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Piecewise Affine System (1)

General Model

vector space: H = Kd

partition of the space: H = ∪m
i=1Hi

Hi = convex polyhedron = {x |Mix 6 vi} Mi ∈ Qd×d , vi ∈ Qd

piecewise affine function f : H → H
f (x) = Aix + bi for x ∈ Hi Ai ∈ Qd×d ,bi ∈ Qd

trajectory: x , f (x), f [2](x), . . . , f [i](x), . . .

⇒ Discrete time dynamical system

Three cases:
K = N: integer case
K = [0,1]: continuous bounded case
K = R: continuous unbounded case
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Piecewise Affine System (1)

General Model

vector space: H = Kd

partition of the space: H = ∪m
i=1Hi

Hi = convex polyhedron = {x |Mix 6 vi} Mi ∈ Qd×d , vi ∈ Qd

piecewise affine function f : H → H
f (x) = Aix + bi for x ∈ Hi Ai ∈ Qd×d ,bi ∈ Qd

trajectory: x , f (x), f [2](x), . . . , f [i](x), . . .

⇒ Discrete time dynamical system

Three cases:
K = N: integer case→ Very different from [0,1] and R
K = [0,1]: continuous bounded case→ Our case
K = R: continuous unbounded case→ Similarish to [0,1] ?
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Piecewise Affine System (2)

f continuous

f (x) =

{
2x if x ∈ [0, 1

2 ]

2− 2x if x ∈ [1
2 ,1]

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

f discontinuous

f (x) =

{
2x if x ∈ [0, 1

2 [

2x − 1 if x ∈ [1
2 ,1]

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
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→ Quite different
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Example

Function

f (x) =

{
2x if x ∈ [0, 1

2 ]

2− 2x if x ∈ [1
2 ,1]

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Trajectory

0 1
2 1
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Example

Function

f (x) =

{
2x if x ∈ [0, 1

2 ]

2− 2x if x ∈ [1
2 ,1]

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Trajectory

0 1
2 1x

x = 0.5625

Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 3 / 17



Example

Function

f (x) =

{
2x if x ∈ [0, 1

2 ]

2− 2x if x ∈ [1
2 ,1]

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Trajectory

0 1
2 1x f (x)

x = 0.5625
f (x) = 0.875
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Example

Function

f (x) =

{
2x if x ∈ [0, 1

2 ]

2− 2x if x ∈ [1
2 ,1]

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Trajectory

0 1
2 1x f (x)f [2](x)

x = 0.5625
f (x) = 0.875

f [2](x) = 0.25
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Example

Function

f (x) =

{
2x if x ∈ [0, 1

2 ]

2− 2x if x ∈ [1
2 ,1]

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Trajectory

0 1
2 1x f (x)f [2](x)

f [3](x)

x = 0.5625
f (x) = 0.875

f [2](x) = 0.25

f [3](x) = 0.5
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Example
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0

0.2

0.4

0.6

0.8

1

Trajectory

0 1
2 1x f (x)f [2](x)

f [3](x) f [4](x)

x = 0.5625
f (x) = 0.875

f [2](x) = 0.25

f [3](x) = 0.5

f [4](x) = 1
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Example

Function

f (x) =

{
2x if x ∈ [0, 1

2 ]

2− 2x if x ∈ [1
2 ,1]

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Trajectory

0 1
2 1x f (x)f [2](x)

f [3](x) f [4](x)f [5](x)

x = 0.5625
f (x) = 0.875

f [2](x) = 0.25

f [3](x) = 0.5

f [4](x) = 1

f [5](x) = 0
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Example

Function

f (x) =

{
2x if x ∈ [0, 1

2 ]

2− 2x if x ∈ [1
2 ,1]
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0.8
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f (x) = 0.875

f [2](x) = 0.25

f [3](x) = 0.5

f [4](x) = 1

f [n](x) = 0 n > 5
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Example
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2 ]

2− 2x if x ∈ [1
2 ,1]

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Remark
Trajectory depends on the bi-
nary expansion of x

Trajectory

0 1
2 1x f (x)f [2](x)

f [3](x) f [4](x)f [5](x)

x = 0.5625
f (x) = 0.875

f [2](x) = 0.25

f [3](x) = 0.5

f [4](x) = 1

f [n](x) = 0 n > 5
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Existings Results

Problem: REACH-REGION

Input: f : [0,1]d → [0,1]d continuous, piecewise affine

Input: R0,R: convex regions of [0,1]d

Question: ∃x ∈ R0, ∃t ∈ N, f [t](x) ∈ R ?

Example

R0

R

x

f (x)

f [2](x)

f [3](x)
Theorem (Koiran, Cosnard, Garzon)
REACH-REGION is undecidable for
d > 2

Proof (Idea)
Simulate a Turing Machine and re-
duce from halting problem.

Open Problem
Decidability for d = 1.
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Existings Results

Problem: CONTROL-REGION

Input: f : [0,1]d → [0,1]d continuous, piecewise affine
Input: R0,R: convex regions of [0,1]d

Question: ∀x ∈ R0, ∃t ∈ N, f [t](x) ∈ R ?

Example

R0

R

x

f (x)

f [2](x)

f [3](x)

Theorem (Blondel, Bournez, Koiran,
Tsitsiklis)
CONTROL-REGION is undecidable
for d > 2

Proof (Idea)
Harder simulation of a Turing Ma-
chine

Open Problem
Decidability for d = 1.
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Our Results

Problem: REACH-REGION-TIME

Input: f : [0,1]d → [0,1]d continuous, piecewise affine

Input: R0,R: convex regions of [0,1]d , T ∈ N in unary
Question: ∃x ∈ R0, ∃t 6 T , f [t](x) ∈ R ?

Theorem
REACH-REGION-TIME is NP-complete for d > 2

Open Problem
Complexity for d = 1.
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Our Results

Problem: CONTROL-REGION-TIME

Input: f : [0,1]d → [0,1]d continuous, piecewise affine
Input: R0,R: convex regions of [0,1]d , T ∈ N in unary
Question: ∀x ∈ R0, ∃t 6 T , f [t](x) ∈ R ?

Theorem
CONTROL-REGION-TIME is coNP-complete for d > 2

Open Problem
Complexity for d = 1.
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Statement

Problem: REACH-REGION-TIME

Input: f : [0,1]d → [0,1]d continuous, piecewise affine
Input: R0,R: convex regions of [0,1]d , T ∈ N in unary
Question: ∃x ∈ R0,∃t 6 T , f [t](x) ∈ R ?

Theorem
REACH-REGION-TIME is in NP.
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Signature

Example

R0

R1
R2 R3

R4

R5

Definition

The signature σ(x) ∈ {0, . . . ,n}N of
x is defined by:

σi(x) = j ⇔ f [i](x) ∈ Rj
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Signature

Example

R0

R1
R2 R3

R4

R5

x

σ(x) = (0, . . .)

Definition

The signature σ(x) ∈ {0, . . . ,n}N of
x is defined by:

σi(x) = j ⇔ f [i](x) ∈ Rj
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Signature

Example

R0

R1
R2 R3

R4

R5

x

f (x)

σ(x) = (0,1, . . .)

Definition

The signature σ(x) ∈ {0, . . . ,n}N of
x is defined by:

σi(x) = j ⇔ f [i](x) ∈ Rj
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Signature

Example

R0

R1
R2 R3
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f [t](x) = Art (· · · (Ar1x + br1) · · · ) + brt

= Cσ + dσ

Furthermore (s(X ) =coeff size):

s(Cσ,dσ) = poly(s(A), s(b), t)
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Algorithm

Given f , R0, R = Rn and T :

Guess t 6 T ← Nondeterministic polynomial
Guess signature r1, . . . , rt−1 ← Nondeterministic polynomial
Guess x ∈ Qd of polynomial size ← Nondeterministic polynomial
Check that f [i](x) ∈ Rri for all i ∈ {0, . . . , t}:
f [i](x) ∈ Rri ⇔ Mri (Cix + di) 6 vi ← Polynomial size
Accept if all systems are satisfied

Theorem (Koiran)
Every satisfiable rational linear system Ax 6 b has a rational solution
of polynomial size.
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Statement

Problem: REACH-REGION-TIME

Input: f : [0,1]d → [0,1]d continuous, piecewise affine
Input: R0,R: convex regions of [0,1]d , T ∈ N in unary
Question: ∃x ∈ R0,∃t 6 T , f [t](x) ∈ R ?

Theorem
REACH-REGION-TIME is NP-hard for d > 2.
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General idea

Consider L a NP-hard problem
Consider L′ in P such that:

L =
{

x | ∃y , |y | 6 poly(|x |) and (x , y) ∈ L′
}

Define f a piecewise affine function which simulates L′:

(x , y) ∈ L′ ⇔ ∃t 6 poly(|x |, |y |), f [t](ψ(x , y)) ∈ R

Define region Rx =
{
ψ(x , y) | |y | 6 poly(|x |)

}
Reduce L to REACH-REGION-TIME:

x ∈ L ⇔ ∃t 6 poly(|x |),∃u ∈ Rx , f [t](u) ∈ R

Tricky points

Rx is not a convex polyhedron: replace it with its convex hull R̃x

Choice of L ?
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More on tricky points

Rx = {initial configuration} R̃x = convex hull of Rx

Problem

R̃x \ Rx contains bizarre points

Example

Take u ∈ R̃x \ Rx , assume x /∈ L
u 6= ψ(x , y) for all x , y → point normally inacessible
f (u) may be uncontrolled
if ∃t , f [t](u) ∈ R, system wrongly accepts x

So what ?
The simulation of L′ has to be studied for bizarre points too
This is difficult for most languages
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And the winner is...

Problem SUBSEM-SUM

Input: a goal B ∈ N and integers A1, . . . ,An ∈ N
Question: ∃I ⊆ {1, . . . ,n},

∑
i∈I Ai = B ?

Simulation (1)

Configuration: (i , σ, εi , . . . , εn) i ∈ {1, . . . ,n + 1}, εi ∈ {0,1}

i = current number σ = current sum εi = pick Ai ?

Transition:
(i , σ, ε1, . . . , εn) ; (i + 1, σ + εiAi , εi+1, . . . , εn)

Simulation lemma (1)

Instance is satisfiable⇔ ∃ε1, . . . εn ∈ {0,1} such that

(1,0, ε1, . . . , εn) ;n (n + 1,B)
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Tell me more...

Why SUBSET-SUM ?

Configuration encoding: c = (i , σ, εi , . . . , εn)

ψ(c) =

0. i σ

0. 0 . . . εi . . . εn

 =

(
i2−p + σ2−q

εi2−1 + εi+12−2 + · · ·

)
Transitions: ψ(c) ; ψ(c′)

•εi = 0 :

0. i σ

0. 0 . . . 0 εi+1 . . . εn

;

0. i + 1 σ

0. 0 . . . 0 εi+1 . . . εn



•εi = 1 :

0. i σ

0. 0 . . . 1 εi+1 . . . εn
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And then were the regions...

ψ(c) =

0. i σ

0. 0 . . . εi . . . εn



0 1

2−i+1

0

Ri,0

Ri,1

i

εi = 0

εi = 1
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x
y
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=
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i i + 1
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y
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Transition on Ri,1
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(
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y
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x + 2−p + Ai2−q

y − 2−i

)
But this doesn’t work, right ?

f is not continuous
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Ok, the actual proof is slightly more complicated...

0 1

1

0

R0

Rn+1

R1

R2
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...horribly more complicated

i2−p i2−p + 2−p−1

β−i+1

0
i2−p + (B + 1− Ai)2−q

Ri,0 : (a + 2−p,0)

Ri,0? : (a + 2−p,b − 0?β−i)

Ri,2 : (a + 2−p,3β−i − b)

R lin
i,3 : (a + 2−p + Ai2−q(bβ i − 3),0)

Rsat
i,3 : (?)

R lin
i,1? :(a+2−p+Ai 2−q ,b−1?β−i ) Rsat

i,1? :
((i+1)2−p+(B+1)2−q ,

b−1?β−i )

β−i

2β−i

3β−i

4β−i

(?):((i+1)2−p+2−p−1−(bβ i−3)(2−p−1−(B+1)2−q),0)
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Conclusion

Reachability in piecewise affine systems:

undecidable for d > 2
NP-complete for d > 2 (bounded time variant)
open problem for d = 1
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Questions ?

Do you have any questions ?
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