
Strong Turing Completeness of Continuous
Chemical Reaction Networks

Amaury Pouly

Joint work with Olivier Bournez, François Fages, Guillaume Le
Guludec and Daniel Graça

16 september 2022

1 / 31

Chemical Reaction Networks

A reaction system is a finite set of
▶ molecular species y1, . . . , yn

▶ reactions of the form
∑

i aiyi
f−→
∑

i biyi (ai ,bi ∈ N, f = rate)

Example :
2H + O → H2O

Assumption : law of mass action∑
i

aiyi
k−→

∑
i

biyi ; f (y) = k
∏

i

yai
i

Semantics :
▶ discrete
▶ differential
▶ stochastic

2 / 31

Chemical Reaction Networks

A reaction system is a finite set of
▶ molecular species y1, . . . , yn

▶ reactions of the form
∑

i aiyi
f−→
∑

i biyi (ai ,bi ∈ N, f = rate)

Example :
2H + O → H2O

Assumption : law of mass action∑
i

aiyi
k−→

∑
i

biyi ; f (y) = k
∏

i

yai
i

Semantics :
▶ discrete
▶ differential
▶ stochastic

2 / 31

Chemical Reaction Networks

A reaction system is a finite set of
▶ molecular species y1, . . . , yn

▶ reactions of the form
∑

i aiyi
f−→
∑

i biyi (ai ,bi ∈ N, f = rate)

Example :
2H + O → H2O

Assumption : law of mass action∑
i

aiyi
k−→

∑
i

biyi ; f (y) = k
∏

i

yai
i

Semantics :
▶ discrete
▶ differential
▶ stochastic

2 / 31

Chemical Reaction Networks

A reaction system is a finite set of
▶ molecular species y1, . . . , yn

▶ reactions of the form
∑

i aiyi
f−→
∑

i biyi (ai ,bi ∈ N, f = rate)

Example :
2H + O → H2O

Assumption : law of mass action∑
i

aiyi
k−→

∑
i

biyi ; f (y) = k
∏

i

yai
i

Semantics :
▶ discrete
▶ differential →
▶ stochastic

y ′
i =

∑
reaction R

(bR
i − aR

i)f
R(y)

Example :

[H2O]′ = f ([H2], [O], [H2O])

2 / 31

Chemical Reaction Networks

A reaction system is a finite set of
▶ molecular species y1, . . . , yn

▶ reactions of the form
∑

i aiyi
f−→
∑

i biyi (ai ,bi ∈ N, f = rate)

Example :
2H + O → H2O

Assumption : law of mass action∑
i

aiyi
k−→

∑
i

biyi ; f (y) = k
∏

i

yai
i

Semantics :
▶ discrete
▶ differential →
▶ stochastic

y ′
i =

∑
reaction R

(bR
i − aR

i)k
R
∏

j

yaj
j

Example :
[H2O]′ = [O][H]2

; Polynomial ODE!
2 / 31

Chemical Reaction Networks

A reaction system is a finite set of
▶ molecular species y1, . . . , yn

▶ reactions of the form
∑

i aiyi
f−→
∑

i biyi (ai ,bi ∈ N, f = rate)

Example :
2H + O → H2O

C + O2 → CO2

Not limited to simple chemical reactions :
▶ DNA strand displacement
▶ RNA
▶ protein reactions

Implementing CRNs is a recent and active research field.

3 / 31

Chemical Reaction Networks

A reaction system is a finite set of
▶ molecular species y1, . . . , yn

▶ reactions of the form
∑

i aiyi
f−→
∑

i biyi (ai ,bi ∈ N, f = rate)

Example :
2H + O → H2O

C + O2 → CO2

Not limited to simple chemical reactions :
▶ DNA strand displacement
▶ RNA
▶ protein reactions

Implementing CRNs is a recent and active research field.

3 / 31

Chemical Reaction Networks

A reaction system is a finite set of
▶ molecular species y1, . . . , yn

▶ reactions of the form
∑

i aiyi
f−→
∑

i biyi (ai ,bi ∈ N, f = rate)

Example :
2H + O → H2O

C + O2 → CO2

Not limited to simple chemical reactions :
▶ DNA strand displacement
▶ RNA
▶ protein reactions

Implementing CRNs is a recent and active research field.

3 / 31

Chemical Reaction Networks

A reaction system is a finite set of
▶ molecular species y1, . . . , yn

▶ reactions of the form
∑

i aiyi
f−→
∑

i biyi (ai ,bi ∈ N, f = rate)

Some reactions are unrealistic :

y1 + 26y2 + 7y3 −→ 13y4 + y5

Only consider elementary reactions : at most two reactants

▶ A + B k−→ C
▶ A k−→ B + C
▶ A k−→ B
▶ A k−→ ∅
▶ ∅ k−→ A

Example : A + B k−→ C

A′ = −kAB B′ = −kAB C′ = kAB

; Quadratic ODE!

4 / 31

Chemical Reaction Networks

A reaction system is a finite set of
▶ molecular species y1, . . . , yn

▶ reactions of the form
∑

i aiyi
f−→
∑

i biyi (ai ,bi ∈ N, f = rate)

Some reactions are unrealistic :

y1 + 26y2 + 7y3 −→ 13y4 + y5

Only consider elementary reactions : at most two reactants

▶ A + B k−→ C
▶ A k−→ B + C
▶ A k−→ B
▶ A k−→ ∅
▶ ∅ k−→ A

Example : A + B k−→ C

A′ = −kAB B′ = −kAB C′ = kAB

; Quadratic ODE!

4 / 31

Chemical Reaction Networks

A reaction system is a finite set of
▶ molecular species y1, . . . , yn

▶ reactions of the form
∑

i aiyi
f−→
∑

i biyi (ai ,bi ∈ N, f = rate)

Some reactions are unrealistic :

y1 + 26y2 + 7y3 −→ 13y4 + y5

Only consider elementary reactions : at most two reactants

▶ A + B k−→ C
▶ A k−→ B + C
▶ A k−→ B
▶ A k−→ ∅
▶ ∅ k−→ A

Example : A + B k−→ C

A′ = −kAB B′ = −kAB C′ = kAB

; Quadratic ODE!

4 / 31

Chemical Reaction Networks : what can we compute?

Can we use CRNs to compute?

What does it even mean?

It depends a lot on how we define computability, in particular :
▶ rate : dependent/independent
▶ semantics : discrete/stochastic/differential
▶ kinetics : mass action/Michaelis/...
▶ species : finite/unbounded/infinite
▶ encoding : molecule count/concentration/digits
▶ more : robust, stable, ...

Extreme examples :

rate-independent, differential, any
kinetics, finite species, value is
concentration, stable

; piecewise linear functions

rate-dependent, stochastic,
Markov, finite species, value is
molecule count

; probabilistic Turing machine?

5 / 31

Chemical Reaction Networks : what can we compute?

Can we use CRNs to compute? What does it even mean?

It depends a lot on how we define computability, in particular :
▶ rate : dependent/independent
▶ semantics : discrete/stochastic/differential
▶ kinetics : mass action/Michaelis/...
▶ species : finite/unbounded/infinite
▶ encoding : molecule count/concentration/digits
▶ more : robust, stable, ...

Extreme examples :

rate-independent, differential, any
kinetics, finite species, value is
concentration, stable

; piecewise linear functions

rate-dependent, stochastic,
Markov, finite species, value is
molecule count

; probabilistic Turing machine?

5 / 31

Chemical Reaction Networks : what can we compute?

Can we use CRNs to compute? What does it even mean?

It depends a lot on how we define computability, in particular :
▶ rate : dependent/independent
▶ semantics : discrete/stochastic/differential
▶ kinetics : mass action/Michaelis/...
▶ species : finite/unbounded/infinite
▶ encoding : molecule count/concentration/digits
▶ more : robust, stable, ...

Extreme examples :

rate-independent, differential, any
kinetics, finite species, value is
concentration, stable

; piecewise linear functions

rate-dependent, stochastic,
Markov, finite species, value is
molecule count

; probabilistic Turing machine?

5 / 31

Chemical Reaction Networks : what can we compute?

Can we use CRNs to compute? What does it even mean?

It depends a lot on how we define computability, in particular :
▶ rate : dependent/independent
▶ semantics : discrete/stochastic/differential
▶ kinetics : mass action/Michaelis/...
▶ species : finite/unbounded/infinite
▶ encoding : molecule count/concentration/digits
▶ more : robust, stable, ...

Extreme examples :

rate-independent, differential, any
kinetics, finite species, value is
concentration, stable

; piecewise linear functions

rate-dependent, stochastic,
Markov, finite species, value is
molecule count

; probabilistic Turing machine?

5 / 31

Chemical Reaction Networks : what can we compute?

Can we use CRNs to compute? What does it even mean?

It depends a lot on how we define computability, in particular :
▶ rate : dependent/independent
▶ semantics : discrete/stochastic/differential
▶ kinetics : mass action/Michaelis/...
▶ species : finite/unbounded/infinite
▶ encoding : molecule count/concentration/digits
▶ more : robust, stable, ...

Extreme examples :

rate-independent, differential, any
kinetics, finite species, value is
concentration, stable

; piecewise linear functions

rate-dependent, stochastic,
Markov, finite species, value is
molecule count

; probabilistic Turing machine?
5 / 31

Chemical Reaction Networks : main result

A reaction is elementary if it has at most two reactants
⇒ can, in principle, be implemented with DNA, RNA or proteins

Theorem (CMSB 2017)

Elementary mass-action-law reaction system on finite universes of
molecules are Turing-complete under the differential semantics.

Note : in fact the following elementary reactions suffice :

∅ k−→ x x k−→ x + z x + y k−→ x + y + z x + y k−→ ∅

We can even say something about the complexity :

f ∈ FPTIME ⇒ CRN computes f in


▶ polynomial time&space

or equivalently
▶ polynomial length

6 / 31

Chemical Reaction Networks : main result

A reaction is elementary if it has at most two reactants
⇒ can, in principle, be implemented with DNA, RNA or proteins

Theorem (CMSB 2017)

Elementary mass-action-law reaction system on finite universes of
molecules are Turing-complete under the differential semantics.

Note : in fact the following elementary reactions suffice :

∅ k−→ x x k−→ x + z x + y k−→ x + y + z x + y k−→ ∅

We can even say something about the complexity :

f ∈ FPTIME ⇒ CRN computes f in


▶ polynomial time&space

or equivalently
▶ polynomial length

6 / 31

Chemical Reaction Networks : main result

A reaction is elementary if it has at most two reactants
⇒ can, in principle, be implemented with DNA, RNA or proteins

Theorem (CMSB 2017)

Elementary mass-action-law reaction system on finite universes of
molecules are Turing-complete under the differential semantics.

Note : in fact the following elementary reactions suffice :

∅ k−→ x x k−→ x + z x + y k−→ x + y + z x + y k−→ ∅

We can even say something about the complexity :

f ∈ FPTIME ⇒ CRN computes f in


▶ polynomial time&space

or equivalently
▶ polynomial length

6 / 31

Chemical Reaction Networks : mathematics

Elementary

mass-action-law reaction system on finite universes of
molecules under the differential semantics

⇕

Polynomial ODE :
y ′

1 = p1(y1, . . . , yn)
...
y ′

n = pn(y1, . . . , yn)

with constraints :
▶ nonnegative values (concentration)
▶ restricted negative feedback : x ′ = −xyz

▶ quadratic : pk (y) =
∑

ij αijyiyj~ww� clever rewriting
value encoding : y = y+ − y−

Polynomial ODE : y ′ = p(y)

What can we compute with polynomial ODEs?

7 / 31

Chemical Reaction Networks : mathematics

Elementary

mass-action-law reaction system on finite universes of
molecules under the differential semantics

⇕

Polynomial ODE :
y ′

1 = p1(y1, . . . , yn)
...
y ′

n = pn(y1, . . . , yn)

with constraints :
▶ nonnegative values (concentration)
▶ restricted negative feedback : x ′ = −xyz

▶ quadratic : pk (y) =
∑

ij αijyiyj~ww� clever rewriting
value encoding : y = y+ − y−

Polynomial ODE : y ′ = p(y)

What can we compute with polynomial ODEs?

7 / 31

Chemical Reaction Networks : mathematics

Elementary mass-action-law reaction system on finite universes of
molecules under the differential semantics

⇕

Polynomial ODE :
y ′

1 = p1(y1, . . . , yn)
...
y ′

n = pn(y1, . . . , yn)

with constraints :
▶ nonnegative values (concentration)
▶ restricted negative feedback : x ′ = −xyz
▶ quadratic : pk (y) =

∑
ij αijyiyj

~ww� clever rewriting
value encoding : y = y+ − y−

Polynomial ODE : y ′ = p(y)

What can we compute with polynomial ODEs?

7 / 31

Chemical Reaction Networks : mathematics

Elementary mass-action-law reaction system on finite universes of
molecules under the differential semantics

⇕

Polynomial ODE :
y ′

1 = p1(y1, . . . , yn)
...
y ′

n = pn(y1, . . . , yn)

with constraints :
▶ nonnegative values (concentration)
▶ restricted negative feedback : x ′ = −xyz
▶ quadratic : pk (y) =

∑
ij αijyiyj~ww� clever rewriting

value encoding : y = y+ − y−

Polynomial ODE : y ′ = p(y)

What can we compute with polynomial ODEs?

7 / 31

Chemical Reaction Networks : mathematics

Elementary mass-action-law reaction system on finite universes of
molecules under the differential semantics

⇕

Polynomial ODE :
y ′

1 = p1(y1, . . . , yn)
...
y ′

n = pn(y1, . . . , yn)

with constraints :
▶ nonnegative values (concentration)
▶ restricted negative feedback : x ′ = −xyz
▶ quadratic : pk (y) =

∑
ij αijyiyj~ww� clever rewriting

value encoding : y = y+ − y−

Polynomial ODE : y ′ = p(y)

What can we compute with polynomial ODEs?

7 / 31

Analog Computers

Differential Analyser
“Mathematica of the 1920s”

Admiralty Fire Control Table
British Navy ships (WW2)

8 / 31

Polynomial Differential Equations

k k

+ u+vu
v

× uvu
v

∫ ∫
uu

General Purpose
Analog Computer Differential Analyzer

Reaction networks :
▶ chemical
▶ enzymatic

Newton mechanics polynomial differential
equations :{

y(0)= y0
y ′(t)= p(y(t))

▶ Rich class
▶ Stable (+,×,◦,/,ED)
▶ No closed-form solution

9 / 31

Example of dynamical system

θ

ℓ

m

g

×
∫ ∫

×
∫−g

ℓ

××−1
∫

y1
y2

y3 y4

θ̈ + g
ℓ sin(θ) = 0


y ′

1 = y2
y ′

2 = −g
l y3

y ′
3 = y2y4

y ′
4 = −y2y3

⇔


y1 = θ

y2 = θ̇
y3 = sin(θ)
y4 = cos(θ)

Historical remark : the word “analog”

The pendulum and the circuit have the same equation. One can study
one using the other by analogy.

10 / 31

Example of dynamical system

θ

ℓ

m

g

×
∫ ∫

×
∫−g

ℓ

××−1
∫

y1
y2

y3 y4

θ̈ + g
ℓ sin(θ) = 0


y ′

1 = y2
y ′

2 = −g
l y3

y ′
3 = y2y4

y ′
4 = −y2y3

⇔


y1 = θ

y2 = θ̇
y3 = sin(θ)
y4 = cos(θ)

Historical remark : the word “analog”

The pendulum and the circuit have the same equation. One can study
one using the other by analogy.

10 / 31

Example of dynamical system

θ

ℓ

m

g

×
∫ ∫

×
∫−g

ℓ

××−1
∫

y1
y2

y3 y4

θ̈ + g
ℓ sin(θ) = 0


y ′

1 = y2
y ′

2 = −g
l y3

y ′
3 = y2y4

y ′
4 = −y2y3

⇔


y1 = θ

y2 = θ̇
y3 = sin(θ)
y4 = cos(θ)

Historical remark : the word “analog”

The pendulum and the circuit have the same equation. One can study
one using the other by analogy.

10 / 31

Example of dynamical system

θ

ℓ

m

g

×
∫ ∫

×
∫−g

ℓ

××−1
∫

y1
y2

y3 y4

θ̈ + g
ℓ sin(θ) = 0


y ′

1 = y2
y ′

2 = −g
l y3

y ′
3 = y2y4

y ′
4 = −y2y3

⇔


y1 = θ

y2 = θ̇
y3 = sin(θ)
y4 = cos(θ)

Historical remark : the word “analog”

The pendulum and the circuit have the same equation. One can study
one using the other by analogy.

10 / 31

Computing with differential equations

Generable functions{
y(0)= y0

y ′(x)= p(y(x))
x ∈ R

f (x) = y1(x)

x
y1(x)

Shannon’s notion

sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computable{
y(0)= q(x)
y ′(t)= p(y(t))

x ∈ R
t ∈ R+

f (x) = lim
t→∞

y1(t)

t

f (x)

x

y1(t)

Modern notion

sin, cos, exp, log, Γ, ζ, ...

Turing powerful
[Bournez et al., 2007]

11 / 31

Computing with differential equations

Generable functions{
y(0)= y0

y ′(x)= p(y(x))
x ∈ R

f (x) = y1(x)

x
y1(x)

Shannon’s notion

sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computable{
y(0)= q(x)
y ′(t)= p(y(t))

x ∈ R
t ∈ R+

f (x) = lim
t→∞

y1(t)

t

f (x)

x

y1(t)

Modern notion

sin, cos, exp, log, Γ, ζ, ...

Turing powerful
[Bournez et al., 2007]

11 / 31

Computing with differential equations

Generable functions{
y(0)= y0

y ′(x)= p(y(x))
x ∈ R

f (x) = y1(x)

x
y1(x)

Shannon’s notion

sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computable{
y(0)= q(x)
y ′(t)= p(y(t))

x ∈ R
t ∈ R+

f (x) = lim
t→∞

y1(t)

t

f (x)

x

y1(t)

Modern notion

sin, cos, exp, log, Γ, ζ, ...

Turing powerful
[Bournez et al., 2007]

11 / 31

Computing with differential equations

Generable functions{
y(0)= y0

y ′(x)= p(y(x))
x ∈ R

f (x) = y1(x)

x
y1(x)

Shannon’s notion

sin, cos, exp, log, ...

Strictly weaker than Turing
machines [Shannon, 1941]

Computable{
y(0)= q(x)
y ′(t)= p(y(t))

x ∈ R
t ∈ R+

f (x) = lim
t→∞

y1(t)

t

f (x)

x

y1(t)

Modern notion

sin, cos, exp, log, Γ, ζ, ...

Turing powerful
[Bournez et al., 2007]

11 / 31

Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if ∃p polynomial such that ∀x ∈ [a,b]

y(0) = (x ,0, . . . ,0) y ′(t) = p(y(t))

satisfies |f (x)− y1(t)| ⩽ y2(t) et y2(t) −−−→
t→∞

0.

t

f (x)

x

y1(t) y1(t) −−−→
t→∞

f (x)

y2(t) = error bound

Theorem (Bournez et al, 2007)

f : [a,b] → R computable 1 ⇔ f computable by GPAC

1. In Computable Analysis, a standard model over reals built from Turing machines.

12 / 31

Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if ∃p polynomial such that ∀x ∈ [a,b]

y(0) = (x ,0, . . . ,0) y ′(t) = p(y(t))

satisfies |f (x)− y1(t)| ⩽ y2(t) et y2(t) −−−→
t→∞

0.

t

f (x)

x

y1(t) y1(t) −−−→
t→∞

f (x)

y2(t) = error bound

Theorem (Bournez et al, 2007)

f : [a,b] → R computable 1 ⇔ f computable by GPAC

1. In Computable Analysis, a standard model over reals built from Turing machines.

12 / 31

Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if ∃p polynomial such that ∀x ∈ [a,b]

y(0) = (x ,0, . . . ,0) y ′(t) = p(y(t))

satisfies |f (x)− y1(t)| ⩽ y2(t) et y2(t) −−−→
t→∞

0.

t

f (x)

x

y1(t) y1(t) −−−→
t→∞

f (x)

y2(t) = error bound

Theorem (Bournez et al, 2007)

f : [a,b] → R computable 1 ⇔ f computable by GPAC

1. In Computable Analysis, a standard model over reals built from Turing machines.
12 / 31

Complexity of analog systems

▶ Turing machines : T (x) = number of steps to compute on x

▶ GPAC :

time contraction problem → open problem

Tentative definition

y(0) = (x ,0, . . . ,0) y ′ = p(y)

t

f (x)

x

y1(t)
;

z(t) = y(et)

t

f (x)

x

z1(t)

Something is wrong...

All functions have constant
time complexity.

w(t) = y(eet
)

t

f (x)

x

w1(t)

13 / 31

Complexity of analog systems

▶ Turing machines : T (x) = number of steps to compute on x
▶ GPAC :

time contraction problem → open problem

Tentative definition
T (x) = ??

y(0) = (x ,0, . . . ,0) y ′ = p(y)

t

f (x)

x

y1(t)

;

z(t) = y(et)

t

f (x)

x

z1(t)

Something is wrong...

All functions have constant
time complexity.

w(t) = y(eet
)

t

f (x)

x

w1(t)

13 / 31

Complexity of analog systems

▶ Turing machines : T (x) = number of steps to compute on x
▶ GPAC :

time contraction problem → open problem

Tentative definition
T (x , µ) =

first time t so that |y1(t)− f (x)| ⩽ 2−µ

y(0) = (x ,0, . . . ,0) y ′ = p(y)

t

f (x)

x

y1(t)

;

z(t) = y(et)

t

f (x)

x

z1(t)

Something is wrong...

All functions have constant
time complexity.

w(t) = y(eet
)

t

f (x)

x

w1(t)

13 / 31

Complexity of analog systems

▶ Turing machines : T (x) = number of steps to compute on x
▶ GPAC :

time contraction problem → open problem

Tentative definition
T (x , µ) = first time t so that |y1(t)− f (x)| ⩽ 2−µ

y(0) = (x ,0, . . . ,0) y ′ = p(y)

t

f (x)

x

y1(t)

;

z(t) = y(et)

t

f (x)

x

z1(t)

Something is wrong...

All functions have constant
time complexity.

w(t) = y(eet
)

t

f (x)

x

w1(t)

13 / 31

Complexity of analog systems

▶ Turing machines : T (x) = number of steps to compute on x
▶ GPAC :

time contraction problem → open problem

Tentative definition
T (x , µ) = first time t so that |y1(t)− f (x)| ⩽ 2−µ

y(0) = (x ,0, . . . ,0) y ′ = p(y)

t

f (x)

x

y1(t)
;

z(t) = y(et)

t

f (x)

x

z1(t)

Something is wrong...

All functions have constant
time complexity.

w(t) = y(eet
)

t

f (x)

x

w1(t)

13 / 31

Complexity of analog systems

▶ Turing machines : T (x) = number of steps to compute on x
▶ GPAC :

time contraction problem → open problem

Tentative definition
T (x , µ) = first time t so that |y1(t)− f (x)| ⩽ 2−µ

y(0) = (x ,0, . . . ,0) y ′ = p(y)

t

f (x)

x

y1(t)
;

z(t) = y(et)

t

f (x)

x

z1(t)

Something is wrong...

All functions have constant
time complexity.

w(t) = y(eet
)

t

f (x)

x

w1(t)

13 / 31

Complexity of analog systems

▶ Turing machines : T (x) = number of steps to compute on x
▶ GPAC : time contraction problem → open problem

Tentative definition
T (x , µ) = first time t so that |y1(t)− f (x)| ⩽ 2−µ

y(0) = (x ,0, . . . ,0) y ′ = p(y)

t

f (x)

x

y1(t)
;

z(t) = y(et)

t

f (x)

x

z1(t)

Something is wrong...

All functions have constant
time complexity.

w(t) = y(eet
)

t

f (x)

x

w1(t)

13 / 31

Time-space correlation of the GPAC

y(0) = q(x) y ′ = p(y)

t

f (x)

q(x)

y1(t)
;

z(t) = y(et)

t

f (x)

q̃(x)

z1(t)

Observation
Time scaling costs “space”.

;

Time complexity for the GPAC
must involve time and space !

extra component : w(t) = et

t

w(t)

14 / 31

Time-space correlation of the GPAC

y(0) = q(x) y ′ = p(y)

t

f (x)

q(x)

y1(t)
;

z(t) = y(et)

t

f (x)

q̃(x)

z1(t)

Observation
Time scaling costs “space”.

;

Time complexity for the GPAC
must involve time and space !

extra component : w(t) = et

t

w(t)

14 / 31

Time-space correlation of the GPAC

y(0) = q(x) y ′ = p(y)

t

f (x)

q(x)

y1(t)
;

z(t) = y(et)

t

f (x)

q̃(x)

z1(t)

Observation
Time scaling costs “space”.

;

Time complexity for the GPAC
must involve time and space !

extra component : w(t) = et

t

w(t)

14 / 31

Complexity of solving polynomial ODEs

y(0) = x y ′(t) = p(y(t))

Theorem
If y(t) exists, one can compute p,q such that

∣∣∣p
q − y(t)

∣∣∣ ⩽ 2−n in time

poly (size of x and p,n, ℓ(t))

where ℓ(t) ≈ length of the curve (between x and y(t))

x y(t) x y(t)

length of the curve = complexity = ressource

15 / 31

Complexity of solving polynomial ODEs

y(0) = x y ′(t) = p(y(t))

Theorem
If y(t) exists, one can compute p,q such that

∣∣∣p
q − y(t)

∣∣∣ ⩽ 2−n in time

poly (size of x and p,n, ℓ(t))

where ℓ(t) ≈ length of the curve (between x and y(t))

x y(t) x y(t)

length of the curve = complexity = ressource

15 / 31

Characterization of real polynomial time

Definition : f : [a,b] → R in ANALOG-PR ⇔ ∃p polynomial, ∀x ∈ [a,b]

y(0) = (x ,0, . . . ,0) y ′ = p(y)

satisfies :
1. |y1(t)− f (x)| ⩽ 2−ℓ(t)

«greater length ⇒ greater precision»
2. ℓ(t) ⩾ t

«length increases with time»

ℓ(t)

f (x)

x

y1(t)

Theorem
f : [a,b] → R computable in polynomial time ⇔ f ∈ ANALOG-PR.

16 / 31

Characterization of real polynomial time

Definition : f : [a,b] → R in ANALOG-PR ⇔ ∃p polynomial, ∀x ∈ [a,b]

y(0) = (x ,0, . . . ,0) y ′ = p(y)
satisfies :

1. |y1(t)− f (x)| ⩽ 2−ℓ(t)

«greater length ⇒ greater precision»
2. ℓ(t) ⩾ t

«length increases with time»

ℓ(t)

f (x)

x

y1(t)

Theorem
f : [a,b] → R computable in polynomial time ⇔ f ∈ ANALOG-PR.

16 / 31

Characterization of real polynomial time

Definition : f : [a,b] → R in ANALOG-PR ⇔ ∃p polynomial, ∀x ∈ [a,b]

y(0) = (x ,0, . . . ,0) y ′ = p(y)
satisfies :

1. |y1(t)− f (x)| ⩽ 2−ℓ(t)

«greater length ⇒ greater precision»
2. ℓ(t) ⩾ t

«length increases with time»

ℓ(t)

f (x)

x

y1(t)

Theorem
f : [a,b] → R computable in polynomial time ⇔ f ∈ ANALOG-PR.

16 / 31

Characterization of polynomial time

Definition : L ∈ ANALOG-PTIME ⇔ ∃p polynomial, ∀ word w

y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2−i

ℓ(t) = length of y

1

−1

y1(t)

ψ(w)

17 / 31

Characterization of polynomial time

Definition : L ∈ ANALOG-PTIME ⇔ ∃p polynomial, ∀ word w

y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2−i

ℓ(t) = length of y

1

−1

accept : w ∈ L

computing

y1(t)

ψ(w)

satisfies
1. if y1(t) ⩾ 1 then w ∈ L

17 / 31

Characterization of polynomial time

Definition : L ∈ ANALOG-PTIME ⇔ ∃p polynomial, ∀ word w

y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2−i

ℓ(t) = length of y

1

−1

accept : w ∈ L

reject : w /∈ L

computing

y1(t)

ψ(w)

satisfies
2. if y1(t) ⩽ −1 then w /∈ L

17 / 31

Characterization of polynomial time

Definition : L ∈ ANALOG-PTIME ⇔ ∃p polynomial, ∀ word w

y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2−i

ℓ(t) = length of y

1

−1

poly(|w |)

accept : w ∈ L

reject : w /∈ L

computing

forbiddeny1(t)
ψ(w)

satisfies
3. if ℓ(t) ⩾ poly(|w |) then |y1(t)| ⩾ 1

17 / 31

Characterization of polynomial time

Definition : L ∈ ANALOG-PTIME ⇔ ∃p polynomial, ∀ word w

y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2−i

ℓ(t) = length of y

1

−1

poly(|w |)

accept : w ∈ L

reject : w /∈ L

computing

forbidden

y1(t)

y1(t)

y1(t)
ψ(w)

Theorem
PTIME = ANALOG-PTIME

17 / 31

Summary

ANALOG-PTIME ANALOG-PR

ℓ(t)

1

−1
poly(|w |)

w∈L

w /∈L

y1(t)

y1(t)

y1(t)ψ(w)

ℓ(t)

f (x)

x

y1(t)

Theorem

▶ L ∈ PTIME of and only if L ∈ ANALOG-PTIME

▶ f : [a,b] → R computable in polynomial time ⇔ f ∈ ANALOG-PR

▶ Analog complexity theory based on length
▶ Time of Turing machine ⇔ length of the GPAC
▶ Purely continuous characterization of PTIME

▶ Only rational coefficients needed

18 / 31

Summary

ANALOG-PTIME ANALOG-PR

ℓ(t)

1

−1
poly(|w |)

w∈L

w /∈L

y1(t)

y1(t)

y1(t)ψ(w)

ℓ(t)

f (x)

x

y1(t)

Theorem

▶ L ∈ PTIME of and only if L ∈ ANALOG-PTIME

▶ f : [a,b] → R computable in polynomial time ⇔ f ∈ ANALOG-PR

▶ Analog complexity theory based on length
▶ Time of Turing machine ⇔ length of the GPAC
▶ Purely continuous characterization of PTIME
▶ Only rational coefficients needed

18 / 31

Back to Chemical Reaction Networks

Theorem (CMSB 2017)

Elementary mass-action-law reaction system on finite universes of
molecules are Turing-complete under the differential semantics.

Is this really realistic?

▶ we need precise reaction rates

→ no good answer (yet)

▶ it is robust to small noise : y ′ = p(y) + e
▶ growth of the # molecules/volume

Two possible implementations/proof 2

“Integer” encoding :
▶ exponential growth
▶ very robust : ∥e∥ ⩽ 1/2

“Rational” encoding :
▶ linear growth
▶ somewhat robust : if |e| ⩽ 2−Nc

can
do SPACE(O (N))

2. Disclaimer : not in the paper, I haven’t checked all the details.

19 / 31

Back to Chemical Reaction Networks

Theorem (CMSB 2017)

Elementary mass-action-law reaction system on finite universes of
molecules are Turing-complete under the differential semantics.

Is this really realistic?
▶ we need precise reaction rates

→ no good answer (yet)

▶ it is robust to small noise : y ′ = p(y) + e
▶ growth of the # molecules/volume

Two possible implementations/proof 2

“Integer” encoding :
▶ exponential growth
▶ very robust : ∥e∥ ⩽ 1/2

“Rational” encoding :
▶ linear growth
▶ somewhat robust : if |e| ⩽ 2−Nc

can
do SPACE(O (N))

2. Disclaimer : not in the paper, I haven’t checked all the details.

19 / 31

Back to Chemical Reaction Networks

Theorem (CMSB 2017)

Elementary mass-action-law reaction system on finite universes of
molecules are Turing-complete under the differential semantics.

Is this really realistic?
▶ we need precise reaction rates → no good answer (yet)
▶ it is robust to small noise : y ′ = p(y) + e
▶ growth of the # molecules/volume

Two possible implementations/proof 2

“Integer” encoding :
▶ exponential growth
▶ very robust : ∥e∥ ⩽ 1/2

“Rational” encoding :
▶ linear growth
▶ somewhat robust : if |e| ⩽ 2−Nc

can
do SPACE(O (N))

2. Disclaimer : not in the paper, I haven’t checked all the details.

19 / 31

Back to Chemical Reaction Networks

Theorem (CMSB 2017)

Elementary mass-action-law reaction system on finite universes of
molecules are Turing-complete under the differential semantics.

Is this really realistic?
▶ we need precise reaction rates → no good answer (yet)
▶ it is robust to small noise : y ′ = p(y) + e
▶ growth of the # molecules/volume

Two possible implementations/proof 2

“Integer” encoding :
▶ exponential growth
▶ very robust : ∥e∥ ⩽ 1/2

“Rational” encoding :
▶ linear growth
▶ somewhat robust : if |e| ⩽ 2−Nc

can
do SPACE(O (N))

2. Disclaimer : not in the paper, I haven’t checked all the details.

19 / 31

Back to Chemical Reaction Networks

Theorem (CMSB 2017)

Elementary mass-action-law reaction system on finite universes of
molecules are Turing-complete under the differential semantics.

Is this really realistic?
▶ we need precise reaction rates → no good answer (yet)
▶ it is robust to small noise : y ′ = p(y) + e
▶ growth of the # molecules/volume

Two possible implementations/proof 2

“Integer” encoding :
▶ exponential growth
▶ very robust : ∥e∥ ⩽ 1/2

“Rational” encoding :
▶ linear growth
▶ somewhat robust : if |e| ⩽ 2−Nc

can
do SPACE(O (N))

2. Disclaimer : not in the paper, I haven’t checked all the details.

19 / 31

Back to Chemical Reaction Networks

Theorem (CMSB 2017)

Elementary mass-action-law reaction system on finite universes of
molecules are Turing-complete under the differential semantics.

Is this really realistic?
▶ we need precise reaction rates → no good answer (yet)
▶ it is robust to small noise : y ′ = p(y) + e
▶ growth of the # molecules/volume

Two possible implementations/proof 2

“Integer” encoding :
▶ exponential growth
▶ very robust : ∥e∥ ⩽ 1/2

“Rational” encoding :
▶ linear growth
▶ somewhat robust : if |e| ⩽ 2−Nc

can
do SPACE(O (N))

2. Disclaimer : not in the paper, I haven’t checked all the details.
19 / 31

How does the simulation work

Recall : two possible simulations of the form y ′ = p(y) + e

“Integer” encoding :
▶ exponential growth
▶ very robust : ∥e∥ ⩽ 1/2

“Rational” encoding :
▶ linear growth
▶ somewhat robust : if |e| ⩽ e−Nc

can
do SPACE(O (N))

; Focus on the integer encoding (much easier).
▶ theory of generable functions
▶ encoding of the Turing machines

20 / 31

How does the simulation work

Recall : two possible simulations of the form y ′ = p(y) + e

“Integer” encoding :
▶ exponential growth
▶ very robust : ∥e∥ ⩽ 1/2

“Rational” encoding :
▶ linear growth
▶ somewhat robust : if |e| ⩽ e−Nc

can
do SPACE(O (N))

; Focus on the integer encoding (much easier).
▶ theory of generable functions
▶ encoding of the Turing machines

20 / 31

Generable functions : motivations

Writing polynomial ODEs by hand is hard. What if we could write more
than polynomials?

Example : y ′(t) = sin(y(t)) not polynomial ODE!

Introduce
z1(t)= sin(y(t))
z2(t)= cos(y(t))

;
z ′

1(t)= y ′(t) cos(y(t)) = z1(t)z2(t)
z ′

2(t)= −y ′(t) sin(y(t)) = −z1(t)2

Therefore, y(t) is a component of the solution of

y ′ = z1

z ′
1 = z1z2

z ′
2 = −z2

1

which is a polynomial ODE!

This is an instance of a more general phenomenon.

21 / 31

Generable functions : motivations

Writing polynomial ODEs by hand is hard. What if we could write more
than polynomials?

Example : y ′(t) = sin(y(t)) not polynomial ODE!

Introduce
z1(t)= sin(y(t))
z2(t)= cos(y(t))

;
z ′

1(t)= y ′(t) cos(y(t)) = z1(t)z2(t)
z ′

2(t)= −y ′(t) sin(y(t)) = −z1(t)2

Therefore, y(t) is a component of the solution of

y ′ = z1

z ′
1 = z1z2

z ′
2 = −z2

1

which is a polynomial ODE!

This is an instance of a more general phenomenon.

21 / 31

Generable functions : motivations

Writing polynomial ODEs by hand is hard. What if we could write more
than polynomials?

Example : y ′(t) = sin(y(t)) not polynomial ODE!

Introduce
z1(t)= sin(y(t))
z2(t)= cos(y(t))

;
z ′

1(t)= y ′(t) cos(y(t)) = z1(t)z2(t)
z ′

2(t)= −y ′(t) sin(y(t)) = −z1(t)2

Therefore, y(t) is a component of the solution of

y ′ = z1

z ′
1 = z1z2

z ′
2 = −z2

1

which is a polynomial ODE!

This is an instance of a more general phenomenon.

21 / 31

Generable functions : motivations

Writing polynomial ODEs by hand is hard. What if we could write more
than polynomials?

Example : y ′(t) = sin(y(t)) not polynomial ODE!

Introduce
z1(t)= sin(y(t))
z2(t)= cos(y(t))

;
z ′

1(t)= y ′(t) cos(y(t)) = z1(t)z2(t)
z ′

2(t)= −y ′(t) sin(y(t)) = −z1(t)2

Therefore, y(t) is a component of the solution of

y ′ = z1

z ′
1 = z1z2

z ′
2 = −z2

1

which is a polynomial ODE!

This is an instance of a more general phenomenon.

21 / 31

Generable functions : motivations

Writing polynomial ODEs by hand is hard. What if we could write more
than polynomials?

Example : y ′(t) = sin(y(t)) not polynomial ODE!

Introduce
z1(t)= sin(y(t))
z2(t)= cos(y(t))

;
z ′

1(t)= y ′(t) cos(y(t)) = z1(t)z2(t)
z ′

2(t)= −y ′(t) sin(y(t)) = −z1(t)2

Therefore, y(t) is a component of the solution of

y ′ = z1

z ′
1 = z1z2

z ′
2 = −z2

1

which is a polynomial ODE!

This is an instance of a more general phenomenon.

21 / 31

Generable functions : theory

Definition
f : R → R is generable if ∃ d ,p and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

x
y1(x)

Nice theory for the class of total and univariate generable functions :
▶ analytic
▶ contains polynomials, sin, cos, tanh, exp
▶ stable under ±,×, /, ◦ and Initial Value Problems (IVP)

y ′ = f (y)

▶ solutions to polynomial ODEs form a very large class

22 / 31

Generable functions : theory

Definition
f : R → R is generable if ∃ d ,p and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

x
y1(x)

Nice theory for the class of total and univariate generable functions :
▶ analytic
▶ contains polynomials, sin, cos, tanh, exp
▶ stable under ±,×, /, ◦ and Initial Value Problems (IVP)

y ′ = f (y)

▶ solutions to polynomial ODEs form a very large class
22 / 31

Why is this useful ?

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated multivariate
partial functions using other operations, and we know they are
solutions to polynomial ODEs by construction.

Example : almost rounding function

There exists a generable function round such that for any n ∈ Z, x ∈ R,
λ > 2 and µ ⩾ 0 :
▶ if x ∈

[
n − 1

2 ,n + 1
2

]
then | round(x , µ, λ)− n| ⩽ 1

2 ,
▶ if x ∈

[
n − 1

2 + 1
λ ,n + 1

2 − 1
λ

]
then | round(x , µ, λ)− n| ⩽ e−µ.

See proof

23 / 31

Why is this useful ?

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated multivariate
partial functions using other operations, and we know they are
solutions to polynomial ODEs by construction.

Example : almost rounding function

There exists a generable function round such that for any n ∈ Z, x ∈ R,
λ > 2 and µ ⩾ 0 :
▶ if x ∈

[
n − 1

2 ,n + 1
2

]
then | round(x , µ, λ)− n| ⩽ 1

2 ,
▶ if x ∈

[
n − 1

2 + 1
λ ,n + 1

2 − 1
λ

]
then | round(x , µ, λ)− n| ⩽ e−µ.

See proof

23 / 31

Why is this useful ?

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated multivariate
partial functions using other operations, and we know they are
solutions to polynomial ODEs by construction.

Example : almost rounding function

There exists a generable function round such that for any n ∈ Z, x ∈ R,
λ > 2 and µ ⩾ 0 :
▶ if x ∈

[
n − 1

2 ,n + 1
2

]
then | round(x , µ, λ)− n| ⩽ 1

2 ,
▶ if x ∈

[
n − 1

2 + 1
λ ,n + 1

2 − 1
λ

]
then | round(x , µ, λ)− n| ⩽ e−µ.

See proof

23 / 31

Simulating a Turing machine : discrete

Integer encoding : a configuration of a TM is a tuple

(x , y , z) ∈ Z3

▶ x (resp. y) is the left (resp. y) part of the tape
▶ z encodes the state

A step of a TM M is performed by

stepM : Z3 → Z3

We need
▶ tests (if/then/else)
▶ basic arithmetic (+,×,−)
▶ Euclidean division and remainder

A computation is just an iteration of stepM on the encoding of the initial
configuration

24 / 31

Simulating a Turing machine : discrete

Integer encoding : a configuration of a TM is a tuple

(x , y , z) ∈ Z3

▶ x (resp. y) is the left (resp. y) part of the tape
▶ z encodes the state

A step of a TM M is performed by

stepM : Z3 → Z3

We need
▶ tests (if/then/else)
▶ basic arithmetic (+,×,−)
▶ Euclidean division and remainder

A computation is just an iteration of stepM on the encoding of the initial
configuration

24 / 31

Simulating a Turing machine : discrete

Integer encoding : a configuration of a TM is a tuple

(x , y , z) ∈ Z3

▶ x (resp. y) is the left (resp. y) part of the tape
▶ z encodes the state

A step of a TM M is performed by

stepM : Z3 → Z3

We need
▶ tests (if/then/else)
▶ basic arithmetic (+,×,−)
▶ Euclidean division and remainder

A computation is just an iteration of stepM on the encoding of the initial
configuration

24 / 31

Simulating a Turing machine : continuous

Our simulation will make errors that need to be corrected, so a
configuration will ready be

(x , y , z) + e ∈ R3

where ∥e∥ ⩽ ε small.

We approximate the step function by

s̃tepM : R3 → R3 generable function

such that ∥∥∥s̃tepM((x , y , z) + e)− stepM(x , y , z)
∥∥∥ < ε.

The error stays under control. To implement it :
▶ tests (if/then/else) : polynomial interpolation (finitely many cases)
▶ basic arithmetic (+,×,−) : easy
▶ Euclidean division : good rounding function + division over R

25 / 31

Simulating a Turing machine : continuous

Our simulation will make errors that need to be corrected, so a
configuration will ready be

(x , y , z) + e ∈ R3

where ∥e∥ ⩽ ε small. We approximate the step function by

s̃tepM : R3 → R3 generable function

such that ∥∥∥s̃tepM((x , y , z) + e)− stepM(x , y , z)
∥∥∥ < ε.

The error stays under control.

To implement it :
▶ tests (if/then/else) : polynomial interpolation (finitely many cases)
▶ basic arithmetic (+,×,−) : easy
▶ Euclidean division : good rounding function + division over R

25 / 31

Simulating a Turing machine : continuous

Our simulation will make errors that need to be corrected, so a
configuration will ready be

(x , y , z) + e ∈ R3

where ∥e∥ ⩽ ε small. We approximate the step function by

s̃tepM : R3 → R3 generable function

such that ∥∥∥s̃tepM((x , y , z) + e)− stepM(x , y , z)
∥∥∥ < ε.

The error stays under control. To implement it :
▶ tests (if/then/else) : polynomial interpolation (finitely many cases)
▶ basic arithmetic (+,×,−) : easy
▶ Euclidean division : good rounding function + division over R

25 / 31

Iteration with differential equations

Assume f is generable, can we iterate f with an ODE?
That is, build a generable y such that y(x ,n) ≈ f [n](x) for all n ∈ N

t
x

f (x)

f [2](x)

0 1
2

1 3
2

2y ′≈0

z′≈f (y)−z

y ′≈z−y

z′≈0

Formally :

y ′(t) = θ(t)(z(t)− y(t)),
z ′(t) = (1 − θ(t))(f (y(t))− z(t))

where θ generable :

θ(t)

26 / 31

Iteration with differential equations

Assume f is generable, can we iterate f with an ODE?
That is, build a generable y such that y(x ,n) ≈ f [n](x) for all n ∈ N

t
x

f (x)

f [2](x)

0 1
2

1 3
2

2y ′≈0

z′≈f (y)−z

y ′≈z−y

z′≈0

Formally :

y ′(t) = θ(t)(z(t)− y(t)),
z ′(t) = (1 − θ(t))(f (y(t))− z(t))

where θ generable :

θ(t)

26 / 31

Iteration with differential equations

Assume f is generable, can we iterate f with an ODE?
That is, build a generable y such that y(x ,n) ≈ f [n](x) for all n ∈ N

t
x

f (x)

f [2](x)

0 1
2

1 3
2

2y ′≈0

z′≈f (y)−z

y ′≈z−y

z′≈0

Formally :

y ′(t) = θ(t)(z(t)− y(t)),
z ′(t) = (1 − θ(t))(f (y(t))− z(t))

where θ generable :

θ(t)

26 / 31

Iteration with differential equations

Assume f is generable, can we iterate f with an ODE?
That is, build a generable y such that y(x ,n) ≈ f [n](x) for all n ∈ N

t
x

f (x)

f [2](x)

0 1
2

1 3
2

2y ′≈0

z′≈f (y)−z

y ′≈z−y

z′≈0

Formally :

y ′(t) = θ(t)(z(t)− y(t)),
z ′(t) = (1 − θ(t))(f (y(t))− z(t))

where θ generable :

θ(t)

26 / 31

Iteration with differential equations

Assume f is generable, can we iterate f with an ODE?
That is, build a generable y such that y(x ,n) ≈ f [n](x) for all n ∈ N

t
x

f (x)

f [2](x)

0 1
2

1 3
2

2y ′≈0

z′≈f (y)−z

y ′≈z−y

z′≈0

Formally :

y ′(t) = θ(t)(z(t)− y(t)),
z ′(t) = (1 − θ(t))(f (y(t))− z(t))

where θ generable :

θ(t) ≈

{
0 if t mod 1 ∈ [0,1/2]
1 otherwise

26 / 31

Iteration with differential equations

Assume f is generable, can we iterate f with an ODE?
That is, build a generable y such that y(x ,n) ≈ f [n](x) for all n ∈ N

t
x

f (x)

f [2](x)

0 1
2

1 3
2

2y ′≈0

z′≈f (y)−z

y ′≈z−y

z′≈0

Formally :

y ′(t) = θ(t)(z(t)− y(t)),
z ′(t) = (1 − θ(t))(f (y(t))− z(t))

where θ generable :

θ(t) = round(1
2 − sin(2πt))

26 / 31

Putting everything together

We have a differential equation

y ′ = f (y)

where y(t) ∈ R3, f is generable such that

y(t) encodes the configuration after n steps if t ∈ [n,n + 1/2].

From that, we can add a few variable to derive a stable accept/reject
signal and we get ...

27 / 31

Putting everything together

We have a differential equation

y ′ = f (y)

where y(t) ∈ R3, f is generable such that

y(t) encodes the configuration after n steps if t ∈ [n,n + 1/2].

From that, we can add a few variable to derive a stable accept/reject
signal and we get ...

27 / 31

Characterization of computable

Definition : L ∈ ANALOG-DECIDABLE ⇔ ∃p polynomial, ∀ word w

y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2i

t

1

−1

y1(t)

y1(t)

ψ(w)

28 / 31

Characterization of computable

Definition : L ∈ ANALOG-DECIDABLE ⇔ ∃p polynomial, ∀ word w

y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2i

t

1

−1

accept : w ∈ L

computing

y1(t)

y1(t)

ψ(w)

satisfies
1. if y1(t) ⩾ 1 then w ∈ L

28 / 31

Characterization of computable

Definition : L ∈ ANALOG-DECIDABLE ⇔ ∃p polynomial, ∀ word w

y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2i

t

1

−1

accept : w ∈ L

reject : w /∈ L

computing

y1(t)y1(t)

y1(t)

ψ(w)

satisfies
2. if y1(t) ⩽ −1 then w /∈ L

28 / 31

Characterization of computable

Definition : L ∈ ANALOG-DECIDABLE ⇔ ∃p polynomial, ∀ word w

y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2i

t

1

−1

T (w)

accept : w ∈ L

reject : w /∈ L

computing

forbidden

y1(t)y1(t)

y1(t)
ψ(w)

satisfies
3. eventually |y1(t)| ⩾ 1 (for t ⩾ some T (w))

28 / 31

Characterization of computable

Definition : L ∈ ANALOG-DECIDABLE ⇔ ∃p polynomial, ∀ word w

y(0) = (ψ(w), |w |,0, . . . ,0) y ′ = p(y) ψ(w) =

|w |∑
i=1

wi2i

t

1

−1

T (w)

accept : w ∈ L

reject : w /∈ L

computing

forbidden

y1(t)

y1(t)

y1(t)

y1(t)
ψ(w)

Theorem
DECIDABLE = ANALOG-DECIDABLE

28 / 31

Back to encodings

y(0) = (ψ(w),0, . . . ,0) y ′ = p(y) + e

“Integer” encoding :

ψ(w) =
∑|w |

i=1
wi2i

▶ exponential growth :
|ψ(w)| = 2|w |

▶ very robust : ∥e∥ ⩽ 1/2

“Rational” encoding :

ψ(w) =

(
|w |,

∑|w |

i=1
wi2−i

)
▶ linear growth : ∥ψ(w)∥ = |w |
▶ somewhat robust : if ∥e∥ ⩽ 2−Nc

can do SPACE(O (N))

29 / 31

A few words about the rational encoding and more

Rational encoding : same idea but
▶ need much better primitives for rounding, interpolation, ...
▶ errors cannot be corrected
▶ need to restart the simulation when errors grow too large

Two versions :
▶ [TAMC13] Ad-hoc rationals simulation, super fragile and with tricks
▶ [JACM17] Complete theory to prove this and a lot more

Detail I have not talked about : the coefficients in the differential
equations can be taken to be rational (nontrivial)

30 / 31

A few words about the rational encoding and more

Rational encoding : same idea but
▶ need much better primitives for rounding, interpolation, ...
▶ errors cannot be corrected
▶ need to restart the simulation when errors grow too large

Two versions :
▶ [TAMC13] Ad-hoc rationals simulation, super fragile and with tricks
▶ [JACM17] Complete theory to prove this and a lot more

Detail I have not talked about : the coefficients in the differential
equations can be taken to be rational (nontrivial)

30 / 31

A few words about the rational encoding and more

Rational encoding : same idea but
▶ need much better primitives for rounding, interpolation, ...
▶ errors cannot be corrected
▶ need to restart the simulation when errors grow too large

Two versions :
▶ [TAMC13] Ad-hoc rationals simulation, super fragile and with tricks
▶ [JACM17] Complete theory to prove this and a lot more

Detail I have not talked about : the coefficients in the differential
equations can be taken to be rational (nontrivial)

30 / 31

Future work on polynomials ODEs

Reaction networks :
▶ chemical
▶ enzymatic

y ′ = p(y)

y ′ = p(y) + e(t)

?

▶ Finer time complexity (linear)
▶ Nondeterminism
▶ Robustness
▶ « Space» complexity
▶ Other models
▶ Stochastic

31 / 31

Universal differential equations

Generable functions

x
y1(x)

subclass of analytic functions

Computable functions

t

f (x)

x

y1(t)

any computable function

x
y1(x)

32 / 31

Universal differential equations

Generable functions

x
y1(x)

subclass of analytic functions

Computable functions

t

f (x)

x

y1(t)

any computable function

x
y1(x)

32 / 31

Universal differential algebraic equation (DAE)

x
y(x)

Theorem (Rubel, 1981)

For any continuous functions f and ε, there exists y : R → R solution to

3y ′4y
′′
y

′′′′2 −4y ′4y
′′′2

y
′′′′

+ 6y ′3y
′′2

y
′′′

y
′′′′

+ 24y ′2y
′′4

y
′′′′

−12y ′3y
′′
y

′′′3 − 29y ′2y
′′3

y
′′′2

+ 12y
′′7

= 0

such that ∀t ∈ R,
|y(t)− f (t)| ⩽ ε(t).

Problem : this is «weak» result.

33 / 31

Universal differential algebraic equation (DAE)

x
y(x)

Theorem (Rubel, 1981)

There exists a fixed polynomial p and k ∈ N such that for any conti-
nuous functions f and ε, there exists a solution y : R → R to

p(y , y ′, . . . , y (k)) = 0

such that ∀t ∈ R,
|y(t)− f (t)| ⩽ ε(t).

Problem : this is «weak» result.

33 / 31

Universal differential algebraic equation (DAE)

x
y(x)

Theorem (Rubel, 1981)

There exists a fixed polynomial p and k ∈ N such that for any conti-
nuous functions f and ε, there exists a solution y : R → R to

p(y , y ′, . . . , y (k)) = 0

such that ∀t ∈ R,
|y(t)− f (t)| ⩽ ε(t).

Problem : this is «weak» result.
33 / 31

The problem with Rubel’s DAE

The solution y is not unique, even with added initial conditions :

p(y , y ′, . . . , y (k)) = 0, y(0) = α0, y ′(0) = α1, . . . , y (k)(0) = αk

In fact, this is fundamental for Rubel’s proof to work !

▶ Rubel’s statement : this DAE is universal
▶ More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y ′ = p(y)?
Note : explicit polynomial ODE ⇒ unique solution

34 / 31

The problem with Rubel’s DAE

The solution y is not unique, even with added initial conditions :

p(y , y ′, . . . , y (k)) = 0, y(0) = α0, y ′(0) = α1, . . . , y (k)(0) = αk

In fact, this is fundamental for Rubel’s proof to work !

▶ Rubel’s statement : this DAE is universal
▶ More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y ′ = p(y)?
Note : explicit polynomial ODE ⇒ unique solution

34 / 31

Universal initial value problem (IVP)

x
y1(x)

Notes :
▶ system of ODEs,
▶ y is analytic,
▶ we need d ≈ 300.

Theorem
There exists a fixed (vector of) polynomial p such that for any
continuous functions f and ε, there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R → Rd and ∀t ∈ R,

|y1(t)− f (t)| ⩽ ε(t).

Remark : α is usually transcendental, but computable from f and ε

35 / 31

Universal initial value problem (IVP)

x
y1(x)

Notes :
▶ system of ODEs,
▶ y is analytic,
▶ we need d ≈ 300.

Theorem
There exists a fixed (vector of) polynomial p such that for any
continuous functions f and ε, there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R → Rd and ∀t ∈ R,

|y1(t)− f (t)| ⩽ ε(t).

Remark : α is usually transcendental, but computable from f and ε

35 / 31

Universal initial value problem (IVP)

x
y1(x)

Notes :
▶ system of ODEs,
▶ y is analytic,
▶ we need d ≈ 300.

Theorem
There exists a fixed (vector of) polynomial p such that for any
continuous functions f and ε, there exists α ∈ Rd such that

y(0) = α, y ′(t) = p(y(t))

has a unique solution y : R → Rd and ∀t ∈ R,

|y1(t)− f (t)| ⩽ ε(t).

Remark : α is usually transcendental, but computable from f and ε
35 / 31

What is a computer?

VS

36 / 31

What is a computer?

VS

36 / 31

What is a computer?

VS

36 / 31

Church Thesis

Computability

discrete

Turing
machine

boolean circuitslogic

recursive
functions

lambda
calculus

quantum analog
continuous

Church Thesis
All reasonable models of computation are equivalent.

37 / 31

Church Thesis

Complexity

discrete

Turing
machine

boolean circuitslogic

recursive
functions

lambda
calculus

quantum analog
continuous

⩾
?

?

Effective Church Thesis
All reasonable models of computation are equivalent for complexity.

37 / 31

Rubel’s proof in one slide

▶ Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1 − t2)2f
′′
(t) + 2tf ′(t) = 0.

▶ For any a,b, c ∈ R, y(t) = cf (at + b) satisfies
▶ Can glue together arbitrary many such pieces
▶ Can arrange so that

∫
f is solution : piecewise pseudo-linear

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0

38 / 31

Rubel’s proof in one slide

▶ Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1 − t2)2f
′′
(t) + 2tf ′(t) = 0.

▶ For any a,b, c ∈ R, y(t) = cf (at + b) satisfies

3y ′4y ′′y ′′′′2 −4y ′4y ′′2y ′′′′ + 6y ′3y ′′2y ′′′y ′′′′ + 24y ′2y ′′4y ′′′′

−12y ′3y ′′y ′′′3 − 29y ′2y ′′3y ′′′2 + 12y ′′7 = 0

▶ Can glue together arbitrary many such pieces
▶ Can arrange so that

∫
f is solution : piecewise pseudo-linear

Translation and rescaling :

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0

38 / 31

Rubel’s proof in one slide

▶ Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1 − t2)2f
′′
(t) + 2tf ′(t) = 0.

▶ For any a,b, c ∈ R, y(t) = cf (at + b) satisfies

3y′4y′′y′′′′2−4y′4y′′2y′′′′+6y′3y′′2y′′′y′′′′+24y′2y′′4y′′′′−12y′3y′′y′′′3−29y′2y′′3y′′′2+12y′′7=0

▶ Can glue together arbitrary many such pieces

▶ Can arrange so that
∫

f is solution : piecewise pseudo-linear

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0

38 / 31

Rubel’s proof in one slide

▶ Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1 − t2)2f
′′
(t) + 2tf ′(t) = 0.

▶ For any a,b, c ∈ R, y(t) = cf (at + b) satisfies

3y′4y′′y′′′′2−4y′4y′′2y′′′′+6y′3y′′2y′′′y′′′′+24y′2y′′4y′′′′−12y′3y′′y′′′3−29y′2y′′3y′′′2+12y′′7=0

▶ Can glue together arbitrary many such pieces
▶ Can arrange so that

∫
f is solution : piecewise pseudo-linear

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0

38 / 31

Rubel’s proof in one slide

▶ Take f (t) = e
−1

1−t2 for −1 < t < 1 and f (t) = 0 otherwise.

It satisfies (1 − t2)2f
′′
(t) + 2tf ′(t) = 0.

▶ For any a,b, c ∈ R, y(t) = cf (at + b) satisfies

3y′4y′′y′′′′2−4y′4y′′2y′′′′+6y′3y′′2y′′′y′′′′+24y′2y′′4y′′′′−12y′3y′′y′′′3−29y′2y′′3y′′′2+12y′′7=0

▶ Can glue together arbitrary many such pieces
▶ Can arrange so that

∫
f is solution : piecewise pseudo-linear

t

Conclusion : Rubel’s equation allows any piecewise pseudo-linear
functions, and those are dense in C0

38 / 31

Universal DAE revisited

x
y1(x)

Theorem
There exists a fixed polynomial p and k ∈ N such that for any
continuous functions f and ε, there exists α0, . . . , αk ∈ R such that

p(y , y ′, . . . , y (k)) = 0, y(0) = α0, y ′(0) = α1, . . . , y (k)(0) = αk

has a unique analytic solution and this solution satisfies such that

|y(t)− f (t)| ⩽ ε(t).

39 / 31

Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
▶ d ∈ N : dimension
▶ Q ⊆ K ⊆ R : field
▶ p ∈ Kd [Rn] : polynomial

vector (coef. in K)
▶ y0 ∈ Kd , y : R → Rd

x
y1(x)

Note : existence and unicity of y by Cauchy-Lipschitz theorem.

40 / 31

Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
▶ d ∈ N : dimension
▶ Q ⊆ K ⊆ R : field
▶ p ∈ Kd [Rn] : polynomial

vector (coef. in K)
▶ y0 ∈ Kd , y : R → Rd

Example : f (x) = x ▶ identity

y(0) = 0, y ′ = 1 ; y(x) = x

40 / 31

Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
▶ d ∈ N : dimension
▶ Q ⊆ K ⊆ R : field
▶ p ∈ Kd [Rn] : polynomial

vector (coef. in K)
▶ y0 ∈ Kd , y : R → Rd

Example : f (x) = x2 ▶ squaring

y1(0)= 0, y ′
1= 2y2 ; y1(x)= x2

y2(0)= 0, y ′
2= 1 ; y2(x)= x

40 / 31

Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
▶ d ∈ N : dimension
▶ Q ⊆ K ⊆ R : field
▶ p ∈ Kd [Rn] : polynomial

vector (coef. in K)
▶ y0 ∈ Kd , y : R → Rd

Example : f (x) = xn ▶ nth power

y1(0)= 0, y ′
1= ny2 ; y1(x)= xn

y2(0)= 0, y ′
2= (n − 1)y3 ; y2(x)= xn−1

.
yn(0)= 0, yn= 1 ; yn(x)= x

40 / 31

Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
▶ d ∈ N : dimension
▶ Q ⊆ K ⊆ R : field
▶ p ∈ Kd [Rn] : polynomial

vector (coef. in K)
▶ y0 ∈ Kd , y : R → Rd

Example : f (x) = exp(x) ▶ exponential

y(0)= 1, y ′= y ; y(x)= exp(x)

40 / 31

Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
▶ d ∈ N : dimension
▶ Q ⊆ K ⊆ R : field
▶ p ∈ Kd [Rn] : polynomial

vector (coef. in K)
▶ y0 ∈ Kd , y : R → Rd

Example : f (x) = sin(x) or f (x) = cos(x) ▶ sine/cosine

y1(0)= 0, y ′
1= y2 ; y1(x)= sin(x)

y2(0)= 1, y ′
2= −y1 ; y2(x)= cos(x)

40 / 31

Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
▶ d ∈ N : dimension
▶ Q ⊆ K ⊆ R : field
▶ p ∈ Kd [Rn] : polynomial

vector (coef. in K)
▶ y0 ∈ Kd , y : R → Rd

Example : f (x) = tanh(x) ▶ hyperbolic tangent

y(0)= 0, y ′= 1 − y2 ; y(x)= tanh(x)

x
tanh(x)

40 / 31

Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
▶ d ∈ N : dimension
▶ Q ⊆ K ⊆ R : field
▶ p ∈ Kd [Rn] : polynomial

vector (coef. in K)
▶ y0 ∈ Kd , y : R → Rd

Example : f (x) = 1
1+x2 ▶ rational function

f ′(x) = −2x
(1+x2)2 = −2xf (x)2

y1(0)= 1, y ′
1= −2y2y2

1 ; y1(x)= 1
1+x2

y2(0)= 0, y ′
2= 1 ; y2(x)= x

40 / 31

Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
▶ d ∈ N : dimension
▶ Q ⊆ K ⊆ R : field
▶ p ∈ Kd [Rn] : polynomial

vector (coef. in K)
▶ y0 ∈ Kd , y : R → Rd

Example : f = g ± h ▶ sum/difference

(g ± h)′ = g′ ± h′

assume :
z(0)= z0, z ′= p(z) ; z1= g
w(0)= w0, w ′= q(w) ; w1= h

then :
y(0)= z0,1 + w0,1, y ′= p1(z)± q1(w) ; y= z1 ± w1

40 / 31

Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
▶ d ∈ N : dimension
▶ Q ⊆ K ⊆ R : field
▶ p ∈ Kd [Rn] : polynomial

vector (coef. in K)
▶ y0 ∈ Kd , y : R → Rd

Example : f = gh ▶ product

(gh)′ = g′h + gh′

assume :
z(0)= z0, z ′= p(z) ; z1= g
w(0)= w0, w ′= q(w) ; w1= h

then :
y(0)= z0,1w0,1, y ′= p1(z)w1 + z1q1(w) ; y= z1w1

40 / 31

Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
▶ d ∈ N : dimension
▶ Q ⊆ K ⊆ R : field
▶ p ∈ Kd [Rn] : polynomial

vector (coef. in K)
▶ y0 ∈ Kd , y : R → Rd

Example : f = 1
g ▶ inverse

f ′ = −g′

g2 = −g′f 2

assume :
z(0)= z0, z ′= p(z) ; z1= g

then :

y(0)= 1
z0,1

, y ′= −p1(z)y2 ; y= 1
z1

40 / 31

Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
▶ d ∈ N : dimension
▶ Q ⊆ K ⊆ R : field
▶ p ∈ Kd [Rn] : polynomial

vector (coef. in K)
▶ y0 ∈ Kd , y : R → Rd

Example : f =
∫

g ▶ integral

assume :
z(0)= z0, z ′= p(z) ; z1= g

then :
y(0)= 0, y ′= z1 ; y=

∫
z1

40 / 31

Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
▶ d ∈ N : dimension
▶ Q ⊆ K ⊆ R : field
▶ p ∈ Kd [Rn] : polynomial

vector (coef. in K)
▶ y0 ∈ Kd , y : R → Rd

Example : f = g′ ▶ derivative

f ′ = g′′ = (p1(z))′ = ∇p1(z) · z ′

assume :
z(0)= z0, z ′= p(z) ; z1= g

then :
y(0)= p1(z0), y ′= ∇p1(z) · p(z) ; y= z ′′

1

40 / 31

Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
▶ d ∈ N : dimension
▶ Q ⊆ K ⊆ R : field
▶ p ∈ Kd [Rn] : polynomial

vector (coef. in K)
▶ y0 ∈ Kd , y : R → Rd

Example : f = g ◦ h ▶ composition

(z ◦ h)′ = (z ′ ◦ h)h′ = p(z ◦ h)h′

assume :
z(0)= z0, z ′= p(z) ; z1= g
w(0)= w0, w ′= q(w) ; w1= h

then :
y(0)= z(w0), y ′= p(y)z1 ; y= z ◦ h

40 / 31

Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
▶ d ∈ N : dimension
▶ Q ⊆ K ⊆ R : field
▶ p ∈ Kd [Rn] : polynomial

vector (coef. in K)
▶ y0 ∈ Kd , y : R → Rd

Example : f = g ◦ h ▶ composition

(z ◦ h)′ = (z ′ ◦ h)h′ = p(z ◦ h)h′

assume :
z(0)= z0, z ′= p(z) ; z1= g
w(0)= w0, w ′= q(w) ; w1= h

then :
y(0)= z(w0), y ′= p(y)z1 ; y= z ◦ h

Is this coefficient in K?

40 / 31

Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
▶ d ∈ N : dimension
▶ Q ⊆ K ⊆ R : field
▶ p ∈ Kd [Rn] : polynomial

vector (coef. in K)
▶ y0 ∈ Kd , y : R → Rd

Example : f = g ◦ h ▶ composition

(z ◦ h)′ = (z ′ ◦ h)h′ = p(z ◦ h)h′

assume :
z(0)= z0, z ′= p(z) ; z1= g
w(0)= w0, w ′= q(w) ; w1= h

then :
y(0)= z(w0), y ′= p(y)z1 ; y= z ◦ h

Is this coefficient in K? Fields with this property are called generable.

40 / 31

Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
▶ d ∈ N : dimension
▶ Q ⊆ K ⊆ R : field
▶ p ∈ Kd [Rn] : polynomial

vector (coef. in K)
▶ y0 ∈ Kd , y : R → Rd

Example : f ′ = tanh ◦f ▶ Non-polynomial differential equation

f ′′ = (tanh′ ◦f)f ′ = (1 − (tanh ◦f)2)f ′

y1(0)= f (0), y ′
1= y2 ; y1(x)= f (x)

y2(0)= tanh(f (0)), y ′
2= (1 − y2

2)y2 ; y2(x)= tanh(f (x))

40 / 31

Generable functions (total, univariate)

Definition
f : R → R is generable if there exists d ,p
and y0 such that the solution y to

y(0) = y0, y ′(x) = p(y(x))

satisfies f (x) = y1(x) for all x ∈ R.

Types
▶ d ∈ N : dimension
▶ Q ⊆ K ⊆ R : field
▶ p ∈ Kd [Rn] : polynomial

vector (coef. in K)
▶ y0 ∈ Kd , y : R → Rd

Example : f (0) = f0, f ′ = g ◦ f ▶ Initial Value Problem (IVP)

f ′ = g′′ = (p1(z))′ = ∇p1(z) · z ′

assume :
z(0)= z0, z ′= p(z) ; z1= g

then :
y(0)= p1(z0), y ′= ∇p1(z) · p(z) ; y= z ′′

1

40 / 31

Almost-rounding function

“Perfect round” : Back to presentation

round(x) := x − 1
π arctan(tan(πx)).

Undefined at x = n + 1
2 : observe that

tan(θ) = sgn(θ) sin θ
| cos(θ)|

Approximate sgn(θ) :

sgn(θ) ≈ tanh(λx) for big λ

Prevent explosion :

| cos(θ)| ;
√
nz(cos(θ)2)

where nz(x) ≈ x but nz(x) > 0 for all x :

nz(x) = x + some variation on tanh

41 / 31

Almost-rounding function

“Perfect round” : Back to presentation

round(x) := x − 1
π arctan(tan(πx)).

Undefined at x = n + 1
2 : observe that

tan(θ) = sgn(θ) sin θ
| cos(θ)|

Approximate sgn(θ) :

sgn(θ) ≈ tanh(λx) for big λ

Prevent explosion :

| cos(θ)| ;
√
nz(cos(θ)2)

where nz(x) ≈ x but nz(x) > 0 for all x :

nz(x) = x + some variation on tanh

41 / 31

Almost-rounding function

“Perfect round” : Back to presentation

round(x) := x − 1
π arctan(tan(πx)).

Undefined at x = n + 1
2 : observe that

tan(θ) = sgn(θ) sin θ
| cos(θ)|

Approximate sgn(θ) :

sgn(θ) ≈ tanh(λx) for big λ

Prevent explosion :

| cos(θ)| ;
√
nz(cos(θ)2)

where nz(x) ≈ x but nz(x) > 0 for all x :

nz(x) = x + some variation on tanh

41 / 31

Almost-rounding function

“Perfect round” : Back to presentation

round(x) := x − 1
π arctan(tan(πx)).

Undefined at x = n + 1
2 : observe that

tan(θ) = sgn(θ) sin θ
| cos(θ)|

Approximate sgn(θ) :

sgn(θ) ≈ tanh(λx) for big λ

Prevent explosion :

| cos(θ)| ;
√

nz(cos(θ)2)

where nz(x) ≈ x but nz(x) > 0 for all x :

nz(x) = x + some variation on tanh

41 / 31

Almost-rounding function

“Perfect round” : Back to presentation

round(x) := x − 1
π arctan(tan(πx)).

Undefined at x = n + 1
2 : observe that

tan(θ) = sgn(θ) sin θ
| cos(θ)|

Approximate sgn(θ) :

sgn(θ) ≈ tanh(λx) for big λ

Prevent explosion :

| cos(θ)| ;
√

nz(cos(θ)2)

where nz(x) ≈ x but nz(x) > 0 for all x :

nz(x) = x + some variation on tanh

41 / 31

Almost-rounding function : gory details

Formally : Back to presentation

rnd(x , µ, λ) = x − 1
π
arctan(cltan(πx , µ, λ))

cltan(θ, µ, λ) =
sin(θ)√

nz(cos2 θ, µ+ 16λ3,4λ2)
sg(cos θ, µ+ 3λ,2λ)

nz(x , µ, λ) = x +
2
λ
ip1

(
1 − x +

3
4λ
, µ+ 1,4λ

)
ip1(x , µ, λ) =

1 + sg(x − 1, µ, λ)
2

sg(x , µ, λ) = tanh(xµλ)
All generable functions !

42 / 31

