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Universal differential algebraic equation (Rubel)

x
y1(x)

Theorem (Rubel, 1981)

For any f ∈ C0(R) and ε ∈ C0(R,R>0), there exists a solution y : R→ R
to
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′′
y
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y
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′′3
y
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+ 12y
′′7

= 0

such that ∀t ∈ R,
|y(t)− f (t)| 6 ε(t).
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Universal differential algebraic equation (Rubel)

x
y1(x)

Theorem (Rubel, 1981)
There exists a fixed k and nontrivial polynomial p such that for any
f ∈ C0(R) and ε ∈ C0(R,R>0), there exists a solution y : R→ R to

p(y , y ′, . . . , y (k)) = 0

such that ∀t ∈ R,
|y(t)− f (t)| 6 ε(t).
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Universal differential algebraic equation (Rubel)

x
y1(x)

Open Problem
Can we have unicity of
the solution with initial
conditions?

Theorem (Rubel, 1981)
There exists a fixed k and nontrivial polynomial p such that for any
f ∈ C0(R) and ε ∈ C0(R,R>0), there exists a solution y : R→ R to

p(y , y ′, . . . , y (k)) = 0

such that ∀t ∈ R,
|y(t)− f (t)| 6 ε(t).
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Rubel’s ("disappointing") proof in one slide

Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1− t2)2f
′
(t) + 2tf (t) = 0.

For any a,b, c ∈ R, y(t) = cf (at + b) satisfies
Can glue together arbitrary many such pieces
;crucial (and tricky) part of the proof
Can arrange so that

∫
f is solution : piecewise pseudo-linear

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0
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The problem with Rubel’s DAE

The solution y is not unique, even with added initial conditions :

p(y , y ′, . . . , y (k)) = 0, y(0) = α0, y ′(0) = α1, . . . , y (k)(0) = αk

In fact, this is fundamental for Rubel’s proof to work !

Rubel’s statement : this DAE is universal
More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y ′ = p(y) ?
Note : explicit polynomial ODE⇒ unique solution
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Universal explicit ordinary differential equation

x
y1(x)

Main result

There exists a fixed (vector of) polynomial p such that for any f ∈ C0(R)
and ε ∈ C0(R,R>0), there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).

Futhermore, α is computable † from f and ε.

†. This statement can be made precise with the theory of Computable Analysis.

5 / 20
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Notes :
system of ODEs,
y must be analytic,
we need d ≈ 300.
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Universal DAE, again but better

x
y1(x)

Corollary of main result
There exists a fixed k and nontrivial polynomial p such that for any
f ∈ C0(R) and ε ∈ C0(R,R>0), there exists α0, . . . , αk ∈ R such that

p(y , y ′, . . . , y (k)) = 0, y(0) = α0, y ′(0) = α1, . . . , y (k)(0) = αk

has a unique analytic solution y : R→ R and ∀t ∈ R,

|y(t)− f (t)| 6 ε(t).
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Some motivation

Polynomial ODEs correspond to analog computers :

Differential Analyser British Navy mecanical computer

They are equivalent to Turing machines !
One can characterize P with pODEs (ICALP 2016)

Take away : polynomial ODEs are a natural programming language.
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Example of differential equation

θ

`

m

×
∫ ∫

×
∫−g

`

××−1
∫

y1
y2

y3 y4

General Purpose Analog Computer (GPAC)
Shannon’s model of the Differential Analyser

θ̈ + g
` sin(θ) = 0 

y ′1 = y2
y ′2 = −g

` y3
y ′3 = y2y4
y ′4 = −y2y3

⇔


y1 = θ

y2 = θ̇
y3 = sin(θ)
y4 = cos(θ)

8 / 20



A brief stop

Before I can explain the proof, you need to know more of polynomial
ODEs and what I mean by programming with ODEs.
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

x
y1(x)

Note : existence and unicity of y by Cauchy-Lipschitz theorem.
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f (x) = x I identity

y(0) = 0, y ′ = 1 ; y(x) = x
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Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f (x) = x2 I squaring

y1(0)= 0, y ′1= 2y2 ; y1(x)= x2

y2(0)= 0, y ′2= 1 ; y2(x)= x

10 / 20



Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f (x) = xn I nth power

y1(0)= 0, y ′1= ny2 ; y1(x)= xn

y2(0)= 0, y ′2= (n − 1)y3 ; y2(x)= xn−1

. . . . . . . . .
yn(0)= 0, yn= 1 ; yn(x)= x
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f (x) = exp(x) I exponential

y(0)= 1, y ′= y ; y(x)= exp(x)

10 / 20



Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f (x) = sin(x) or f (x) = cos(x) I sine/cosine

y1(0)= 0, y ′1= y2 ; y1(x)= sin(x)
y2(0)= 1, y ′2= −y1 ; y2(x)= cos(x)
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f (x) = tanh(x) I hyperbolic tangent

y(0)= 0, y ′= 1− y2 ; y(x)= tanh(x)

x
tanh(x)
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f (x) = 1
1+x2 I rational function

f ′(x) = −2x
(1+x2)2 = −2xf (x)2

y1(0)= 1, y ′1= −2y2y2
1 ; y1(x)= 1

1+x2

y2(0)= 0, y ′2= 1 ; y2(x)= x
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f = g ± h I sum/difference

(g ± h)′ = g′ ± h′

assume :
z(0)= z0, z ′= p(z) ; z1= g
w(0)= w0, w ′= q(w) ; w1= h

then :
y(0)= z0,1 + w0,1, y ′= p1(z)± q1(w) ; y= z1 ± w1
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f = gh I product

(gh)′ = g′h + gh′

assume :
z(0)= z0, z ′= p(z) ; z1= g
w(0)= w0, w ′= q(w) ; w1= h

then :
y(0)= z0,1w0,1, y ′= p1(z)w1 + z1q1(w) ; y= z1w1
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f = 1
g I inverse

f ′ = −g′

g2 = −g′f 2

assume :
z(0)= z0, z ′= p(z) ; z1= g

then :

y(0)= 1
z0,1

, y ′= −p1(z)y2 ; y= 1
z1
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f =
∫

g I integral

assume :
z(0)= z0, z ′= p(z) ; z1= g

then :
y(0)= 0, y ′= z1 ; y=

∫
z1
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f = g′ I derivative

f ′ = g′′ = (p1(z))′ = ∇p1(z) · z ′

assume :
z(0)= z0, z ′= p(z) ; z1= g

then :
y(0)= p1(z0), y ′= ∇p1(z) · p(z) ; y= z ′′1
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Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f = g ◦ h I composition

(z ◦ h)′ = (z ′ ◦ h)h′ = p(z ◦ h)h′

assume :
z(0)= z0, z ′= p(z) ; z1= g
w(0)= w0, w ′= q(w) ; w1= h

then :
y(0)= z(w0), y ′= p(y)z1 ; y= z ◦ h
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
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Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f = g ◦ h I composition

(z ◦ h)′ = (z ′ ◦ h)h′ = p(z ◦ h)h′

assume :
z(0)= z0, z ′= p(z) ; z1= g
w(0)= w0, w ′= q(w) ; w1= h

then :
y(0)= z(w0), y ′= p(y)z1 ; y= z ◦ h

Is this coefficient in K?
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))
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assume :
z(0)= z0, z ′= p(z) ; z1= g
w(0)= w0, w ′= q(w) ; w1= h

then :
y(0)= z(w0), y ′= p(y)z1 ; y= z ◦ h
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f ′ = tanh ◦f I Non-polynomial differential equation

f ′′ = (tanh′ ◦f )f ′ = (1− (tanh ◦f )2)f ′

y1(0)= f (0), y ′1= y2 ; y1(x)= f (x)
y2(0)= tanh(f (0)), y ′2= (1− y2

2 )y2 ; y2(x)= tanh(f (x))
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Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
d ∈ N : dimension
Q ⊆ K ⊆ R : field
p ∈ Kd [Rn] : polynomial
vector (coef. in K)
y0 ∈ Kd , y : R→ Rd

Example : f (0) = f0, f ′ = g ◦ f I Initial Value Problem (IVP)

f ′ = g′′ = (p1(z))′ = ∇p1(z) · z ′

assume :
z(0)= z0, z ′= p(z) ; z1= g

then :
y(0)= p1(z0), y ′= ∇p1(z) · p(z) ; y= z ′′1
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Generable functions : a first summary

Nice theory for the class of total and univariate generable functions :
analytic
contains polynomials, sin, cos, tanh, exp

stable under ±,×, /, ◦ and Initial Value Problems (IVP)
technicality on the field K of coefficients for stability under ◦
solutions to polynomial ODEs form a very large class

Limitations :
total functions
univariate
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Generable functions (generalization)

Definition
f : X ⊆ Rn → R is generable if X is open
connected and ∃d ,p, x0, y0, y such that

y(x0) = y0, Jy (x) = p(y(x))

and f (x) = y1(x) for all x ∈ X .

Jy (x) = Jacobian matrix of y at x

Types
n ∈ N : input dimension
d ∈ N : dimension
p ∈ Kd×d [Rd ] :
polynomial matrix
x0 ∈ Kn

y0 ∈ Kd , y : X → Rd

Notes :
Partial differential equation !
Unicity of solution y ...
... but not existence (ie you have to show it exists)

12 / 20



Generable functions (generalization)

Definition
f : X ⊆ Rn → R is generable if X is open
connected and ∃d ,p, x0, y0, y such that

y(x0) = y0, Jy (x) = p(y(x))

and f (x) = y1(x) for all x ∈ X .

Jy (x) = Jacobian matrix of y at x

Types
n ∈ N : input dimension
d ∈ N : dimension
p ∈ Kd×d [Rd ] :
polynomial matrix
x0 ∈ Kn

y0 ∈ Kd , y : X → Rd

Example : f (x1, x2) = x1x2
2 (n = 2,d = 3) I monomial

y(0,0) =

0
0
0

 , Jy =

y2
3 3y2y3
1 0
0 1

 ; y(x) =

x1x2
2

x1
x2


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Generable functions (generalization)

Definition
f : X ⊆ Rn → R is generable if X is open
connected and ∃d ,p, x0, y0, y such that

y(x0) = y0, Jy (x) = p(y(x))

and f (x) = y1(x) for all x ∈ X .

Jy (x) = Jacobian matrix of y at x

Types
n ∈ N : input dimension
d ∈ N : dimension
p ∈ Kd×d [Rd ] :
polynomial matrix
x0 ∈ Kn

y0 ∈ Kd , y : X → Rd

Example : f (x1, x2) = x1x2
2 I monomial

y1(0,0)= 0, ∂x1y1= y2
3 , ∂x2y1= 3y2y3 ; y1(x) = x1x2

2
y2(0,0)= 0, ∂x1y2= 1, ∂x2y2= 0 ; y2(x) = x1
y3(0,0)= 0, ∂x1y3= 0, ∂x2y3= 1 ; y3(x) = x2

This is tedious !
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f : X ⊆ Rn → R is generable if X is open
connected and ∃d ,p, x0, y0, y such that

y(x0) = y0, Jy (x) = p(y(x))

and f (x) = y1(x) for all x ∈ X .

Jy (x) = Jacobian matrix of y at x

Types
n ∈ N : input dimension
d ∈ N : dimension
p ∈ Kd×d [Rd ] :
polynomial matrix
x0 ∈ Kn

y0 ∈ Kd , y : X → Rd

Last example : f (x) = 1
x for x ∈ (0,∞) I inverse function

y(1)= 1, ∂xy= −y2 ; y(x) = 1
x

12 / 20



Generable functions : summary

Nice theory for the class of multivariate generable functions (over
connected domains) :

analytic
contains polynomials, sin, cos, tanh, exp, ...
stable under ±,×, /, ◦ and Initial Value Problems (IVP)
technicality on the field K of coefficients for stability under ◦
requires partial differential equations

Exercice : are all analytic functions generable?
Riemann Γ and ζ are not generable.
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connected domains) :
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contains polynomials, sin, cos, tanh, exp, ...
stable under ±,×, /, ◦ and Initial Value Problems (IVP)
technicality on the field K of coefficients for stability under ◦
requires partial differential equations

Exercice : are all analytic functions generable? No
Riemann Γ and ζ are not generable.
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Why is this useful ?

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated multivariate
partial functions using other operations, and we know they are
solutions to polynomial ODEs by construction.

Example (almost rounding function)

There exists a generable function round such that for any n ∈ Z, x ∈ R,
λ > 2 and µ > 0 :

if x ∈
[
n − 1

2 ,n + 1
2

]
then | round(x , µ, λ)− n| 6 1

2 ,

if x ∈
[
n − 1

2 + 1
λ ,n + 1

2 −
1
λ

]
then | round(x , µ, λ)− n| 6 e−µ.
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Reminder of the result

Main result (reminder)

There exists a fixed (vector of) polynomial p such that for any f ∈ C0(R)
and ε ∈ C0(R,R>0), there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).

15 / 20



A simplified proof

α ∈ R ODE t
0 1 1 0 1 0 1 0 0 1 1 1 . . .

digits of α
binary stream

generator

This is the ideal curve, the real
one is an approximation of it.

N
O

TE
16 / 20



A simplified proof

α ∈ R ODE t
0 1 1 0 1 0 1 0 0 1 1 1 . . .

digits of α
binary stream

generator

ODEt

“Digital” to Analog
Converter (fixed frequency)

Approximate Lipschitz and bounded
functions with fixed precision.

N
O

TE

That’s the trickiest part.
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digits of α
binary stream

generator

ODEt

“Digital” to Analog
Converter (fixed frequency)

ODE?
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We need something more :
a fast-growing ODE.
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A simplified proof

α ∈ R ODE t
0 1 1 0 1 0 1 0 0 1 1 1 . . .

digits of α
binary stream

generator

ODEt

“Digital” to Analog
Converter (fixed frequency)

ODE?

t

We need something more :
an arbitrarily fast-growing ODE.

N
O
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A less simplified proof
binary stream generator : digits of α ∈ R

t

1
0

1
0

1
0

1
0

f (α, µ, λ, t) = 1
2 + 1

2 tanh(µ sin(2απ4round(t−1/4,λ) + 4π/3))

It’s horrible, but generable

round is the mysterious rounding function... 17 / 20



A less simplified proof
binary stream generator : digits of α ∈ R

t

1
0

1
0

1
0

1
0

t

d0

a0

d1

a1

d2

a2

d3

a3

dyadic stream generator : di = mi2−di , ai = 9i +
∑

j<i dj

f (α, γ, t) = sin(2απ2round(t−1/4,γ)))

round is the mysterious rounding function... 17 / 20



A less simplified proof
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A less simplified proof

t

1
0

1
0

1
0

1
0

t

d0

a0

d1

a1

d2

a2

d3

a3

copy signal copy signal copy signal copy signal

This copy operation is the “non-trivial” part.
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A less simplified proof

t

We can do almost piecewise constant functions...
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A less simplified proof

t

We can do almost piecewise constant functions...
...that are bounded by 1...
...and have super slow changing frequency.
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A less simplified proof

t

We can do almost piecewise constant functions...
...that are bounded by 1...
...and have super slow changing frequency.

How do we go to arbitrarily large and growing functions? Can a
polynomial ODE even have arbitrary growth?

17 / 20



An old question on growth

Building a fast-growing ODE, that exists over R :

y ′1 = y1 ; y1(t) = exp(t)

y ′2 = y1y2 ; y1(t) = exp(exp(t))
. . . . . .
y ′n = y1 · · · yn ; yn(t) = exp(· · · exp(t) · · · ) := en(t)

Conjecture (Emil Borel, 1899)

With n variables, cannot do better than Ot (en(Atk )).

Counter-example (Vijayaraghavan, 1932)

1
2− cos(t)− cos(αt)

18 / 20
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An old question on growth

en(t) = exp(· · · exp(t) · · · ) (n compositions)
Conjecture (Emil Borel, 1899)

With n variables, cannot do better than Ot (en(Atk )).

Counter-example (Vijayaraghavan, 1932)

1
2− cos(t)− cos(αt)

t

Sequence of arbitrarily
growing spikes.
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With n variables, cannot do better than Ot (en(Atk )).

Counter-example (Vijayaraghavan, 1932)

1
2− cos(t)− cos(αt)

t

Sequence of arbitrarily
growing spikes. But not
good enough for us.
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en(t) = exp(· · · exp(t) · · · ) (n compositions)
Conjecture (Emil Borel, 1899)

With n variables, cannot do better than Ot (en(Atk )).

Counter-example (Vijayaraghavan, 1932)

1
2− cos(t)− cos(αt)

Theorem (In the paper)

There exists a polynomial p : Rd → Rd such that for any continuous
function f : R>0 → R, we can find α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))
satisfies

y1(t) > f (t), ∀t > 0.

Note : both results require α to be transcendental. Conjecture still
open for rational (or algebraic) coefficients.
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Proof gem : iteration with differential equations

Assume f is generable, can we iterate f with an ODE?
That is, build a generable y such that y(x ,n) ≈ f [n](x) for all n ∈ N

t
x

f (x)

f [2](x)

0 1
2

1 3
2

2y ′≈0

z′≈f (y)−z

y ′≈z−y

z′≈0

19 / 20
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Main result, remark and end

Main result (reminder)

There exists a fixed (vector of) polynomial p such that for any f ∈ C0(R)
and ε ∈ C0(R,R>0), there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R→ Rd and ∀t ∈ R,

|y1(t)− f (t)| 6 ε(t).

Futhermore, α is computable from f and ε.

Remarks :
if f and ε are computable then α is computable
if f or ε is not computable then α is not computable
in all cases α is a horrible transcendental number
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Non-unicity of solutions of DAEs even with conditions

Let f (t) =

{
exp(− tan(t)2) if |t | < π

2

0 elsewhere t
Lemma : f ∈ C∞(R) and for all a, λ ∈ R, g := t 7→ λf (a + t) satisfies

−2y ′6+6y ′′y ′4y−6y ′′2y ′2y2+31y ′4y2+2y ′′3y3−8y
′′

y ′2y3+4y ′′2y4+16y ′2y4=0. (1)

Lemma : if y , z satisfy (1) and have disjoint support, y + z satisfies (1).

A set of conditions for (1) is a collection of constraints of the form
y (k)(a) = b for some k ∈ N and a,b ∈ R.

Example : y(0) = 1, y ′(0) = 0, y ′′(42) = π

Lemma : for any finite set of conditions, either (1) has no solution or at
least one with bounded support.

Theorem : for any finite set of conditions, if (1) has a solution then it
has infinitely many.
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