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Church Thesis

Computability
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Church Thesis

All reasonable models of computation are equivalent.
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Church Thesis

Complexity
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Effective Church Thesis

All reasonable models of computation are equivalent for complexity.
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Polynomial Differential Equations

Differential Analyzer
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Polynomial Differential Equations
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General Purpose Analog
Computer, Shannon 1936
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Polynomial Differential Equations

(ke VX
5u+v ufu

General Purpose Analog : : "
Computer, Shannon 1936 Differential Analyzer

\

Polynomial differential
equations :
{y(O)z Yo

y'(t)= p(y(1))

» Rich class
» Stable (+,x,0,/,ED)
» No closed-form solution
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Polynomial Differential Equations

General Purpose Analog
Computer, Shannon 1936

Differential Analyzer

Newton mechanics \ Polynomial differential
| equations :
{y(O)z Yo
Reaction networks : W ()= py(1)
» chemical _
_ » Rich class
> enzymatic

» Stable (+,x,0,/,ED)
» No closed-form solution
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Example of dynamical system

6+ 9sin(9) =0
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Example of dynamical system

Yi=ye yi=10
vh=-9ys o )ye=0

2 .
Y3 =YoYa y3 = sin(0)

g o
0+ 7sin(6) =0 Yi=—Yo¥3 Ya = cos(f)
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Example of dynamical system

nEn

Ya

yi=Ye yi =0

vh=-9ys o )ye=0
N Y3 =YoYa 3 = sin(6)
0+ 7sin(6) =0 Yi=—Yo¥3 Ya = cos(f)

Historical remark : the word “analog”

The pendulum and the circuit have the same equation. One can study
one using the other by analogy.
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Computing with differential equations

Generable functions

y(0)=yo
{y'(x)z ply(x)) *EF
F(x) = y1(x)
Vi (x) / X

Shannon’s notion
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Computing with differential equations

Generable functions

y(0)=yo
{y'(x)z ply(x)) *EF
F(x) = y1(x)
Vi (x) / X

Shannon’s notion
sin, cos, exp, log, ...

Considered "weak" : not I and ¢
Only analytic functions
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Does a balance scale compute a function ?

Inputs : x,y € [0, +00)
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Does a balance scale compute a function ?
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Does a balance scale compute a function ?

Inputs : x,y € [0, +00)

X=y
Output : sign(x — y)?
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More formally

Yes

-y1 (1)

VA

\/\/

~

Z10)

No

=y1(1)
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More formally

Yes (D)

1
LA /\wa\/J o

No

Theorem (Bournez et al, 2010)

This is equivalent to a Turing machine.
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More formally

Yes L ——n(
1 o
W
x-\//\\//\ /‘\/\/ t—/f—% 2109) t
» \_
No T

Theorem (Bournez et al, 2010)

This is equivalent to a Turing machine.

» analog computability theory
» purely continuous characterization of classical computability
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Computing with differential equations (cont.)

Generable functions

y(0)= yo
{y'(x)z ply(x)) *EF
F(x) = y1(x)
Vi (x) / X

Shannon’s notion
sin, cos, exp, log, ...

Considered "weak" : not I and ¢
Only analytic functions

Computable
{y(0)= q(x) xR
y'(t)=py(t) teRy

flx) = lim ys(f)

WA )

Modern notion
sin, cos, exp, log, [, C, ...

Turing powerful
[Bournez et al., 2007]
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Universal differential equations

Generable functions Computable functions
710 N A0 f(x)
IS TR
t

subclass of analytic functions any computable function
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Universal differential equations

Generable functions Computable functions
7100 VITAVAVINEES ()
X VARY
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subclass of analytic functions any computable function
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Universal differential algebraic equation (DAE)

—1

Y

Theorem (Rubel, 1981)

For any continuous functions f and ¢, there exists y : R — R solution to

14 2

///2 "
3y"y"y Ay y

—4y"y
1 2y/3y//y///3

such that vVt € R,

+ 6y,3y//2y///y//// + 24y,2yu4y1///
—209y2y"%y"% 112y —0

() — f()] < e(b).
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Universal differential algebraic equation (DAE)

—1

Y

Theorem (Rubel, 1981)

There exists a fixed polynomial p and k € N such that for any conti-
nuous functions f and e, there exists a solutiony : R — R to

p(y7y/""7y(4))zo

such thatVt € R,
ly(t) — f(B)] < e(2).
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Universal differential algebraic equation (DAE)

—1

Y

Theorem (Rubel, 1981)

There exists a fixed polynomial p and k € N such that for any conti-
nuous functions f and e, there exists a solutiony : R — R to

p(y7y/""7y(4))zo

such thatVt € R,
ly(t) — f(B)] < e(2).

Problem : this is «weak» result.
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The problem with Rubel’s DAE

The solution y is not unique, even with added initial conditions :

p(y7yla s 7y(k)) =0, y(O) = a07y/(0) =Qq,. .. ’y(k)(o) = Ok
In fact, this is fundamental for Rubel’s proof to work !

12/23



The problem with Rubel’'s DAE

The solution y is not unique, even with added initial conditions :
p(y7yla <. 7y(k)) =0, y(O) = a07y/(0) =Qq,. .. 7y(k)(0) = Gk
In fact, this is fundamental for Rubel’s proof to work !

» Rubel’s statement : this DAE is universal
» More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y’ = p(y)?
Note : explicit polynomial ODE =- unique solution
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Rubel’s proof in one slide

—1
> Take f(t) = e1-# for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — £2)2f " (t) + 2tf(t) = 0.
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Rubel’s proof in one slide

—1

> Take f(t) = e'-2 for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" () + 2tf'(t) = 0.

» Forany a,b,c € R, y(t) = cf(at + b) satisfies

3 y/4 y// y////2 4 y/4 y//2 y//// +6 y/3 y//2 y/// y//// +24 y/2 y y////
1 2y/3y//y///3 _ 29y12y//3y///2 +1 2y//7 -0

n4

Translation and rescaling :

T
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Rubel’s proof in one slide

1
> Take f(t) = e~ for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" () + 2tf'(t) = 0.
» Forany a,b,c € R, y(t) = cf(at + b) satisfies
14 1111012 14 112 1111 5 13102 101 1101 2 //4y////_12y/3 17,0113 12113 ///2+12y//7:0

3y yty =4y YTy ey Ty Ty T 24y y yryrT =29yt ty Ty

» Can glue together arbitrary many such pieces
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Rubel’s proof in one slide

=N
> Take f(t) = e1-2 for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" () + 2tf'(t) = 0.
» Forany a,b,c € R, y(t) = cf(at + b) satisfies
14 11 11112 14 112 1111 13 112 111 1111 12 114 13 11 1113 12 113 1112

7
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» Can glue together arbitrary many such pieces
» Can arrange so that [ f is solution : piecewise pseudo-linear

A~

—
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Rubel’s proof in one slide

=N
> Take f(t) = e1-2 for —1 < t < 1 and f(t) = 0 otherwise.
It satisfies (1 — t2)?f" () + 2tf'(t) = 0.
» Forany a,b,c € R, y(t) = cf(at + b) satisfies
14 11 11112 14 112 1111 13 112 111 1111 12 114 13 11 1113 12 113 1112

7
3y Yy S _ay! Ty E I gy S YIS I I gy 1S IR I gy 1S 1T IS gy IS 118 IITE 4211 T g

» Can glue together arbitrary many such pieces
» Can arrange so that [ f is solution : piecewise pseudo-linear

—

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C°

13/23



Universal initial value problem (IVP)

\
\

LY

There exists a fixed (vector of) polynomial p such that for any
continuous functions f and e, there exists o € R? such that

y(0)=a,  y'(t)=p(y(1))
has a unique solution y : R — R? and Vt € R,
lya(t) = F(1)] < e(2).
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Universal initial value problem (IVP)

Notes :
k J 1(X) . » system of ODEs,
\ / > y is analytic,
v > we need d = 300.

Theorem

There exists a fixed (vector of) polynomial p such that for any
continuous functions f and e, there exists o € R? such that

y(0)=a,  y'(t)=p(y(1))
has a unique solution y : R — R? and Vt € R,
lya(t) = F(1)] < e(2).
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Universal initial value problem (IVP)

Notes :
\ / 1(x) . » system of ODEs,
\ / > yis analytic,
v > we need d ~ 300.

Theorem

There exists a fixed (vector of) polynomial p such that for any
continuous functions f and e, there exists o € R? such that

y(0)=a,  y'(t)=p(y(1))
has a unique solution y : R — R? and Vt € R,

ya (1) = F()] < ().

Remark : « is usually transcendental, but computable from f and ¢
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Universal DAE revisited

k
\

LY

Theorem

There exists a fixed polynomial p and k € N such that for any
continuous functions f and ¢, there exists ay, . . ., ax € R such that

P(%yla ° o0 7y(k)) = Oa y(O) = aan/(O) = 0q,... ’y(k)(o) = Ok
has a unique analytic solution and this solution satisfies such that
() = ()] < e(b).
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A brief stop

Before | can explain the proof, you need to know more of polynomial
ODEs and what | mean by programming with ODEs.
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Generable functions : a summary
f:R — Ris generable if 3 d, p and yy such that the solution y to

y(0) =y,  yY(x)=py(x))
satisfies f(x) = y1(x) for all x € R.

17/23



Generable functions : a summary
f:R — Ris generable if 3 d, p and yy such that the solution y to

y(©0) =yo,  Y'(x) =p(y(x))
satisfies f(x) = y1(x) for all x € R.

Nice theory for the class of total and univariate generable functions :
> analytic
» contains polynomials, sin, cos, tanh, exp
» stable under +, x, /, o and Initial Value Problems (IVP)

y' =1(y)
» solutions to polynomial ODEs form a very large class
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Why is this useful ?

Writing polynomial ODEs by hand is hard.
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Using generable functions, we can build complicated multivariate

partial functions using other operations, and we know they are
solutions to polynomial ODEs by construction.
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Why is this useful ?

Writing polynomial ODEs by hand is hard.
Using generable functions, we can build complicated multivariate

partial functions using other operations, and we know they are
solutions to polynomial ODEs by construction.

Example : almost rounding function

There exists a generable function round such that forany n € Z, x € R,
A>2and > 0:

> if x € [n— 1, n+ 1] then |round(x, 1, \) — n| < 1,
> ifxe[n—F+1 n+k—1]then |round(x,u,\) — n| < e

18/23



A simplified proof

binary stream
generator

acR ODE}l—[0[1 1.0/10[1]0 0[1 1 1...

digits of «

This is the ideal curve, the real
one is an approximation of it.
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A simplified proof

binary stream
generator

digits of «

aeR

ODE

- ,To[1 1]ol1/0[1]0 01 1 1... .

t ODE

“Digital” to Analog
Converter (fixed frequency)

Approximate Lipschitz and bounded
functions with fixed precision.

[That’s the trickiest part. ]
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A simplified proof

binary stream
generator

digits of «

aeR

ODE

__JbﬁgﬂoHMFﬂooﬁﬁgint

t ODE

“Digital” to Analog
Converter (fixed frequency)

ODE?—W

- M/\MN\/\MMMH t
vvaUVUUWWUUW

We need something more :
a fast-growing ODE.
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A simplified proof

binary stream
generator

digits of «

aeR

ODE

__JbﬁgﬂoHMFﬂooﬁﬁgint

\t ODE

“Digital” to Analog
Converter (fixed frequency)

ODE?—W

- M/\MN\/\MMMH t
vvaUVUUVWWUW

We need something more :
an arbitrarily fast-growing ODE.

19/23



A less simplified proof

binary stream generator : digits of « € R
1 1 1 1
0 0 0 0 ;

f(e, p, A t) = 5 + S tanh(u sin(2ar4"ound(t=1/42) 4 47 /3))

It's horrible, but generable

round is the mysterious rounding function... 20/25



A less simplified proof

binary stream generator : digits of « € R

PRI P

a1 N | S
NNl .

dyadic stream generator : dj = m2~%, a; = 9i + 3_;_; ]
f(a,v, t) = sin(2am2round(t=1/41)))

round is the mysterious rounding function... 20/25



A less simplified proof

a>

RS
]
Q
~
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A less simplified proof

PP S P

copy signal

F -

cd
o d

a>
ao a > as

]
Q
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A less simplified proof

ﬂo Oﬂ()ﬂot

hcopy signal copy signal
. ﬂ
do

| % | % || a

ao 1 > as

—

O

DL
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A less simplified proof

- —y

0

(I

[

-
o
~

copy signal hc y signal copy signal .
odr ﬂ
0
Ch Lﬂ cﬁz Cj
dIO é1 652 d3 t
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A less simplified proof

i

—

! !
0 ‘ 0 Lo,

do

hcopy signal hc y signal copy signal copy signal
Cd“
0
faNmIE:
1 1 t

Q.
iy
Q=
N
joll
w
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A less simplified proof

=7
()
_——

;
0 ‘ 0

|
\ 0 t

copy signal hc y signal copy signal copy signal
Cd"
0
SN
éfo é1 ciz dB !

This copy operation is the “non-trivial” part.
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A less simplified proof

We can do almost piecewise constant functions...

20/23



A less simplified proof

We can do almost piecewise constant functions...
» ...that are bounded by 1...
» ...and have super slow changing frequency.
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A less simplified proof

We can do almost piecewise constant functions...
» ...that are bounded by 1...
» ...and have super slow changing frequency.

How do we go to arbitrarily large and growing functions ? Can a
polynomial ODE even have arbitrary growth ?

20/23



An old question on growth

Building a fast-growing ODE, that exists over R :
Yi=¥ ~ y1(t) = exp(t)
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An old question on growth

Building a fast-growing ODE, that exists over R :

Yi=w ~ y1(t) = exp(t)
Yo =Y1¥o ~ y1(t) = exp(exp(t))
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An old question on growth

Building a fast-growing ODE, that exists over R :

Yi=w ~ y1(t) = exp(t)
Yo =Y1¥o ~ y1(t) = exp(exp(t))

Yn=Y1"Yn ~ ;/.n'(t) = exp(---exp(t)---) = en(l)
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An old question on growth

Building a fast-growing ODE, that exists over R :

Yi=w ~ y1(t) = exp(t)
Yo =Y1¥o ~ y1(t) = exp(exp(t))

Yn=Y1"Yn ~ ;/.n'(t) = exp(---exp(t)---) = en(l)

Conjecture (Emil Borel, 1899)
With n variables, cannot do better than Oy(en(AtX)).

21/23



An old question on growth

Counter-example (Vijayaraghavan, 1932)

1
2 — cos(t) — cos(at)

/

Sequence of arbitrarily
growing spikes.

[ B
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An old question on growth

Counter-example (Vijayaraghavan, 1932)

1
2 — cos(t) — cos(at)

/

Sequence of arbitrarily
growing spikes. But not
good enough for us.

[ B
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An old question on growth

Theorem

There exists a polynomial p : RY — RY such that for any continuous
function f : R, — R, we can find o € R? such that

satisfies y(0)=a,  y'(t)=py(1)
yi(t) = £(1), vt > 0.
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An old question on growth

Theorem

There exists a polynomial p : RY — RY such that for any continuous
function f : R, — R, we can find o € R? such that

y0)=a,  y(t)=py(t))
yi(t) = f(t), Vt=0.

satisfies

Note : both results require a to be transcendental. Conjecture still
open for rational (or algebraic) coefficients.
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Proof gem : iteration with differential equations

Assume f is generable, can we iterate f with an ODE ?
That is, build a generable y such that y(x, n) ~ f"l(x) forall n € N
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Proof gem : iteration with differential equations

Assume f is generable, can we iterate f with an ODE ?
That is, build a generable y such that y(x, n) ~ f"l(x) forall n € N

—h
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Proof gem : iteration with differential equations

Assume f is generable, can we iterate f with an ODE ?
That is, build a generable y such that y(x, n) ~ f"l(x) forall n € N

o

,
J

\

|—

,

\

—

Njw

N
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Proof gem : iteration with differential equations

Assume f is generable, can we iterate f with an ODE ?
That is, build a generable y such that y(x, n) ~ f"l(x) forall n € N

o

,
J

\

|—

,
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—

Njw

N
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Universal initial value problem (IVP)

Notes :
\ / 1(x) . » system of ODEs,
\ / > yis analytic,
v > we need d ~ 300.

Theorem

There exists a fixed (vector of) polynomial p such that for any
continuous functions f and e, there exists o € R? such that

y(0)=a,  y'(t)=p(y(1))
has a unique solution y : R — R? and Vt € R,

ya (1) = F(O)] < ().

Remark : « is usually transcendental, but computable from f and ¢
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Backup slides



Generable functions (total, univariate)

Types
» d € N :dimension
> QCKCR:field

Definition
f: R — R is generable if there exists d, p
and yp such that the solution y to
> KI[R" : pol ial
YO =%, Y =py(x) E o ot Ly o
satisfies f(x) = y1(x) for all x € R. > yo K9y : R — R

Note : existence and unicity of y by Cauchy-Lipschitz theorem.
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Generable functions (total, univariate)

f: R — R is generable if there exists d, p
and yp such that the solution y to

y'(x) = p(y(x))
satisfies f(x) = y1(x) for all x € R.

¥(0) = ¥o,

Example : f(x) = x

Types

» d € N :dimension

» QCKCR:field

» p c K9R" : polynomial
vector (coef. in K)

> ek y:R—R?

y(x)=x
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Generable functions (total, univariate)

Definition

f: R — R is generable if there exists d, p

and y, such that the solution y to
y(0)=yo,  ¥'(x)=p(y(x))
satisfies f(x) = y1(x) for all x € R.

Example : f(x) = x>  » squaring

Types

» d € N :dimension

» QCKCR:field

» p c K9R" : polynomial
vector (coef. in K)

> ek y:R—R?

25/23



Generable functions (total, univariate)

Types
» d € N :dimension
> QCKCR:field

Definition
f: R — R is generable if there exists d, p
and yp such that the solution y to
> KI[R" : pol ial
YO =%, Y =py(x) E o ot Ly o
satisfies f(x) = y1(x) for all x € R. > yo K9y : R — R

Example : f(x) = x”  » n'" power

y1(0)=0, yi=ny ~  yi(x)
¥2(0)=0,  yo=(n—1)yz ~ ya(x)

= Xn
— Xn—1

yn(0)=0,  yp=1 ~  Ya(X)= X

25/23



Generable functions (total, univariate)

f: R — R is generable if there exists d, p
and yp such that the solution y to

y'(x) = p(y(x))
satisfies f(x) = y1(x) for all x € R.

¥(0) = ¥o,

Example : f(x) = exp(x) » exponential

Types

» d € N :dimension

» QCKCR:field

» p c K9R" : polynomial
vector (coef. in K)

> ek y:R—R?

y'=y ~ y(x)=exp(x)
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Generable functions (total, univariate)
Types

> d € N :dimension

> Q CKCR:field

drmny - :
0) = (y) — » p e KR"] : polynomial
YO =yo, ¥y =plyx) vector (coef. in K)

satisfies f(x) = y1(x) for all x € R. > o €K% y:R — RY

Definition
f: R — R is generable if there exists d, p
and yp such that the solution y to

Example : f(x) = sin(x) or f(x) = cos(x) » sine/cosine

y1(0)=0, yi=y2 ~ yi(x)=sin(x)
¥2(0)=1,  yo=—y1 ~ Yyo(X)= cos(x)
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¥(0) = ¥o,

Example : f(x) = tanh(x)

f: R — R is generable if there exists d,
and y, such that the solution y to

y'(x) = p(y(x))
satisfies f(x) = y1(x) for all x € R.

Generable functions (total, univariate)
Types

p

» d € N :dimension

» QCKCR:field

» p c K9R" : polynomial
vector (coef. in K)

> ek y:R—R?

» hyperbolic tangent
y=1-y2 ~ y(x)=tanh(x)

|

tanh

X)
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Generable functions (total, univariate)

Types

» d € N :dimension

» QCKCR:field

» p c K9R" : polynomial
vector (coef. in K)

Definition
f: R — R is generable if there exists d, p
and yp such that the solution y to

y(0)=yo,  y'(x)=py(Xx))

satisfies f(x) = y1(x) for all x € R. > yo K9y : R — R
Example @ f(x) = 1+X2 » rational function
f'(x) = ﬁ = —2xf(x)?

10)=1,  yi=-2py2 ~ 3=z
¥2(0)=0,  yp=1 ~  Yo(X)=x
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Generable functions (total, univariate)

Types

» d € N :dimension

» QCKCR:field

» p c K9R" : polynomial
vector (coef. in K)

> ek y:R—R?

Definition
f: R — R is generable if there exists d, p
and yp such that the solution y to

y(0)=yo,  Y'(x)=py(x))
satisfies f(x) = y1(x) for all x € R.

Example :f=g+h » sum/difference

(gh/ =g =H
assume :
z(0)= 2z, Z'=p(2) ~ z1=g
w(0)= wyp, w'= qg(w) ~ wy=h
then :

yO)=201 +wo1, Y=p1(2)2q(w) ~ y=2z+w
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Generable functions (total, univariate)

Types

» d € N :dimension

» QCKCR:field

» p c K9R" : polynomial
vector (coef. in K)

Definition
f: R — R is generable if there exists d, p
and yp such that the solution y to

y(0)=yo,  y'(x)=py(Xx))

satisfies f(x) = yy(x) for all x € R. > yo K9y : R — R
Example : f=gh » product
(9h) = g'h+ gt
assume :
2(0)= 2. Z'=p(2) ~ z=g
w(0)= wp, w'= q(w) ~ wi=h
then :

y(0)=z01wo1,  Y=p1(2)W +z1gt(W) ~ y=zw

25/23



Generable functions (total, univariate)

Types

» d € N :dimension

» QCKCR:field

» p c K9R" : polynomial
vector (coef. in K)

Definition
f: R — R is generable if there exists d, p
and yp such that the solution y to

y(0)=yo,  y'(x)=py(Xx))

satisfies f(x) = yy(x) for all x € R. > yo K9y : R — R
Example : =1 »inverse
fl — _?g — _g/f2
assume :
2(0)= 2o, 7'=p(2) ~ z1=g
then :

y(0)= 57 YV=-pi(2)y? ~ y=1

25/23



Generable functions (total, univariate)

Types

» d € N :dimension

» QCKCR:field

» p c K9R" : polynomial
vector (coef. in K)

> ek y:R—R?

Definition
f: R — R is generable if there exists d, p
and yp such that the solution y to

y(0)=yo,  Y'(x)=py(x))
satisfies f(x) = y1(x) for all x € R.

Example: f= [g » integral
assume :
z(0)=2zy, Z'=p(z2) ~ z1=g
then :
y(0)=0, Y=z ~ y=[z

25/23



Generable functions (total, univariate)
Types

> d € N :dimension

> Q CKCR:field

» p c K9R" : polynomial

Definition
f: R — R is generable if there exists d, p
and yp such that the solution y to

0) = yo, '(x) = X
. .y( )= Yo y (%) =ply()) vector (coef. in K)
satisfies f(x) = y1(x) for all x € R. > yo K9y : R — R
Example : f = ¢’ » derivative

f'=g"=(p(2)) =Vpi(2)-Z

assume :
z(0)= 2o, 7= p(2) ~ zi=g
then :
y(0)=pi(20), Y'=Vpi(2)-p(z) ~ y=2

25/23



Generable functions (total, univariate)
Types

> d € N :dimension

> Q CKCR:field

drmny - :
0) = (y) — » p e KR"] : polynomial
YO =yo, ¥y =plyx) vector (coef. in K)

satisfies f(x) = y1(x) for all x € R. > o €K% y:R — RY

Definition
f: R — R is generable if there exists d, p
and yp such that the solution y to

Example : f=goh » composition
(zoh) = (Z o h)i = p(zo h)H

assume :

z(0)= 2z, Z=p(z) ~ z;=9

w(0)= wp, w=q(w) ~ wy=h
then :

y(0)=z(wo), y'=py)z1 ~ y=zoh

25/23



Generable functions (total, univariate)

Types
» d c N :dimension
> QCKCR:field

Definition
f: R — R is generable if there exists d, p
and yp such that the solution y to
> KI[R" : pol ial
YO =%, Y =py(x) E o ot Ly o
satisfies f(x) = y1(x) for all x € R. > yo K9y : R — R

Example : f=goh » composition
(zoh) = (Z o h)i = p(zo h)H

assume :

z(0)= 2z, Z=p(z) ~ z;=9

w(0)= wp, w=q(w) ~ wy=h
then :

y(0)=z(wo), y'=py)zr ~ y=zoh
Is this coefficient in K ?
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Generable functions (total, univariate)

Types
» d € N :dimension
> QCKCR:field

Definition
f: R — R is generable if there exists d, p
and yp such that the solution y to
> KI[R" : pol ial
YO =%, Y =py(x) E o ot Ly o
satisfies f(x) = y1(x) for all x € R. > yo K9y : R — R

Example : f=goh » composition
(zoh) = (Z o h)i = p(zo h)H

assume :

z(0)= 2z, Z=p(z) ~ z;=9

w(0)= wp, w=q(w) ~ wy=h
then :

y(0)=z(wo),  y'=py)zs ~ y=zoh
Is this coefficient in K7 Fields with this property are called generable.
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Generable functions (total, univariate)

Types
» d € N :dimension
> QCKCR:field

Definition
f: R — R is generable if there exists d, p
and yp such that the solution y to
> KI[R" : pol ial
YO =%, Y =py(x) E o ot Ly o
satisfies f(x) = y1(x) for all x € R. > yo K9y : R — R

EXHIII[)|e . f' = tanhof > N()n—polyn()mial differential equati()n
f' = (tanh’of)f' = (1 — (tanh of)z)f'

y1(0)= £(0), Yi=Ye ~  y1(x)=f(x)
¥2(0)=tanh(f(0)),  yj=(1—y&)y2 ~ ya(x)=tanh(f(x))

25/23



Generable functions (total, univariate)

Types
» d c N :dimension
> QCKCR:field

Definition
f: R — R is generable if there exists d, p
and yp such that the solution y to
> KI[R" : pol ial
YO =%, Y =py(x) E o ot Ly o
satisfies f(x) = y1(x) for all x € R. > yo K9y : R — R

Example : f(0) =fy,f  =gof » Initial Value Problem (IVP)
f'=9"=(pi(2)) =Vpi(2) - Z

assume :

z(0)= 2o, 7= p(2) ~ zi=g
then :

y(0)=pi(20), Y'=Vpi(2)-p(z) ~ y=2I

25/23



Generable functions (generalization)

Types
» n e N :input dimension
» d € N :dimension
> pe KdXd[Rd] :

polynomial matrix
> xg € K"
Jy(x) = Jacobian matrix of y at x > K y: X > RY

Definition

f: X CR" — Ris generable if X is open

connected and 3d, p, g, Vo, ¥ such that
y(x0) = Yo,  Jy(x)=ply(x))

and f(x) = yq(x) for all x € X.

Notes :
» Partial differential equation!
» Unicity of solution y...
> ... but not existence (ie you have to show it exists)
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Generable functions (generalization)

Types
» n e N :input dimension
» d € N :dimension
> pe KdXd[Rd] :

polynomial matrix
> xg € K"
Jy(x) = Jacobian matrix of y at x > K y: X > RY

Definition
f: X CR" — Ris generable if X is open
connected and 3d, p, xg, Vo, ¥ such that

y(o) =yo,  Jy(x) = py(x))
and f(x) = yq(x) for all x € X.

Example : f(x1, %) = xyx2 (n=2,d = 3) » monomial
0 ¥2 3yoys X1 X2
y(0,0)= (0|, J={1 0 ~ y(x) =1 x
0 0 1 Xo
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Generable functions (generalization)

Types
» n e N :input dimension
» d € N :dimension

Definition
f: X CR" — Ris generable if X is open
connected and 3d, p, xg, Vo, ¥ such that

o) =y h=pto) " ESECINL
and f(x) = yq(x) for all x € X. N zo é K0
Jy(x) = Jacobian matrix of y at x > K y: X > RY

. 2 .
Example : f(Xy,X2) = X1X5 » monomial
2

y1(0,0)=0,  Oxy1=V5,  Ouy1=3y2ys ~ Yyi(X)=x1X3
}’2(0, O): 07 8X1y2: 17 8X2y2: 0 ~ yZ(X) = X4
y3(07 O): 0, 8X1y3: 0, 8)(2_}/3: 1 ~ y3(X) =Xo

This is tedious !
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Generable functions (generalization)

Types
» n e N :input dimension
» d € N :dimension
> pe KdXd[Rd] :

polynomial matrix
> xg € K"
Jy(x) = Jacobian matrix of y at x > K y: X > RY

Definition
f: X CR" — Ris generable if X is open
connected and 3d, p, xg, Vo, ¥ such that

y(o) =yo,  Jy(x) = py(x))
and f(x) = yq(x) for all x € X.

Last example : f(x) = 1 for x € (0, 00) » inverse function

y(=1, Oy=-y2 ~ yx)=1
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Generable functions : summary

Nice theory for the class of multivariate generable functions (over
connected domains) :

> analytic

contains polynomials, sin, cos, tanh, exp, ...

stable under +, x, /, o and Initial Value Problems (IVP)
technicality on the field K of coefficients for stability under o

>
>
>
» requires partial differential equations
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Generable functions : summary

Nice theory for the class of multivariate generable functions (over
connected domains) :

> analytic
» contains polynomials, sin, cos, tanh, exp, ...

» stable under +, x, /, o and Initial Value Problems (IVP)

» technicality on the field K of coefficients for stability under o
> requires partial differential equations

Exercice : are all analytic functions generable ?
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Generable functions : summary

Nice theory for the class of multivariate generable functions (over

connected domains) :
> analytic
» contains polynomials, sin, cos, tanh, exp, ...
» stable under +, x, /, o and Initial Value Problems (IVP)
» technicality on the field K of coefficients for stability under o
> requires partial differential equations

Exercice : are all analytic functions generable ? No
Riemann I and ¢ are not generable.

27/23



From discrete to real computability

Computable Analysis : lift Turing computability to real numbers
[Ko, 1991 ; Weihrauch, 2000]
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From discrete to real computability

Computable Analysis : lift Turing computability to real numbers
[Ko, 1991 ; Weihrauch, 2000]

Definition
X € R is computable iff 3 a computable f : N — Q such that :

|x —f(n)] <10™" neN
Examples : rational numbers, 7, e, ...

n f(n) |m —f(n)|

0 3 0.14 <1070
1 3.1 0.04 < 101
2 3.14 0.001 <1072

10 3.1415926535 0.9-10-10 <1010
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From discrete to real computability

Computable Analysis : lift Turing computability to real numbers
[Ko, 1991 ; Weihrauch, 2000]

Definition
X € R is computable iff 3 a computable f : N — Q such that :

|x —f(n)] <10™" neN
Examples : rational numbers, 7, e, ...

n f(n) |m — f(n)|

0 3 0.14 <1070
1 3.1 0.04 <101
2 3.14 0.001 <1072

10 3.1415926535 0.9-10-10 <1010

Beware :there exists uncomputable real numbers !
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From discrete to real computability

e (€

F(x)
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From discrete to real computability

V) 5=
f(x) =
| <1077O)
// A ?
X
X y

Definition (Computable function)

f:[a, b] — Ris computable iff 3 m: N — N,
computable functions such that :

x —y] <107 = [f(x) — f(y)| < 107" x,y €R,neN

m : modulus of continuity
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From discrete to real computability

Vi
/ r A

Definition (Computable function)

f:la,b] - Ris computableiff 3m: N - N,¢: Q xN— Q
computable functions such that :

x —y] <107 = [f(x) — f(y)| < 107" x,y €R,neN

m : modulus of continuity
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From discrete to real computability

fy) | g<1072 —
f(x) =
gl <1077
/ 718
—
X
XYy

Definition (Computable function)

f:la,b] - Ris computableiff 3m: N - N,¢: Q xN— Q
computable functions such that :

x —y] <107 = [f(x) — f(y)| < 107" x,y €R,neN

m : modulus of continuity

28/23



From discrete to real computability

]

w(r0)
f(r) 410

,//”////////

reQ
Definition (Computable function)

f:la,b] - Ris computableiff 3m: N - N,¢: Q xN— Q
computable functions such that :

X —y| <107 = |f(x) — f(y)| < 107"  x,yeR,neN

f(r) —4(r,n)| <107"  reQneN
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From discrete to real computability

@b(f,1) .~’£§1 04,1 ////’///»///4
f(r) =<

,//”////////

req@Q

Definition (Computable function)

f:la,b] - Ris computableiff 3m: N - N,¢: Q xN— Q
computable functions such that :

X —y| <107 = |f(x) — f(y)| < 107"  x,yeR,neN

f(r) —4(r,n)| <107"  reQneN
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From discrete to real computability

»(r,2) <102 /
f(r)

o
/

,//”////////

req@Q

Definition (Computable function)

f:la,b] - Ris computableiff 3m: N - N,¢: Q xN— Q
computable functions such that :

X —y| <107 = |f(x) — f(y)| < 107"  x,yeR,neN

f(r) —4(r,n)| <107"  reQneN
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From discrete to real computability

Definition (Computable function)

f:[a b] — Riscomputableiff 3m: N - N;¢: Qx N — Q
computable functions such that :

x—y| <107 = |f(x) - f(y)| < 107" X,y eR,neN
If(r) —(r,n)|<10™" reQ,neN
Examples : polynomials, sin, exp, v/~

Note :all computable functions are continuous
Beware :there exists (continuous) uncomputable real functions !
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From discrete to real computability

Definition (Computable function)

f:[a b] — Riscomputableiff 3m: N - N;¢: Qx N — Q
computable functions such that :

X —y| <107 = |f(x) — f(y)| < 107" x,y eR,neN

If(r) —(r,n)| <107" reQ,neN

Examples : polynomials, sin, exp, v/~

Note :all computable functions are continuous

Beware :there exists (continuous) uncomputable real functions !
Polytime complexity

Add “polynomial time computable” everywhere.
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Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if 3p polynomial such that Vx € [a, b]

y(0)=(x,0,...,0)  y'(t) =p(y(1)
satisfies |[f(x) — y1(t)| < yo(t) et yo(t) - 0.

IFITAVIVRC 1) () g 1)
X v . y»(t) = error bound
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Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if 3p polynomial such that Vx € [a, b]

y(0)=(x,0,...,0)  y'(t) =p(y(1)
satisfies |[f(x) — y1(t)| < yo(t) et yo(t) - 0.

IFITAVIVRC 1) () g 1)
X v . y»(t) = error bound

Theorem (Bournez et al, 2007)

f:[a,b] — R computable' < f computable by GPAC

29/23



Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if 3p polynomial such that Vx € [a, b]

y(0)=(x,0,...,0)  y'(t) =p(y(1)
satisfies |[f(x) — y1(t)| < yo(t) et yo(t) - 0.

%(Umf(x)

N A2

oV y»(t) = error bound

—
~~

—
b

~—

Theorem (Bournez et al, 2007)

f:[a,b] — R computable' < f computable by GPAC

1. In Computable Analysis, a standard model over reals built from Turing machines.
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