On The Complexity of Bounded Time Reachability for Piecewise Affine Systems*

H. Bazille³ O. Bournez¹ W. Gomaa^{2,4} A. Pouly¹

¹École Polytechnique, LIX, 91128 Palaiseau Cedex, France

²Egypt Japan University of Science and Technology, CSE, Alexandria, Egypt

³ENS Cachan/Bretagne et Université Rennes 1, France

⁴Faculty of Engineering, Alexandria University, Alexandria, Egypt

September 23, 2014

*This work was partially supported by DGA Project CALCULS.

Outline

Introduction

- Piecewise Affine Systems
- Problems

2 Proof

- Complexity
- Hardness

General Model

• vector space: $\mathcal{H} = \mathbb{K}^d$

General Model

- vector space: $\mathcal{H} = \mathbb{K}^d$
- partition of the space: $\mathcal{H} = \bigcup_{i=1}^{m} \mathcal{H}_i$ $\mathcal{H}_i = \text{convex polyhedron} = \{x \mid M_i x \leq v_i\}$ $M_i \in \mathbb{Q}^{d \times d}, v_i \in \mathbb{Q}^d$

General Model

- vector space: $\mathcal{H} = \mathbb{K}^d$
- partition of the space: $\mathcal{H} = \bigcup_{i=1}^{m} \mathcal{H}_i$ $\mathcal{H}_i = \text{convex polyhedron} = \{x \mid M_i x \leq v_i\}$ $M_i \in \mathbb{Q}^{d \times d}, v_i \in \mathbb{Q}^d$

• piecewise affine function $f : \mathcal{H} \to \mathcal{H}$

General Model

- vector space: $\mathcal{H} = \mathbb{K}^d$
- partition of the space: $\mathcal{H} = \bigcup_{i=1}^{m} \mathcal{H}_i$ $\mathcal{H}_i = \text{convex polyhedron} = \{x \mid M_i x \leq v_i\}$ M_i
- piecewise affine function $f : \mathcal{H} \to \mathcal{H}$ $f(x) = A_i x + b_i$ for $x \in \mathcal{H}_i$

 $M_i \in \mathbb{Q}^{d imes d}, v_i \in \mathbb{Q}^d$

 $oldsymbol{A}_i \in \mathbb{Q}^{oldsymbol{d} imes oldsymbol{d}}, oldsymbol{b}_i \in \mathbb{Q}^{oldsymbol{d}}$

General Model

- vector space: $\mathcal{H} = \mathbb{K}^d$
- partition of the space: $\mathcal{H} = \bigcup_{i=1}^{m} \mathcal{H}_i$ $\mathcal{H}_i = \text{convex polyhedron} = \{x \mid M_i x \leq v_i\}$
- piecewise affine function $f : \mathcal{H} \to \mathcal{H}$ $f(x) = A_i x + b_i$ for $x \in \mathcal{H}_i$
- trajectory: $x, f(x), f^{[2]}(x), \dots, f^{[i]}(x), \dots$

 $M_i \in \mathbb{Q}^{d imes d}, v_i \in \mathbb{Q}^d$

General Model

- vector space: $\mathcal{H} = \mathbb{K}^d$
- partition of the space: $\mathcal{H} = \bigcup_{i=1}^{m} \mathcal{H}_i$ $\mathcal{H}_i = \text{convex polyhedron} = \{x \mid M_i x \leq v_i\}$
- piecewise affine function $f : \mathcal{H} \to \mathcal{H}$ $f(x) = A_i x + b_i$ for $x \in \mathcal{H}_i$
- trajectory: x, f(x), f^[2](x), ..., f^[i](x), ...

⇒ Discrete time dynamical system

 $M_i \in \mathbb{Q}^{d imes d}, v_i \in \mathbb{Q}^d$

General Model

- vector space: $\mathcal{H} = \mathbb{K}^d$
- partition of the space: $\mathcal{H} = \bigcup_{i=1}^{m} \mathcal{H}_i$ $\mathcal{H}_i = \text{convex polyhedron} = \{x \mid M_i x \leq v_i\}$
- piecewise affine function $f : \mathcal{H} \to \mathcal{H}$ $f(x) = A_i x + b_i$ for $x \in \mathcal{H}_i$
- trajectory: *x*, *f*(*x*), *f*^[2](*x*), ..., *f*^[*i*](*x*), ...

 \Rightarrow Discrete time dynamical system

Three cases:

- $\mathbb{K} = \mathbb{N}$: integer case
- $\mathbb{K} = [0, 1]$: continuous bounded case
- $\mathbb{K} = \mathbb{R}$: continuous unbounded case

 $M_i \in \mathbb{O}^{d \times d}, v_i \in \mathbb{O}^d$

General Model

- vector space: $\mathcal{H} = \mathbb{K}^d$
- partition of the space: $\mathcal{H} = \bigcup_{i=1}^{m} \mathcal{H}_i$ $\mathcal{H}_i = \text{convex polyhedron} = \{x \mid M_i x \leq v_i\}$
- piecewise affine function $f : \mathcal{H} \to \mathcal{H}$ $f(x) = A_i x + b_i$ for $x \in \mathcal{H}_i$
- trajectory: *x*, *f*(*x*), *f*^[2](*x*), ..., *f*^[*i*](*x*), ...

⇒ Discrete time dynamical system

Three cases:

- $\mathbb{K} = \mathbb{N}$: integer case \rightarrow Very different from [0, 1] and \mathbb{R}
- $\mathbb{K} = [0, 1]$: continuous bounded case
- $\mathbb{K} = \mathbb{R}$: continuous unbounded case

 $M_i \in \mathbb{Q}^{d \times d}, v_i \in \mathbb{Q}^d$

General Model

- vector space: $\mathcal{H} = \mathbb{K}^d$
- partition of the space: $\mathcal{H} = \bigcup_{i=1}^{m} \mathcal{H}_i$ $\mathcal{H}_i = \text{convex polyhedron} = \{x \mid M_i x \leq v_i\}$
- piecewise affine function $f : \mathcal{H} \to \mathcal{H}$ $f(x) = A_i x + b_i$ for $x \in \mathcal{H}_i$
- trajectory: *x*, *f*(*x*), *f*^[2](*x*), ..., *f*^[*i*](*x*), ...

⇒ Discrete time dynamical system

Three cases:

- $\mathbb{K} = \mathbb{N}$: integer case \rightarrow Very different from [0, 1] and \mathbb{R}
- $\bullet~\mathbb{K} = [0,1]$: continuous bounded case \rightarrow Our case
- $\mathbb{K} = \mathbb{R}$: continuous unbounded case

 $M_i \in \mathbb{O}^{d \times d}, v_i \in \mathbb{O}^d$

General Model

- vector space: $\mathcal{H} = \mathbb{K}^d$
- partition of the space: $\mathcal{H} = \bigcup_{i=1}^{m} \mathcal{H}_i$ $\mathcal{H}_i = \text{convex polyhedron} = \{x \mid M_i x \leq v_i\}$
- piecewise affine function $f : \mathcal{H} \to \mathcal{H}$ $f(x) = A_i x + b_i$ for $x \in \mathcal{H}_i$
- trajectory: *x*, *f*(*x*), *f*^[2](*x*), ..., *f*^[*i*](*x*), ...

⇒ Discrete time dynamical system

Three cases:

- $\mathbb{K} = \mathbb{N}$: integer case \rightarrow Very different from [0, 1] and \mathbb{R}
- $\bullet~\mathbb{K} = [0,1]$: continuous bounded case \rightarrow Our case
- $\mathbb{K} = \mathbb{R}$: continuous unbounded case \rightarrow Similarish to [0, 1] ?

 $M_i \in \mathbb{Q}^{d \times d}, v_i \in \mathbb{Q}^d$

\rightarrow Our case

f continuous

 \rightarrow Our case

f discontinuous

$$f(x) = \begin{cases} 2x & \text{if } x \in [0, \frac{1}{2}[\\ 2x - 1 & \text{if } x \in [\frac{1}{2}, 1] \end{cases}$$

 \rightarrow Quite different

Function

Trajectory depends on the binary expansion of x

Problem: REACH-REGION

• Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine

Problem: REACH-REGION

• Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine

• Input: R_0, R : convex regions of $[0, 1]^d$

Problem: REACH-REGION

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R_0, R : convex regions of $[0, 1]^d$
- Question: $\exists x \in R_0, \exists t \in \mathbb{N}, f^{[t]}(x) \in R$?

Problem: REACH-REGION

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R_0, R : convex regions of $[0, 1]^d$
- Question: $\exists x \in R_0, \exists t \in \mathbb{N}, f^{[t]}(x) \in R$?

Problem: REACH-REGION

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R_0, R : convex regions of $[0, 1]^d$
- Question: $\exists x \in R_0, \exists t \in \mathbb{N}, f^{[t]}(x) \in R$?

Problem: REACH-REGION

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R_0, R : convex regions of $[0, 1]^d$
- Question: $\exists x \in R_0, \exists t \in \mathbb{N}, f^{[t]}(x) \in R$?

Theorem (Koiran, Cosnard, Garzon)

 $\label{eq:reach-region} \begin{array}{l} \text{REACH-REGION} \ is \ undecidable \ for \\ d \geqslant 2 \end{array}$

Proof (Idea)

Simulate a Turing Machine and reduce from halting problem.

Problem: REACH-REGION

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R_0, R : convex regions of $[0, 1]^d$
- Question: $\exists x \in R_0, \exists t \in \mathbb{N}, f^{[t]}(x) \in R$?

Theorem (Koiran, Cosnard, Garzon)

 $\label{eq:reach-region} \begin{array}{l} \text{REACH-REGION} \ is \ undecidable \ for \\ d \geqslant 2 \end{array}$

Proof (Idea)

Simulate a Turing Machine and reduce from halting problem.

Open Problem

Decidability for d = 1.

Problem: CONTROL-REGION

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R_0, R : convex regions of $[0, 1]^d$
- Question: $\forall x \in R_0, \exists t \in \mathbb{N}, f^{[t]}(x) \in R$?

Theorem (Blondel, Bournez, Koiran, Tsitsiklis)

CONTROL-REGION is undecidable for $d \ge 2$

Proof (Idea)

Harder simulation of a Turing Machine

Open Problem

Decidability for d = 1.

Problem: REACH-REGION-TIME

• Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine

Problem: REACH-REGION-TIME

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R_0, R : convex regions of $[0, 1]^d, T \in \mathbb{N}$ in unary
- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R_0, R : convex regions of $[0, 1]^d, T \in \mathbb{N}$ in unary
- Question: $\exists x \in R_0, \exists t \leq T, f^{[t]}(x) \in R$?

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R_0, R : convex regions of $[0, 1]^d, T \in \mathbb{N}$ in unary
- Question: $\exists x \in R_0, \exists t \leq T, f^{[t]}(x) \in R$?

Theorem

REACH-REGION-TIME is NP-complete for $d \ge 2$

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R_0, R : convex regions of $[0, 1]^d, T \in \mathbb{N}$ in unary
- Question: $\exists x \in R_0, \exists t \leq T, f^{[t]}(x) \in R$?

Theorem

REACH-REGION-TIME is NP-complete for $d \ge 2$

Open Problem

Complexity for d = 1.

Problem: CONTROL-REGION-TIME

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R_0, R : convex regions of $[0, 1]^d, T \in \mathbb{N}$ in unary
- Question: $\forall x \in R_0, \exists t \leq T, f^{[t]}(x) \in R$?

Theorem

CONTROL-REGION-TIME is coNP-complete for $d \ge 2$

Open Problem

Complexity for d = 1.

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R_0, R : convex regions of $[0, 1]^d, T \in \mathbb{N}$ in unary
- Question: $\exists x \in R_0, \exists t \leq T, f^{[t]}(x) \in R$?

Theorem

REACH-REGION-TIME is in NP.

Example

Definition

$$\sigma_i(x) = j \quad \Leftrightarrow \quad f^{[i]}(x) \in R_j$$

Example

Definition

$$\sigma_i(x) = j \quad \Leftrightarrow \quad f^{[i]}(x) \in R_j$$

Example

Definition

$$\sigma_i(x) = j \quad \Leftrightarrow \quad f^{[i]}(x) \in R_j$$

Example

Definition

$$\sigma_i(x) = j \quad \Leftrightarrow \quad f^{[i]}(x) \in R_j$$

Example

Definition

$$\sigma_i(x) = j \quad \Leftrightarrow \quad f^{[i]}(x) \in R_j$$

Example

Definition

The signature $\sigma(x) \in \{0, ..., n\}^{\mathbb{N}}$ of *x* is defined by:

$$\sigma_i(x) = j \quad \Leftrightarrow \quad f^{[i]}(x) \in R_j$$

Lemma

If
$$\sigma(x) = (r_1, r_2, ..., r_t, ...)$$
 then

$$f^{[t]}(x) = A_{r_t}(\cdots (A_{r_1}x + b_{r_1})\cdots) + b_{r_t}$$

= $C_{\sigma} + d_{\sigma}$

Example

Definition

The signature $\sigma(x) \in \{0, ..., n\}^{\mathbb{N}}$ of *x* is defined by:

$$\sigma_i(x) = j \quad \Leftrightarrow \quad f^{[i]}(x) \in R_j$$

Lemma

If
$$\sigma(x) = (r_1, r_2, \dots, r_t, \dots)$$
 then

$$f^{[t]}(x) = A_{r_t}(\dots (A_{r_1}x + b_{r_1})\dots) + b_{r_t}$$

$$= C_{\sigma} + d_{\sigma}$$

Furthermore (s(X) =coeff size):

$$s(C_{\sigma}, d_{\sigma}) = \mathsf{poly}(s(A), s(b), t)$$

Algorithm

Given f, R_0 , $R = R_n$ and T:

Algorithm

Given f, R_0 , $R = R_n$ and T: • Guess $t \leq T$

 $\leftarrow \textit{Nondeterministic polynomial}$

Algorithm

Given f, R_0 , $R = R_n$ and T:

- Guess $t \leq T$
- Guess signature r_1, \ldots, r_{t-1}

← Nondeterministic polynomial
 ← Nondeterministic polynomial

- Guess $t \leq T$
- Guess signature r_1, \ldots, r_{t-1}
- Guess $x \in \mathbb{Q}^d$ of polynomial size
- $\leftarrow \textit{Nondeterministic polynomial}$
- $\leftarrow \textit{Nondeterministic polynomial}$
- $\leftarrow \textit{Nondeterministic polynomial}$

- Guess $t \leq T$
- Guess signature r_1, \ldots, r_{t-1}
- Guess $x \in \mathbb{Q}^d$ of polynomial size
- Check that $f^{[i]}(x) \in R_{r_i}$ for all $i \in \{0, \ldots, t\}$:

- $\leftarrow \textit{Nondeterministic polynomial}$
- $\leftarrow \textit{Nondeterministic polynomial}$
- \leftarrow Nondeterministic polynomial

- Guess $t \leq T$
- Guess signature r_1, \ldots, r_{t-1}
- Guess $x \in \mathbb{Q}^d$ of polynomial size
- Check that $f^{[i]}(x) \in R_{r_i}$ for all $i \in \{0, ..., t\}$: $f^{[i]}(x) \in R_{r_i} \Leftrightarrow M_{r_i}(C_i x + d_i) \leq v_i \qquad \leftarrow \text{Polynomial size}$

← Nondeterministic polynomial

← Nondeterministic polynomial

← Nondeterministic polynomial

- Guess $t \leq T$
- Guess signature r_1, \ldots, r_{t-1}
- Guess $x \in \mathbb{Q}^d$ of polynomial size
- Check that $f^{[i]}(x) \in R_{r_i}$ for all $i \in \{0, ..., t\}$: $f^{[i]}(x) \in R_{r_i} \Leftrightarrow M_{r_i}(C_i x + d_i) \leq v_i$

- $\leftarrow \textit{Nondeterministic polynomial}$
- $\leftarrow \textit{Nondeterministic polynomial}$
- $\leftarrow \textit{Nondeterministic polynomial}$
 - ← Polynomial size

Accept if all systems are satisfied

- Guess $t \leq T$
- Guess signature r_1, \ldots, r_{t-1}
- Guess $x \in \mathbb{Q}^d$ of polynomial size
- Check that $f^{[i]}(x) \in R_{r_i}$ for all $i \in \{0, ..., t\}$: $f^{[i]}(x) \in R_{r_i} \Leftrightarrow M_{r_i}(C_i x + d_i) \leqslant v_i \qquad \leftarrow$
 - \leftarrow Polynomial size

← Nondeterministic polynomial

← Nondeterministic polynomial

← Nondeterministic polynomial

Accept if all systems are satisfied

Theorem (Koiran)

Every satisfiable rational linear system $Ax \leq b$ has a rational solution of polynomial size.

- Input: $f : [0, 1]^d \rightarrow [0, 1]^d$ continuous, piecewise affine
- Input: R_0, R : convex regions of $[0, 1]^d, T \in \mathbb{N}$ in unary
- Question: $\exists x \in R_0, \exists t \leq T, f^{[t]}(x) \in R$?

Theorem

REACH-REGION-TIME is NP-hard for $d \ge 2$.

• Consider \mathcal{L} a NP-hard problem

- Consider \mathcal{L} a NP-hard problem
- Consider \mathcal{L}' in P such that:

$$\mathcal{L} = ig\{ x \, | \, \exists y, |y| \leqslant \mathsf{poly}(|x|) ext{ and } (x,y) \in \mathcal{L}' ig\}$$

- Consider \mathcal{L} a NP-hard problem
- Consider \mathcal{L}' in P such that:

$$\mathcal{L} = ig\{ x \, | \, \exists y, |y| \leqslant \mathsf{poly}(|x|) ext{ and } (x,y) \in \mathcal{L}' ig\}$$

• Define *f* a piecewise affine function which simulates \mathcal{L}' :

• Consider \mathcal{L} a NP-hard problem

$\psi = \text{encoding function}$

• Consider \mathcal{L}' in P such that:

$$\mathcal{L} = ig\{ x \, | \, \exists y, |y| \leqslant \mathsf{poly}(|x|) ext{ and } (x,y) \in \mathcal{L}' ig\}$$

• Define f a piecewise affine function which simulates \mathcal{L}' :

$$(x,y)\in \mathcal{L}' \Leftrightarrow \exists t \leqslant \mathsf{poly}(|x|,|y|), f^{[t]}(\psi(x,y))\in R$$

• Consider \mathcal{L} a NP-hard problem

 $\psi = {
m encoding} \ {
m function}$

• Consider \mathcal{L}' in P such that:

$$\mathcal{L} = ig\{ x \, | \, \exists y, |y| \leqslant \mathsf{poly}(|x|) ext{ and } (x,y) \in \mathcal{L}' ig\}$$

• Define f a piecewise affine function which simulates \mathcal{L}' :

$$(x,y)\in \mathcal{L}' \Leftrightarrow \exists t \leqslant \mathsf{poly}(|x|,|y|), f^{[t]}(\psi(x,y))\in R$$

• Define region $R_x = \{\psi(x, y) \mid |y| \leq \text{poly}(|x|)\}$

• Consider \mathcal{L} a NP-hard problem

• Consider \mathcal{L}' in P such that:

$$\mathcal{L} = ig\{ x \, | \, \exists y, |y| \leqslant \mathsf{poly}(|x|) ext{ and } (x,y) \in \mathcal{L}' ig\}$$

• Define f a piecewise affine function which simulates \mathcal{L}' :

$$(x,y) \in \mathcal{L}' \Leftrightarrow \exists t \leqslant \mathsf{poly}(|x|,|y|), f^{[t]}(\psi(x,y)) \in R$$

- Define region $R_x = \left\{\psi(x,y) \,|\, |y| \leqslant \mathsf{poly}(|x|)
 ight\}$
- Reduce \mathcal{L} to REACH-REGION-TIME:

 $x \in \mathcal{L} \Leftrightarrow \exists t \leqslant \mathsf{poly}(|x|), \exists u \in R_x, f^{[t]}(u) \in R$

 $\psi = encoding function$

• Consider \mathcal{L} a NP-hard problem

• Consider \mathcal{L}' in P such that:

$$\mathcal{L} = ig\{ x \, | \, \exists y, |y| \leqslant \mathsf{poly}(|x|) ext{ and } (x,y) \in \mathcal{L}' ig\}$$

• Define *f* a piecewise affine function which simulates \mathcal{L}' :

$$(x,y) \in \mathcal{L}' \Leftrightarrow \exists t \leqslant \mathsf{poly}(|x|,|y|), f^{[t]}(\psi(x,y)) \in R$$

• Define region $R_x = \left\{\psi(x,y) \,|\, |y| \leqslant \mathsf{poly}(|x|)
ight\}$

• Reduce \mathcal{L} to REACH-REGION-TIME:

 $x \in \mathcal{L} \Leftrightarrow \exists t \leq \mathsf{poly}(|x|), \exists u \in \widetilde{R}_x, f^{[t]}(u) \in R$

Tricky points

• R_x is not a convex polyhedron: replace it with its convex hull \ddot{R}_x

Amaury Pouly et al.

 $\psi = encoding function$

• Consider \mathcal{L} a NP-hard problem

• Consider \mathcal{L}' in P such that:

 $\mathcal{L} = \left\{ x \, | \, \exists y, |y| \leqslant \mathsf{poly}(|x|) \text{ and } (x,y) \in \mathcal{L}'
ight\}$

• Define f a piecewise affine function which simulates \mathcal{L}' :

 $(x,y) \in \mathcal{L}' \Leftrightarrow \exists t \leqslant \mathsf{poly}(|x|,|y|), f^{[t]}(\psi(x,y)) \in R$

• Define region $R_x = \left\{\psi(x,y) \,|\, |y| \leqslant \mathsf{poly}(|x|)
ight\}$

• Reduce \mathcal{L} to REACH-REGION-TIME:

 $x \in \mathcal{L} \Leftrightarrow \exists t \leq \mathsf{poly}(|x|), \exists u \in \widetilde{R}_x, f^{[t]}(u) \in R$

Tricky points

R_x is not a convex polyhedron: replace it with its convex hull *R_x*Choice of *L* ?

 $\psi = encoding function$

$$R_x = \{$$
initial configuration $\}$ $\tilde{R}_x =$ convex hull of R_x

$$R_x = \{$$
initial configuration $\}$ $\tilde{R}_x =$ convex hull of R_x

Problem

 $\tilde{R}_x \setminus R_x$ contains *bizarre* points

$$R_x = \{$$
initial configuration $\}$ $\tilde{R}_x =$ convex hull of R_x

Problem
$ ilde{R}_x \setminus R_x$ contains <i>bizarre</i> points
Example
• Take $u \in ilde{R}_x \setminus R_x$, assume $x \notin \mathcal{L}$

 $R_x = \{$ initial configuration $\}$ $\tilde{R}_x =$ convex hull of R_x

Problem

 $\tilde{R}_x \setminus R_x$ contains *bizarre* points

Example

• Take
$$u \in \tilde{R}_x \setminus R_x$$
, assume $x \notin \mathcal{L}$

• $u \neq \psi(x, y)$ for all $x, y \rightarrow$ point normally inacessible

 $R_x = \{$ initial configuration $\}$ $\tilde{R}_x =$ convex hull of R_x

Problem

 $ilde{R}_x \setminus R_x$ contains *bizarre* points

Example

- Take $u \in \tilde{R}_x \setminus R_x$, assume $x \notin \mathcal{L}$
- $u \neq \psi(x, y)$ for all $x, y \rightarrow$ point normally inacessible
- *f*(*u*) may be uncontrolled

 $R_x = \{$ initial configuration $\}$ $\tilde{R}_x =$ convex hull of R_x

Problem

 $ilde{R}_x \setminus R_x$ contains *bizarre* points

Example

- Take $u \in \tilde{R}_x \setminus R_x$, assume $x \notin \mathcal{L}$
- $u \neq \psi(x, y)$ for all $x, y \rightarrow$ point normally inacessible
- *f*(*u*) may be uncontrolled
- if $\exists t, f^{[t]}(u) \in R$, system wrongly accepts x
More on tricky points

 $R_x = \{$ initial configuration $\}$ $\tilde{R}_x =$ convex hull of R_x

Problem

 $ilde{R}_x \setminus R_x$ contains *bizarre* points

Example

• Take
$$u \in \tilde{R}_x \setminus R_x$$
, assume $x \notin \mathcal{L}$

- $u \neq \psi(x, y)$ for all $x, y \rightarrow$ point normally inacessible
- f(u) may be uncontrolled
- if $\exists t, f^{[t]}(u) \in R$, system wrongly accepts x

So what ?

The simulation of L' has to be studied for bizarre points too

More on tricky points

 $R_x = \{$ initial configuration $\}$ $\tilde{R}_x =$ convex hull of R_x

Problem

 $ilde{R}_x \setminus R_x$ contains *bizarre* points

Example

• Take
$$u \in \tilde{R}_x \setminus R_x$$
, assume $x \notin \mathcal{L}$

- $u \neq \psi(x, y)$ for all $x, y \rightarrow$ point normally inacessible
- *f*(*u*) may be uncontrolled
- if $\exists t, f^{[t]}(u) \in R$, system wrongly accepts x

So what ?

- The simulation of L' has to be studied for bizarre points too
- This is difficult for most languages

Problem SUBSEM-SUM

• Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$

Problem SUBSEM-SUM

- Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$
- Question: $\exists I \subseteq \{1, \ldots, n\}, \sum_{i \in I} A_i = B$?

Problem SUBSEM-SUM

- Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$
- Question: $\exists I \subseteq \{1, \ldots, n\}, \sum_{i \in I} A_i = B$?

Simulation (1)

• Configuration: $(i, \sigma, \varepsilon_i, \dots, \varepsilon_n)$ $i \in \{1, \dots, n+1\}, \varepsilon_i \in \{0, 1\}$

Problem SUBSEM-SUM

- Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$
- Question: $\exists I \subseteq \{1, \ldots, n\}, \sum_{i \in I} A_i = B$?

Simulation (1)

- Configuration: $(i, \sigma, \varepsilon_i, \dots, \varepsilon_n)$ $i \in \{1, \dots, n+1\}, \varepsilon_i \in \{0, 1\}$
 - *i* = current number σ = current sum ε_i = pick A_i ?

Problem SUBSEM-SUM

- Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$
- Question: $\exists I \subseteq \{1, \ldots, n\}, \sum_{i \in I} A_i = B$?

Simulation (1)

- Configuration: $(i, \sigma, \varepsilon_i, \dots, \varepsilon_n)$ $i \in \{1, \dots, n+1\}, \varepsilon_i \in \{0, 1\}$
 - *i* = current number σ = current sum ε_i = pick A_i ?

• Transition:

$$(i, \sigma, \varepsilon_1, \ldots, \varepsilon_n) \rightsquigarrow (i+1, \sigma + \varepsilon_i A_i, \varepsilon_{i+1}, \ldots, \varepsilon_n)$$

Problem SUBSEM-SUM

- Input: a goal $B \in \mathbb{N}$ and integers $A_1, \ldots, A_n \in \mathbb{N}$
- Question: $\exists I \subseteq \{1, \ldots, n\}, \sum_{i \in I} A_i = B$?

Simulation (1)

- Configuration: $(i, \sigma, \varepsilon_i, \dots, \varepsilon_n)$ $i \in \{1, \dots, n+1\}, \varepsilon_i \in \{0, 1\}$
 - *i* = current number σ = current sum ε_i = pick A_i ?

• Transition:

$$(i, \sigma, \varepsilon_1, \ldots, \varepsilon_n) \rightsquigarrow (i+1, \sigma + \varepsilon_i A_i, \varepsilon_{i+1}, \ldots, \varepsilon_n)$$

Simulation lemma (1)

Instance is satisfiable $\Leftrightarrow \exists \varepsilon_1, \dots \varepsilon_n \in \{0, 1\}$ such that

$$(1,0,\varepsilon_1,\ldots,\varepsilon_n) \rightsquigarrow^n (n+1,B)$$

Why SUBSET-SUM ?

Why ${\tt SUBSET-SUM}$?

• Configuration encoding: $c = (i, \sigma, \varepsilon_i, \dots, \varepsilon_n)$

Why SUBSET-SUM ?

• Configuration encoding: $c = (i, \sigma, \varepsilon_i, \dots, \varepsilon_n)$

$$\psi(\boldsymbol{c}) = \begin{pmatrix} 0 & i & \sigma \\ 0 & 0 & \cdots & \varepsilon_i & \cdots & \varepsilon_n \end{pmatrix}$$

Why SUBSET-SUM ?

• Configuration encoding: $c = (i, \sigma, \varepsilon_i, \dots, \varepsilon_n)$

$$\psi(c) = \begin{pmatrix} 0 & i & \sigma \\ 0 & \cdots & \varepsilon_i & \cdots & \varepsilon_n \end{pmatrix} = \begin{pmatrix} i2^{-p} + \sigma 2^{-q} \\ \varepsilon_i 2^{-1} + \varepsilon_{i+1} 2^{-2} + \cdots \end{pmatrix}$$

Why SUBSET-SUM ?

• Configuration encoding: $c = (i, \sigma, \varepsilon_i, \dots, \varepsilon_n)$

$$\psi(c) = \begin{pmatrix} 0 & i & \sigma \\ 0 & 0 & \cdots & \varepsilon_i & \cdots & \varepsilon_n \end{pmatrix} = \begin{pmatrix} i2^{-p} + \sigma 2^{-q} \\ \varepsilon_i 2^{-1} + \varepsilon_{i+1} 2^{-2} + \cdots \end{pmatrix}$$

• Transitions: $\psi(c) \rightsquigarrow \psi(c')$

Why SUBSET-SUM ?

• Configuration encoding: $c = (i, \sigma, \varepsilon_i, \dots, \varepsilon_n)$

$$\psi(\mathbf{c}) = \begin{pmatrix} 0 & i & \sigma \\ 0 & 0 & \cdots & \varepsilon_i & \cdots & \varepsilon_n \end{pmatrix} = \begin{pmatrix} i2^{-p} + \sigma 2^{-q} \\ \varepsilon_i 2^{-1} + \varepsilon_{i+1} 2^{-2} + \cdots \end{pmatrix}$$

• Transitions: $\psi(c) \rightsquigarrow \psi(c')$

•
$$\varepsilon_i = 0:$$
 $\begin{pmatrix} 0. & i & \sigma \\ 0. & 0 & \cdots & 0 \\ 0. & 0 & \cdots & \varepsilon_{i+1} \\ \ddots & \varepsilon_n \end{pmatrix} \sim$

Why SUBSET-SUM ?

• Configuration encoding: $c = (i, \sigma, \varepsilon_i, \dots, \varepsilon_n)$

$$\psi(\mathbf{c}) = \begin{pmatrix} 0 & i & \sigma \\ 0 & 0 & \cdots & \varepsilon_i & \cdots & \varepsilon_n \end{pmatrix} = \begin{pmatrix} i2^{-p} + \sigma 2^{-q} \\ \varepsilon_i 2^{-1} + \varepsilon_{i+1} 2^{-2} + \cdots \end{pmatrix}$$

• Transitions: $\psi(c) \rightsquigarrow \psi(c')$

•
$$\varepsilon_i = 0:$$
 $\begin{pmatrix} 0. & i & \sigma \\ 0. & 0 & \cdots & 0 \\ 0. & 0 & \cdots & 0 \\ \varepsilon_{i+1} & \cdots & \varepsilon_n \end{pmatrix} \sim \begin{pmatrix} 0. & i+1 & \sigma \\ 0. & 0 & \cdots & 0 \\ \varepsilon_{i+1} & \cdots & \varepsilon_n \end{pmatrix}$

Why SUBSET-SUM ?

• Configuration encoding: $c = (i, \sigma, \varepsilon_i, \dots, \varepsilon_n)$

$$\psi(\mathbf{c}) = \begin{pmatrix} 0 & i & \sigma \\ 0 & 0 & \cdots & \varepsilon_i & \cdots & \varepsilon_n \end{pmatrix} = \begin{pmatrix} i2^{-p} + \sigma 2^{-q} \\ \varepsilon_i 2^{-1} + \varepsilon_{i+1} 2^{-2} + \cdots \end{pmatrix}$$

• Transitions: $\psi(\mathbf{c}) \rightsquigarrow \psi(\mathbf{c}')$

•
$$\varepsilon_i = 0$$
: $\begin{pmatrix} 0. & i & \sigma \\ 0. & 0 & \cdots & 0 & \varepsilon_{i+1} & \cdots & \varepsilon_n \end{pmatrix} \sim \begin{pmatrix} 0. & i+1 & \sigma \\ 0. & 0 & \cdots & 0 & \varepsilon_{i+1} & \cdots & \varepsilon_n \end{pmatrix}$
• $\varepsilon_i = 1$: $\begin{pmatrix} 0. & i & \sigma \\ 0. & 0 & \cdots & 1 & \varepsilon_{i+1} & \cdots & \varepsilon_n \end{pmatrix} \sim$

Why SUBSET-SUM ?

• Configuration encoding: $c = (i, \sigma, \varepsilon_i, \dots, \varepsilon_n)$

$$\psi(\mathbf{c}) = \begin{pmatrix} 0 & i & \sigma \\ 0 & 0 & \cdots & \varepsilon_i & \cdots & \varepsilon_n \end{pmatrix} = \begin{pmatrix} i2^{-p} + \sigma 2^{-q} \\ \varepsilon_i 2^{-1} + \varepsilon_{i+1} 2^{-2} + \cdots \end{pmatrix}$$

• Transitions: $\psi(\mathbf{c}) \rightsquigarrow \psi(\mathbf{c}')$

$$\bullet \varepsilon_{i} = 0: \quad \begin{pmatrix} 0. & i & \sigma \\ 0. & 0 & \cdots & 0 & \varepsilon_{i+1} & \cdots & \varepsilon_{n} \end{pmatrix} \rightsquigarrow \begin{pmatrix} 0. & i+1 & \sigma \\ 0. & 0 & \cdots & 0 & \varepsilon_{i+1} & \cdots & \varepsilon_{n} \end{pmatrix}$$
$$\bullet \varepsilon_{i} = 1: \quad \begin{pmatrix} 0. & i & \sigma \\ 0. & 0 & \cdots & 1 & \varepsilon_{i+1} & \cdots & \varepsilon_{n} \end{pmatrix} \rightsquigarrow \begin{pmatrix} 0. & i+1 & \sigma+A_{i} \\ 0. & 0 & \cdots & 0 & \varepsilon_{i+1} & \cdots & \varepsilon_{n} \end{pmatrix}$$

$$\psi(\boldsymbol{c}) = \begin{pmatrix} 0 & \boldsymbol{i} & \boldsymbol{\sigma} \\ 0 & \boldsymbol{0} & \cdots & \varepsilon_{\boldsymbol{i}} & \cdots & \varepsilon_{\boldsymbol{n}} \end{pmatrix}$$

Transition on
$$R_{i,0}$$

 $f\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}x+2^{-p}\\y\end{pmatrix}$
Transition on $R_{i,1}$
 $f\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}x+2^{-p}+A_i2^{-q}\\y-2^{-i}\end{pmatrix}$

Transition on $R_{i,0}$

$$f\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} x+2^{-p}\\ y \end{pmatrix}$$

Transition on $R_{i,1}$

$$f\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} x+2^{-p}+A_i2^{-q}\\ y-2^{-i} \end{pmatrix}$$

But this doesn't work, right ?

f is not continuous

Ok, the actual proof is slightly more complicated...

...horribly more complicated

• undecidable for $d \ge 2$

- undecidable for $d \ge 2$
- NP-complete for $d \ge 2$ (bounded time variant)

- undecidable for $d \ge 2$
- NP-complete for $d \ge 2$ (bounded time variant)
- open problem for d = 1

• Do you have any questions ?