=0,$$
 $y_1'=y_2 \rightarrow y_1(x)=\sin(x)$
 $y_2(0)=1,$ $y_2'=-y_1 \rightarrow y_2(x)=\cos(x)$

- $d \in \mathbb{N}$: dimension
- ullet $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- $\mathbf{v}_0 \in \mathbb{K}^d, \mathbf{v} : \mathbb{R} \to \mathbb{R}^d$
- ▶ sine/cosine

$$y_1(x) = \sin(x)$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- ullet $\mathbb{O} \subset \mathbb{K} \subset \mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in K)
- $\mathbf{v}_0 \in \mathbb{K}^d, \mathbf{v} : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f(x) = \tanh(x)$$
 hyperbolic tangent

$$y(0)=0,$$
 $y'=1-y^2 \sim y(x)=\tanh(x)$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- $d \in \mathbb{N}$: dimension
- $\bullet \ \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$

Example:
$$f(x) = \frac{1}{1+x^2}$$

▶ rational function

$$f'(x) = \frac{-2x}{(1+x^2)^2} = -2xf(x)^2$$

$$y_1(0)=1,$$
 $y_1'=-2y_2y_1^2 \sim y_1(x)=\frac{1}{1+x^2}$
 $y_2(0)=0,$ $y_2'=1$ $\sim y_2(x)=x$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies
$$f(x) = y_1(x)$$
 for all $x \in \mathbb{R}$.

Types

- $d \in \mathbb{N}$: dimension
- ullet $\mathbb{O} \subset \mathbb{K} \subset \mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- $\mathbf{v}_0 \in \mathbb{K}^d, \mathbf{v} : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f = g \pm h$$
 \triangleright sum/difference

$$(g\pm h)'=g'\pm h'$$

assume:

$$z(0)=z_0,$$

 $w(0)=w_0,$

$$z'=p(z)$$

 $w'=q(w)$

$$\sim z_1 = g$$

 $\sim w_1 = h$

$$y(0)=z_{0,1}+w_{0,1},$$

$$y(0)=z_{0.1}+w_{0.1}, \quad y'=p_1(z)\pm q_1(w) \sim y=z_1\pm w_1$$

$$y=z_1\pm w_1$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0,$$
 $y'(x) = \rho(y(x))$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- $d \in \mathbb{N}$: dimension
- ullet $\mathbb{O} \subset \mathbb{K} \subset \mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- $\mathbf{v}_0 \in \mathbb{K}^d, \mathbf{v} : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f = gh$$
 \triangleright product

$$(gh)'=g'h+gh'$$

assume:

$$z(0)=z_0,$$
 $z'=p(z)$
 $w(0)=w_0,$ $w'=q(w)$

$$\sim z_1 = g$$

$$\sim w_1 = h$$

$$y(0)=z_{0,1}w_{0,1}, y'=p_1(z)w_1+z_1q_1(w) y=z_1w_1$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- $d \in \mathbb{N}$: dimension
- ullet $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- $\mathbf{v}_0 \in \mathbb{K}^d, \mathbf{v} : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f = \frac{1}{g}$$
 inverse

$$f' = \frac{-g'}{g^2} = -g'f^2$$

assume:

$$z(0)=z_0, \qquad z'=p(z) \qquad \sim z_1=g$$

$$y(0) = \frac{1}{z_{0,1}}, \quad y' = -p_1(z)y^2 \quad \rightsquigarrow \quad y = \frac{1}{z_1}$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- $d \in \mathbb{N}$: dimension
- ullet $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- $\mathbf{v}_0 \in \mathbb{K}^d, \mathbf{v} : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f = \int g$$
 integral

assume:

$$z(0)=z_0, \quad z'=p(z) \sim z_1=g$$

$$y(0)=0, \quad y'=z_1 \quad \rightsquigarrow \quad y=\int z_1$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0)=y_0, \qquad y'(x)=p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- $d \in \mathbb{N}$: dimension
- ullet $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- $\mathbf{v}_0 \in \mathbb{K}^d, \mathbf{v} : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f = g'$$
 be derivative

$$f'=g''=(p_1(z))'=\nabla p_1(z)\cdot z'$$

assume:

$$z(0)=z_0$$

$$z'=p(z)$$

$$\sim z_1 = g$$

$$y(0)=p_1(z_0),$$

$$y(0) = p_1(z_0), \quad y' = \nabla p_1(z) \cdot p(z) \quad \rightsquigarrow \quad y = z_1''$$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- $d \in \mathbb{N}$: dimension
- ullet $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- $\mathbf{v}_0 \in \mathbb{K}^d, \mathbf{v} : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f = g \circ h$$
 \triangleright composition

$$(z \circ h)' = (z' \circ h)h' = p(z \circ h)h'$$

assume:

$$z(0)=z_0,$$
 $z'=p(z)$ \sim $z_1=g$

$$z'=p(z)$$

$$\sim z_1 = g$$

$$0)=w_0,$$

$$w(0)=w_0, \qquad w'=q(w) \quad \rightsquigarrow \quad w_1=h$$

$$\rightarrow w_1 = h$$

$$y(0)=z(w_0), \quad y'=p(y)z_1 \quad \rightsquigarrow \quad y=z\circ h$$

$$v'=p(v)z_1$$

$$\rightsquigarrow$$
 $y=z\circ$

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0)=y_0, \qquad y'(x)=p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- $d \in \mathbb{N}$: dimension
- ullet $\mathbb{Q}\subseteq\mathbb{K}\subseteq\mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f = g \circ h$$
 \triangleright composition

$$(z \circ h)' = (z' \circ h)h' = p(z \circ h)h'$$

assume:

$$z(0)=z_0,$$
 $z'=p(z)$ \Rightarrow $z_1=g$
 $w(0)=w_0,$ $w'=q(w)$ \Rightarrow $w_1=h$

then:

$$y(0) = z(w_0), \quad y' = p(y)z_1 \quad \Rightarrow \quad y = z \circ h$$

Is this coefficient in \mathbb{K} ?

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p and y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

Example : $f = g \circ h$ \triangleright composition

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

- $d \in \mathbb{N}$: dimension
- ullet $\mathbb{Q}\subseteq\mathbb{K}\subseteq\mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})

•
$$y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$$

$$(z \circ h)' = (z' \circ h)h' = p(z \circ h)h'$$

$$z(0)=z_0,$$
 $z'=p(z)$ \Rightarrow $z_1=g$
 $w(0)=w_0,$ $w'=q(w)$ \Rightarrow $w_1=h$

 $y(0) = z(w_0), \quad y' = p(y)z_1 \quad \rightsquigarrow \quad y = z \circ h$

Is this coefficient in \mathbb{K} ? Fields with this property are called generable.

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- $d \in \mathbb{N}$: dimension
- ullet $\mathbb{O} \subset \mathbb{K} \subset \mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- $\mathbf{v}_0 \in \mathbb{K}^d$, $\mathbf{v} : \mathbb{R} \to \mathbb{R}^d$

Example:
$$f' = tanh \circ f$$

Example: $f' = \tanh \circ f$ Non-polynomial differential equation

$$f'' = (\tanh' \circ f)f' = (1 - (\tanh \circ f)^2)f'$$

$$y_1(0) = f(0),$$
 $y'_1 = y_2$ \rightarrow $y_1(x) = f(x)$
 $y_2(0) = \tanh(f(0)),$ $y'_2 = (1 - y_2^2)y_2$ \rightarrow $y_2(x) = \tanh(f(x))$

Generable functions (total, univariate)

Definition

 $f: \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- $d \in \mathbb{N}$: dimension
- ullet $\mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})
- $v_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$

Example :
$$f(0) = f_0, f' = g \circ f$$
 Initial Value Problem (IVP)

$$f'=g''=(p_1(z))'=\nabla p_1(z)\cdot z'$$

assume:

$$z(0)=z_0$$

$$z'=p(z)$$

$$\sim z_1 = g$$

then:

$$y(0)=p_1(z_0),$$

$$y(0) = p_1(z_0), \quad y' = \nabla p_1(z) \cdot p(z) \quad \rightsquigarrow \quad y = z_1''$$

$$y=z_1''$$

Generable functions: a first summary

Nice theory for the class of total and univariate generable functions:

- analytic
- contains polynomials, sin, cos, tanh, exp
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- ullet technicality on the field $\mathbb K$ of coefficients for stability under \circ
- solutions to polynomial ODEs form a very large class

Generable functions: a first summary

Nice theory for the class of total and univariate generable functions:

- analytic
- contains polynomials, sin, cos, tanh, exp
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- ullet technicality on the field $\mathbb K$ of coefficients for stability under \circ
- solutions to polynomial ODEs form a very large class

Limitations:

- total functions
- univariate

Definition

 $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open **connected** and $\exists d, p, x_0, y_0, y$ such that

$$y(x_0) = y_0,$$
 $J_y(x) = \rho(y(x))$

and
$$f(x) = y_1(x)$$
 for all $x \in X$.

$$J_{v}(x) = \text{Jacobian matrix of } y \text{ at } x$$

Notes:

- Partial differential equation!
- Unicity of solution y...
- ... but not existence (ie you have to show it exists)

Types

- ullet $n\in\mathbb{N}$: input dimension
- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{K}^{d \times d}[\mathbb{R}^d]$: polynomial matrix
- $x_0 \in \mathbb{K}^n$
- $y_0 \in \mathbb{K}^d, y : X \to \mathbb{R}^d$

Definition

 $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open **connected** and $\exists d, p, x_0, y_0, y$ such that

$$y(x_0) = y_0,$$
 $J_y(x) = p(y(x))$

and
$$f(x) = y_1(x)$$
 for all $x \in X$.

 $J_{\nu}(x) = \text{Jacobian matrix of } y \text{ at } x$

Example:
$$f(x_1, x_2) = x_1 x_2^2$$
 $(n = 2, d = 3)$

$$y(0,0) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad J_y = \begin{pmatrix} y_3^2 & 3y_2y_3 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \rightsquigarrow \quad y(x) = \begin{pmatrix} x_1x_2^2 \\ x_1 \\ x_2 \end{pmatrix}$$

Types

- $n \in \mathbb{N}$: input dimension
- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{K}^{d \times d}[\mathbb{R}^d]$: polynomial matrix
- $x_0 \in \mathbb{K}^n$
- $\mathbf{v}_0 \in \mathbb{K}^d, \mathbf{v} : \mathbf{X} \to \mathbb{R}^d$

monomial

$$y(x) = \begin{pmatrix} x_1 x_2^2 \\ x_1 \\ x_2 \end{pmatrix}$$

Definition

 $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open **connected** and $\exists d, p, x_0, y_0, y$ such that

$$y(x_0) = y_0,$$
 $J_y(x) = p(y(x))$

and
$$f(x) = y_1(x)$$
 for all $x \in X$.

$$J_{\nu}(x) = \text{Jacobian matrix of } y \text{ at } x$$

Types

- ullet $n\in\mathbb{N}$: input dimension
- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{K}^{d \times d}[\mathbb{R}^d]$: polynomial matrix
- $x_0 \in \mathbb{K}^n$
- $y_0 \in \mathbb{K}^d, y : X \to \mathbb{R}^d$

Example:
$$f(x_1, x_2) = x_1 x_2^2$$
 \blacktriangleright monomial

$$y_1(0,0)=0,$$
 $\partial_{x_1}y_1=y_3^2,$ $\partial_{x_2}y_1=3y_2y_3 \sim y_1(x)=x_1x_2^2$
 $y_2(0,0)=0,$ $\partial_{x_1}y_2=1,$ $\partial_{x_2}y_2=0 \sim y_2(x)=x_1$
 $y_3(0,0)=0,$ $\partial_{x_1}y_3=0,$ $\partial_{x_2}y_3=1 \sim y_3(x)=x_2$

This is tedious!

Definition

 $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ is generable if X is open **connected** and $\exists d, p, x_0, y_0, y$ such that

$$y(x_0) = y_0,$$
 $J_y(x) = p(y(x))$

and
$$f(x) = y_1(x)$$
 for all $x \in X$.

$$J_{\nu}(x) = \text{Jacobian matrix of } y \text{ at } x$$

Last example :
$$f(x) = \frac{1}{x}$$
 for $x \in (0, \infty)$

Types

- $n \in \mathbb{N}$: input dimension
- $d \in \mathbb{N}$: dimension
- $p \in \mathbb{K}^{d \times d}[\mathbb{R}^d]$: polynomial matrix
- $x_0 \in \mathbb{K}^n$

▶ inverse function

- $y_0 \in \mathbb{K}^d, y : X \to \mathbb{R}^d$
- $y(1)=1, \quad \partial_x y=-y^2 \quad \rightsquigarrow \quad y(x)=\frac{1}{x}$

Generable functions: summary

Nice theory for the class of multivariate generable functions (over connected domains):

- analytic
- contains polynomials, sin, cos, tanh, exp, ...
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- ullet technicality on the field $\mathbb K$ of coefficients for stability under \circ
- requires partial differential equations

Generable functions: summary

Nice theory for the class of multivariate generable functions (over connected domains):

- analytic
- contains polynomials, sin, cos, tanh, exp, ...
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- ullet technicality on the field $\mathbb K$ of coefficients for stability under \circ
- requires partial differential equations

Exercice: are all analytic functions generable?

Generable functions: summary

Nice theory for the class of multivariate generable functions (over connected domains):

- analytic
- o contains polynomials, sin, cos, tanh, exp, ...
- stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)
- ullet technicality on the field $\mathbb K$ of coefficients for stability under \circ
- requires partial differential equations

Exercice : are all analytic functions generable? No Riemann Γ and ζ are not generable.

Why is this useful?

Writing polynomial ODEs by hand is hard.

Why is this useful?

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated **multivariate partial functions** using other operations, and we know they are solutions to polynomial ODEs **by construction**.

Why is this useful?

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated **multivariate partial functions** using other operations, and we know they are solutions to polynomial ODEs **by construction**.

Example (almost rounding function)

There exists a generable function round such that for any $n \in \mathbb{Z}$, $x \in \mathbb{R}$, $\lambda > 2$ and $\mu \geqslant 0$:

- if $x \in [n \frac{1}{2}, n + \frac{1}{2}]$ then $|\operatorname{round}(x, \mu, \lambda) n| \leqslant \frac{1}{2}$,
- if $x \in \left[n \frac{1}{2} + \frac{1}{\lambda}, n + \frac{1}{2} \frac{1}{\lambda}\right]$ then $|\operatorname{round}(x, \mu, \lambda) n| \leqslant e^{-\mu}$.

Reminder of the result

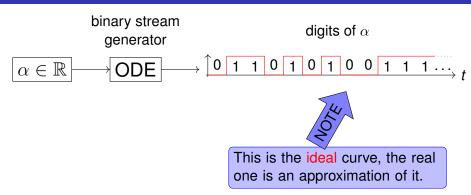
Main result (reminder)

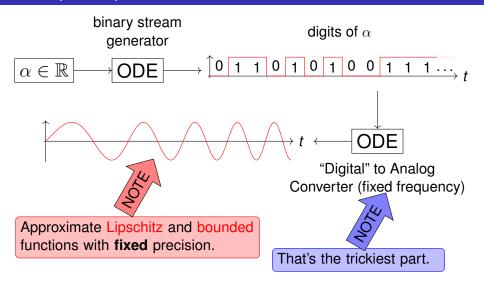
There exists a **fixed** (vector of) polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

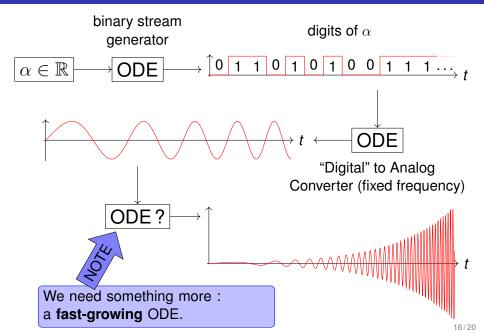
$$y(0) = \alpha,$$
 $y'(t) = p(y(t))$

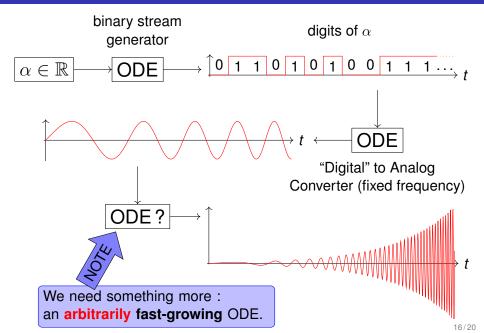
has a **unique solution** $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t)-f(t)|\leqslant \varepsilon(t).$$





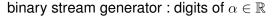


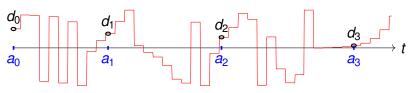


binary stream generator : digits of $\alpha \in \mathbb{R}$

$$f(\alpha,\mu,\lambda,t) = \frac{1}{2} + \frac{1}{2} \tanh(\mu \sin(2\alpha\pi 4^{\operatorname{round}(t-1/4,\lambda)} + 4\pi/3))$$

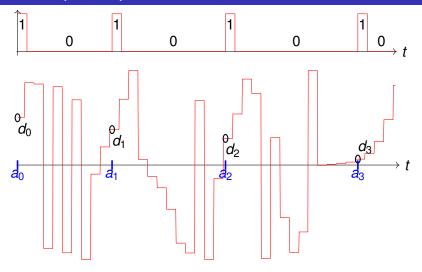
It's horrible, but generable

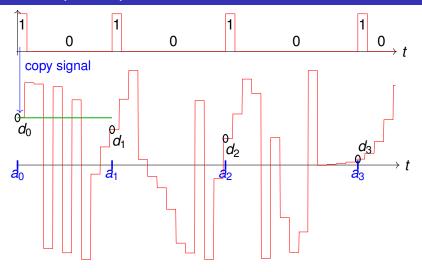


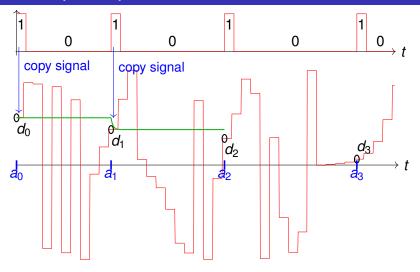


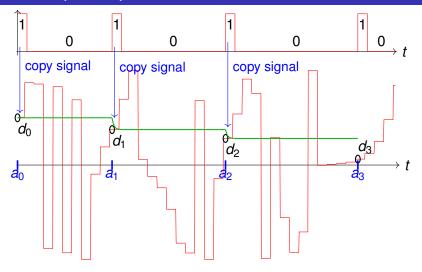
dyadic stream generator :
$$d_i = m_i 2^{-d_i}$$
, $a_i = 9i + \sum_{j < i} d_j$

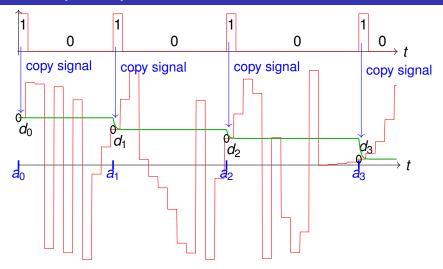
$$f(\alpha, \gamma, t) = \sin(2\alpha \pi 2^{\operatorname{round}(t-1/4, \gamma)}))$$

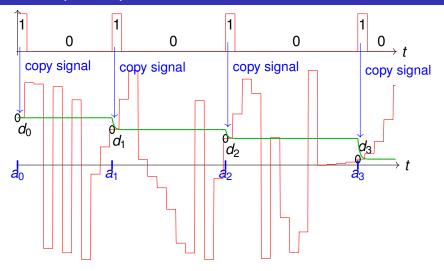




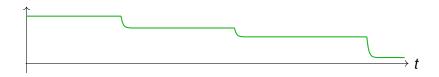








This copy operation is the "non-trivial" part.

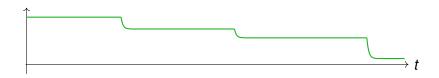


We can do almost piecewise constant functions...



We can do almost piecewise constant functions...

- ...that are bounded by 1...
- ...and have super slow changing frequency.



We can do almost piecewise constant functions...

- ...that are bounded by 1...
- ...and have super slow changing frequency.

How do we go to arbitrarily large and growing functions? Can a polynomial ODE even have arbitrary growth?

Building a fast-growing ODE, that exists over \mathbb{R} :

$$y_1' = y_1$$
 \rightsquigarrow $y_1(t) = \exp(t)$

Building a fast-growing ODE, that exists over \mathbb{R} :

$$y'_1 = y_1$$
 \rightsquigarrow $y_1(t) = \exp(t)$
 $y'_2 = y_1 y_2$ \rightsquigarrow $y_1(t) = \exp(\exp(t))$

Building a fast-growing ODE, that exists over \mathbb{R} :

$$y_1' = y_1$$
 \longrightarrow $y_1(t) = \exp(t)$
 $y_2' = y_1 y_2$ \longrightarrow $y_1(t) = \exp(\exp(t))$
 \dots \dots
 $y_n' = y_1 \cdots y_n$ \longrightarrow $y_n(t) = \exp(\cdots \exp(t) \cdots) := e_n(t)$

Building a fast-growing ODE, that exists over \mathbb{R} :

$$y'_1 = y_1$$
 \longrightarrow $y_1(t) = \exp(t)$
 $y'_2 = y_1 y_2$ \longrightarrow $y_1(t) = \exp(\exp(t))$
 \dots \dots
 $y'_n = y_1 \cdots y_n$ \longrightarrow $y_n(t) = \exp(\cdots \exp(t) \cdots) := e_n(t)$

Conjecture (Emil Borel, 1899)

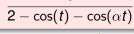
With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

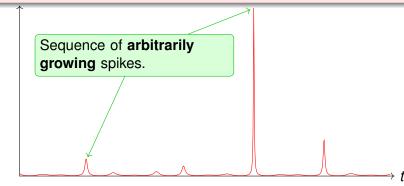
$$e_n(t) = \exp(\cdots \exp(t) \cdots)$$
 (*n* compositions)

Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)



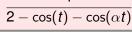


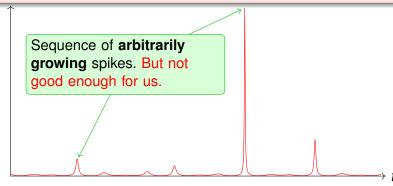
$$e_n(t) = \exp(\cdots \exp(t) \cdots)$$
 (*n* compositions)

Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)





$$e_n(t) = \exp(\cdots \exp(t) \cdots)$$
 (*n* compositions)

Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)

$$\frac{1}{2-\cos(t)-\cos(\alpha t)}$$

Theorem (In the paper)

There exists a polynomial $p: \mathbb{R}^d \to \mathbb{R}^d$ such that for any continuous function $f: \mathbb{R}_{>0} \to \mathbb{R}$, we can find $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha,$$
 $y'(t) = \rho(y(t))$

satisfies

$$y_1(t) \geqslant f(t), \quad \forall t \geqslant 0.$$

$$e_n(t) = \exp(\cdots \exp(t) \cdots)$$
 (*n* compositions)

Conjecture (Emil Borel, 1899)

With *n* variables, cannot do better than $\mathcal{O}_t(e_n(At^k))$.

Counter-example (Vijayaraghavan, 1932)

$$\frac{1}{2-\cos(t)-\cos(\alpha t)}$$

Theorem (In the paper)

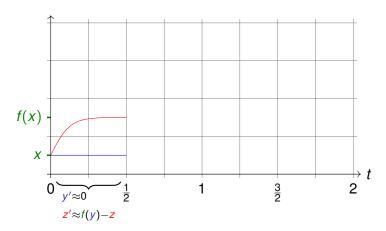
There exists a polynomial $p: \mathbb{R}^d \to \mathbb{R}^d$ such that for any continuous function $f: \mathbb{R}_{\geq 0} \to \mathbb{R}$, we can find $\alpha \in \mathbb{R}^d$ such that

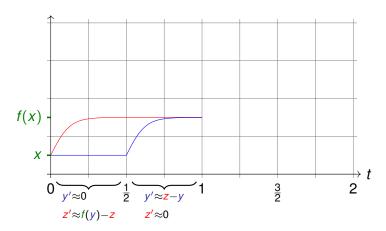
$$y(0) = \alpha,$$
 $y'(t) = p(y(t))$

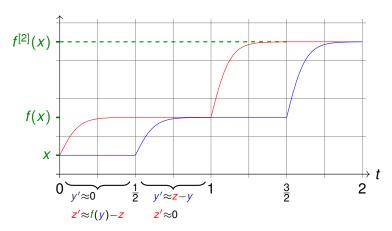
satisfies

$$y_1(t) \geqslant f(t), \quad \forall t \geqslant 0.$$

Note : both results require α to be **transcendental**. Conjecture still open for **rational** (or algebraic) coefficients.







Main result, remark and end

Main result (reminder)

There exists a **fixed** (vector of) polynomial p such that for any $f \in C^0(\mathbb{R})$ and $\varepsilon \in C^0(\mathbb{R}, \mathbb{R}_{>0})$, there exists $\alpha \in \mathbb{R}^d$ such that

$$y(0) = \alpha,$$
 $y'(t) = p(y(t))$

has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

$$|y_1(t)-f(t)| \leq \varepsilon(t).$$

Futhermore, α is computable from f and ε .

Remarks:

- if f and ε are computable then α is computable
- if f or ε is not computable then α is not computable
- ullet in all cases lpha is a horrible transcendental number

Let
$$f(t) = \begin{cases} \exp(-\tan(t)^2) & \text{if } |t| < \frac{\pi}{2} \\ 0 & \text{elsewhere} \end{cases}$$

$$\text{Lemma : } f \in C^{\infty}(\mathbb{R}) \text{ and for all } a, \lambda \in \mathbb{R}, \ g := t \mapsto \lambda f(a+t) \text{ satisfies}$$

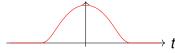
$$-2v'^6 + 6v''v'^4 v - 6v''^2 v'^2 v^2 + 31v'^4 v^2 + 2v''^3 v^3 - 8v''v'^2 v^3 + 4v''^2 v^4 + 16v'^2 v^4 = 0. \tag{1}$$

Let
$$f(t) = \begin{cases} \exp(-\tan(t)^2) & \text{if } |t| < \frac{\pi}{2} \\ 0 & \text{elsewhere} \end{cases}$$

Lemma : $f \in C^{\infty}(\mathbb{R})$ and for all $a, \lambda \in \mathbb{R}$, $g := t \mapsto \lambda f(a+t)$ satisfies $-2v'^{6} + 6v''v'^{4}v - 6v''^{2}v'^{2}v^{2} + 31v'^{4}v^{2} + 2v''^{3}v^{3} - 8v''v'^{2}v^{3} + 4v''^{2}v^{4} + 16v'^{2}v^{4} = 0.$ (1)

Lemma: if y, z satisfy (1) and have disjoint support, y + z satisfies (1).

$$\text{Let } f(t) = \begin{cases} \exp(-\tan(t)^2) & \text{if } |t| < \frac{\pi}{2} \\ 0 & \text{elsewhere} \end{cases}$$



Lemma : $f \in C^{\infty}(\mathbb{R})$ and for all $a, \lambda \in \mathbb{R}, \, g := t \mapsto \lambda f(a+t)$ satisfies

$$-2y'^{6} + 6y''y'^{4}y - 6y''^{2}y'^{2}y^{2} + 31y'^{4}y^{2} + 2y''^{3}y^{3} - 8y''y'^{2}y^{3} + 4y''^{2}y^{4} + 16y'^{2}y^{4} = 0.$$
 (1)

Lemma: if y, z satisfy (1) and have disjoint support, y + z satisfies (1).

A set of conditions for (1) is a collection of constraints of the form $y^{(k)}(a) = b$ for some $k \in \mathbb{N}$ and $a, b \in \mathbb{R}$.

Example:
$$y(0) = 1, y'(0) = 0, y''(42) = \pi$$

$$\text{Let } f(t) = \begin{cases} \exp(-\tan(t)^2) & \text{if } |t| < \frac{\pi}{2} \\ 0 & \text{elsewhere} \end{cases}$$

Lemma : $f \in C^{\infty}(\mathbb{R})$ and for all $a, \lambda \in \mathbb{R}, \, g := t \mapsto \lambda f(a+t)$ satisfies

$$-2y'^{6} + 6y''y'^{4}y - 6y''^{2}y'^{2}y^{2} + 31y'^{4}y^{2} + 2y''^{3}y^{3} - 8y''y'^{2}y^{3} + 4y''^{2}y^{4} + 16y'^{2}y^{4} = 0.$$
 (1)

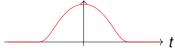
Lemma: if y, z satisfy (1) and have disjoint support, y + z satisfies (1).

A set of conditions for (1) is a collection of constraints of the form $y^{(k)}(a) = b$ for some $k \in \mathbb{N}$ and $a, b \in \mathbb{R}$.

Example :
$$y(0) = 1, y'(0) = 0, y''(42) = \pi$$

Lemma: for any **finite** set of conditions, either (1) has no solution or at least one with bounded support.

$$\text{Let } f(t) = \begin{cases} \exp(-\tan(t)^2) & \text{if } |t| < \frac{\pi}{2} \\ 0 & \text{elsewhere} \end{cases}$$



Lemma : $f \in C^{\infty}(\mathbb{R})$ and for all $a, \lambda \in \mathbb{R}, \, g := t \mapsto \lambda f(a+t)$ satisfies

$$-2y'^{6} + 6y''y'^{4}y - 6y''^{2}y'^{2}y^{2} + 31y'^{4}y^{2} + 2y''^{3}y^{3} - 8y''y'^{2}y^{3} + 4y''^{2}y^{4} + 16y'^{2}y^{4} = 0.$$
 (1)

Lemma : if y, z satisfy (1) and have disjoint support, y + z satisfies (1).

A set of conditions for (1) is a collection of constraints of the form $y^{(k)}(a) = b$ for some $k \in \mathbb{N}$ and $a, b \in \mathbb{R}$.

Example :
$$y(0) = 1, y'(0) = 0, y''(42) = \pi$$

Lemma: for any **finite** set of conditions, either (1) has no solution or at least one with bounded support.

Theorem: for any **finite** set of conditions, if (1) has a solution then it has infinitely many.