Strong Turing Completeness of Continuous Chemical Reaction Networks

Amaury Pouly

Joint work with Olivier Bournez, François Fages, Guillaume Le Guludec and Daniel Graça

16 september 2022

A reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example :

 $2H \ + \ O \ \rightarrow \ H_2O$

A reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example :

$$2H \ + \ O \ \rightarrow \ H_2O$$

Assumption : law of mass action

$$\sum_{i} a_{i} y_{i} \xrightarrow{k} \sum_{i} b_{i} y_{i} \rightsquigarrow f(y) = k \prod_{i} y_{i}^{a_{i}}$$

A reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example :

$$2H \ + \ O \ \rightarrow \ H_2O$$

Assumption : law of mass action

$$\sum_{i} a_{i} y_{i} \xrightarrow{k} \sum_{i} b_{i} y_{i} \quad \rightsquigarrow \quad f(y) = k \prod_{i} y_{i}^{a}$$

Semantics :

discrete

differential

stochastic

A reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = rate)$

Example :

$$2H + O \rightarrow H_2O$$

Assumption : law of mass action

$$\sum_{i} a_{i} y_{i} \xrightarrow{k} \sum_{i} b_{i} y_{i} \rightsquigarrow f(y) = k \prod_{i} y_{i}^{a_{i}}$$

Semantics :

$$y'_i = \sum_{\text{reaction } R} (b^R_i - a^R_i) f^R(y)$$

discrete

Example :

• differential \rightarrow

stochastic

 $[H_2O]' = f([H_2], [O], [H_2O])$

A reaction system is a finite set of

- \blacktriangleright molecular species y_1, \ldots, y_n
- reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = rate)$

Example :

$$2H + O \rightarrow H_2O$$

Assumption : law of mass action

$$\sum_{i} a_{i} y_{i} \xrightarrow{k} \sum_{i} b_{i} y_{i} \quad \rightsquigarrow \quad f(y) = k \prod_{i} y_{i}^{a_{i}}$$
$$y_{i}' = \sum_{i} (b_{i}^{R} - a_{i}^{R}) k^{R} \prod_{i} y_{j}^{a_{j}}$$

Semantics :

reaction R

discrete

 \blacktriangleright differential \rightarrow

stochastic

Example :

$$\begin{split} H_2O]' &= [O][H]^2 \\ & \sim \text{Polynomial ODE!} \end{split}$$

A reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example :

A reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example :

Not limited to simple chemical reactions :

- DNA strand displacement
- RNA
- protein reactions

A reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Example :

Not limited to simple chemical reactions :

- DNA strand displacement
- RNA
- protein reactions

Implementing CRNs is a recent and active research field.

A reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Some reactions are unrealistic :

$$y_1 + 26y_2 + 7y_3 \rightarrow 13y_4 + y_5$$

A reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Some reactions are unrealistic :

$$y_1 + 26y_2 + 7y_3 \rightarrow 13y_4 + y_5$$

Only consider elementary reactions : at most two reactants

- $\blacktriangleright A + B \xrightarrow{k} C$
- $\blacktriangleright A \xrightarrow{k} B + C$
- $\blacktriangleright A \xrightarrow{k} B$
- $\blacktriangleright A \xrightarrow{k} \varnothing$
- $\blacktriangleright \varnothing \xrightarrow{k} A$

A reaction system is a finite set of

- molecular species y_1, \ldots, y_n
- ▶ reactions of the form $\sum_i a_i y_i \xrightarrow{f} \sum_i b_i y_i$ $(a_i, b_i \in \mathbb{N}, f = \text{rate})$

Some reactions are unrealistic :

$$y_1 + 26y_2 + 7y_3 \rightarrow 13y_4 + y_5$$

Only consider elementary reactions : at most two reactants

A + B $\stackrel{k}{\rightarrow}$ C
A $\stackrel{k}{\rightarrow}$ B + C
A $\stackrel{k}{\rightarrow}$ B
A $\stackrel{k}{\rightarrow}$ B
A $\stackrel{k}{\rightarrow}$ Ø
A $\stackrel{k}{\rightarrow}$ Ø
A $\stackrel{k}{\rightarrow}$ Ø
Quadratic ODE !

Can we use CRNs to compute?

Can we use CRNs to compute? What does it even mean?

Can we use CRNs to compute? What does it even mean?

It depends a lot on how we define computability, in particular :

- rate : dependent/independent
- semantics : discrete/stochastic/differential
- kinetics : mass action/Michaelis/...
- species : finite/unbounded/infinite
- encoding : molecule count/concentration/digits
- more : robust, stable, ...

Can we use CRNs to compute? What does it even mean?

It depends a lot on how we define computability, in particular :

- rate : dependent/independent
- semantics : discrete/stochastic/differential
- kinetics : mass action/Michaelis/...
- species : finite/unbounded/infinite
- encoding : molecule count/concentration/digits
- more : robust, stable, ...

Extreme examples :

rate-independent, differential, any kinetics, finite species, value is concentration, stable

 \rightsquigarrow piecewise linear functions

Can we use CRNs to compute? What does it even mean?

It depends a lot on how we define computability, in particular :

- rate : dependent/independent
- semantics : discrete/stochastic/differential
- kinetics : mass action/Michaelis/...
- species : finite/unbounded/infinite
- encoding : molecule count/concentration/digits
- more : robust, stable, ...

Extreme examples :

rate-independent, differential, any kinetics, finite species, value is concentration, stable

 \rightsquigarrow piecewise linear functions

rate-dependent, stochastic, Markov, finite species, value is molecule count

→ probabilistic Turing machine?

Chemical Reaction Networks : main result

A reaction is elementary if it has at most two reactants \Rightarrow can, in principle, be implemented with DNA, RNA or proteins

Theorem (CMSB 2017)

Elementary mass-action-law reaction system on finite universes of molecules are Turing-complete under the differential semantics.

Chemical Reaction Networks : main result

A reaction is elementary if it has at most two reactants \Rightarrow can, in principle, be implemented with DNA, RNA or proteins

Theorem (CMSB 2017)

Elementary mass-action-law reaction system on finite universes of molecules are Turing-complete under the differential semantics.

Note : in fact the following elementary reactions suffice :

$$\varnothing \xrightarrow{k} x \qquad x \xrightarrow{k} x + z \qquad x + y \xrightarrow{k} x + y + z \qquad x + y \xrightarrow{k} \varnothing$$

Chemical Reaction Networks : main result

A reaction is elementary if it has at most two reactants \Rightarrow can, in principle, be implemented with DNA, RNA or proteins

Theorem (CMSB 2017)

Elementary mass-action-law reaction system on finite universes of molecules are Turing-complete under the differential semantics.

Note : in fact the following elementary reactions suffice :

We can even say something about the complexity :

- $f \in \text{FPTIME} \Rightarrow \text{CRN computes } f \text{ in } \begin{cases} \blacktriangleright \text{ polynomial time&space} \\ \text{or equivalently} \\ \blacktriangleright \text{ polynomial length} \end{cases}$

mass-action-law reaction system on finite universes of molecules under the differential semantics

↕

mass-action-law reaction system on finite universes of molecules under the differential semantics

\uparrow

Polynomial ODE :

$$\begin{cases} y_1' = p_1(y_1, \dots, y_n) \\ \vdots \\ y_n' = p_n(y_1, \dots, y_n) \end{cases}$$

with constraints :

- nonnegative values (concentration)
- restricted negative feedback : x' = -xyz

Elementary mass-action-law reaction system on finite universes of molecules under the differential semantics

\uparrow

Polynomial ODE :

$$\begin{cases} y_1' = p_1(y_1, \dots, y_n) \\ \vdots \\ y_n' = p_n(y_1, \dots, y_n) \end{cases}$$

with constraints :

- nonnegative values (concentration)
- restricted negative feedback : x' = -xyz

• quadratic :
$$p_k(y) = \sum_{ij} \alpha_{ij} y_i y_j$$

Elementary mass-action-law reaction system on finite universes of molecules under the differential semantics

\uparrow

Polynomial ODE :

$$\begin{cases} y_1' = p_1(y_1, \dots, y_n) \\ \vdots \\ y_n' = p_n(y_1, \dots, y_n) \end{cases}$$

with constraints :

- nonnegative values (concentration)
- restricted negative feedback : x' = -xyz

• quadratic :
$$p_k(y) = \sum_{ij} \alpha_{ij} y_i y_j$$

 $\begin{tabular}{l} \hline \\ value encoding: y = y^+ - y^- \end{tabular} \end{tabular} \end{tabular}$

Polynomial ODE : y' = p(y)

Elementary mass-action-law reaction system on finite universes of molecules under the differential semantics

\uparrow

Polynomial ODE :

$$\begin{cases} y_1' = p_1(y_1, \dots, y_n) \\ \vdots \\ y_n' = p_n(y_1, \dots, y_n) \end{cases}$$

with constraints :

- nonnegative values (concentration)
- restricted negative feedback : x' = -xyz
- quadratic : $p_k(y) = \sum_{ij} \alpha_{ij} y_i y_j$

Polynomial ODE : y' = p(y)

What can we compute with polynomial ODEs?

Analog Computers

Differential Analyser "Mathematica of the 1920s"

Admiralty Fire Control Table British Navy ships (WW2)

Polynomial Differential Equations

No closed-form solution

$$\ddot{ heta} + rac{g}{\ell}\sin(heta) = 0$$

$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{l} y_3 \\ y_3' = y_2 y_4 \\ y_4' = -y_2 y_3 \end{cases} \Leftrightarrow \begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases}$$

$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{l} y_3 \\ y_3' = y_2 y_4 \\ y_4' = -y_2 y_3 \end{cases} \Leftrightarrow \begin{cases} y_1 = \theta \\ y_2 = \dot{\theta} \\ y_3 = \sin(\theta) \\ y_4 = \cos(\theta) \end{cases}$$

 $\ddot{ heta} + rac{g}{\ell}\sin(heta) = 0$

Historical remark : the word "analog"

The pendulum and the circuit have the same equation. One can study one using the other by analogy.

Generable functions

Shannon's notion

Generable functions

Shannon's notion

 $\sin,\cos,\exp,\log,\ldots$

Strictly weaker than Turing machines [Shannon, 1941]

Generable functions

Shannon's notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \dots$

Strictly weaker than Turing machines [Shannon, 1941]

Computable

$$\left\{ egin{array}{ll} y(0) = q(x) & x \in \mathbb{R} \ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{array}
ight.$$

Modern notion

Generable functions

Shannon's notion

 $\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{log}, \dots$

Strictly weaker than Turing machines [Shannon, 1941]

Computable

$$egin{cases} y(0) = q(x) & x \in \mathbb{R} \ y'(t) = p(y(t)) & t \in \mathbb{R}_+ \end{cases}$$

Modern notion

 $\sin,\cos,\exp,\log,\Gamma,\zeta,\ldots$

Turing powerful [Bournez et al., 2007]

Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y'(t) = p(y(t))$

satisfies $|f(x) - y_1(t)| \leq y_2(t)$ et $y_2(t) \xrightarrow[t \to \infty]{} 0$.

$$y_1(t) \xrightarrow[t \to \infty]{} f(x)$$

 $y_2(t) = \text{error bound}$
Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y'(t) = p(y(t))$

satisfies $|f(x) - y_1(t)| \leq y_2(t)$ et $y_2(t) \xrightarrow[t \to \infty]{} 0$.

$$y_1(t) \xrightarrow[t \to \infty]{} f(x)$$

 $y_2(t) = \text{error bound}$

Theorem (Bournez et al, 2007)

 $f : [a, b] \rightarrow \mathbb{R}$ computable ¹ \Leftrightarrow f computable by GPAC

Equivalence with computable analysis

Definition (Bournez et al, 2007)

f computable by GPAC if $\exists p$ polynomial such that $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y'(t) = p(y(t))$

satisfies $|f(x) - y_1(t)| \leq y_2(t)$ et $y_2(t) \xrightarrow[t \to \infty]{} 0$.

Theorem (Bournez et al, 2007)

 $f : [a, b] \rightarrow \mathbb{R}$ computable ¹ \Leftrightarrow f computable by GPAC

^{1.} In Computable Analysis, a standard model over reals built from Turing machines.

Turing machines : T(x) = number of steps to compute on x

Turing machines : T(x) = number of steps to compute on x
GPAC :

Tentative definition

T(x) = ??

Turing machines : T(x) = number of steps to compute on x
GPAC :

Tentative definition

 $T(x, \mu) =$

Turing machines : T(x) = number of steps to compute on x
GPAC :

Tentative definition

 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq 2^{-\mu}$

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

Turing machines : T(x) = number of steps to compute on x
GPAC :

Tentative definition

 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq 2^{-\mu}$

Turing machines : T(x) = number of steps to compute on x
GPAC :

Tentative definition

 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq 2^{-\mu}$

- Turing machines : T(x) = number of steps to compute on x
- ► GPAC : time contraction problem → open problem

Tentative definition

 $T(x,\mu) =$ first time *t* so that $|y_1(t) - f(x)| \leq 2^{-\mu}$

Something is wrong...

All functions have constant time complexity.

Time-space correlation of the GPAC

 \sim

Time-space correlation of the GPAC

extra component : $w(t) = e^t$

Time-space correlation of the GPAC

Observation

Time scaling costs "space".

 \sim

Time complexity for the GPAC must involve time and space!

Complexity of solving polynomial ODEs

$$y(0) = x$$
 $y'(t) = p(y(t))$

Complexity of solving polynomial ODEs

$$y(0) = x$$
 $y'(t) = p(y(t))$

Theorem

If y(t) exists, one can compute p, q such that $\left|\frac{p}{q} - y(t)\right| \leq 2^{-n}$ in time poly (size of x and $p, n, \ell(t)$)

where $\ell(t) \approx$ length of the curve (between x and y(t))

length of the curve = complexity = ressource

Characterization of real polynomial time

Definition : $f : [a, b] \rightarrow \mathbb{R}$ in ANALOG-P_R $\Leftrightarrow \exists p$ polynomial, $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

Characterization of real polynomial time

Definition : $f : [a, b] \rightarrow \mathbb{R}$ in ANALOG-P_R $\Leftrightarrow \exists p$ polynomial, $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

satisfies :

1.
$$|y_1(t) - f(x)| \leq 2^{-\ell(t)}$$

«greater length \Rightarrow greater precision»

2. $\ell(t) \ge t$

«length increases with time»

Characterization of real polynomial time

Definition : $f : [a, b] \rightarrow \mathbb{R}$ in ANALOG-P_R $\Leftrightarrow \exists p$ polynomial, $\forall x \in [a, b]$

$$y(0) = (x, 0, ..., 0)$$
 $y' = p(y)$

satisfies :

1.
$$|y_1(t) - f(x)| \leq 2^{-\ell(t)}$$

«greater length \Rightarrow greater precision»

2. $\ell(t) \ge t$

«length increases with time»

Theorem

 $f : [a, b] \to \mathbb{R}$ computable in polynomial time $\Leftrightarrow f \in \mathsf{ANALOG-P}_{\mathbb{R}}$.

satisfies

1. if
$$y_1(t) \ge 1$$
 then $w \in \mathcal{L}$

satisfies

2. if
$$y_1(t) \leq -1$$
 then $w \notin \mathcal{L}$

satisfies

3. if $\ell(t) \ge \operatorname{poly}(|w|)$ then $|y_1(t)| \ge 1$

Theorem

$\mathsf{PTIME} = \mathsf{ANALOG}\mathsf{-}\mathsf{PTIME}$

Summary

Theorem

• $\mathcal{L} \in \mathsf{PTIME}$ of and only if $\mathcal{L} \in \mathsf{ANALOG}\operatorname{-PTIME}$

▶ $f : [a, b] \rightarrow \mathbb{R}$ computable in polynomial time $\Leftrightarrow f \in \mathsf{ANALOG-P}_{\mathbb{R}}$

- Analog complexity theory based on length
- ► Time of Turing machine ⇔ length of the GPAC
- Purely continuous characterization of PTIME

Theorem

• $\mathcal{L} \in \mathsf{PTIME}$ of and only if $\mathcal{L} \in \mathsf{ANALOG}\operatorname{-PTIME}$

▶ $f : [a, b] \rightarrow \mathbb{R}$ computable in polynomial time $\Leftrightarrow f \in \mathsf{ANALOG-P}_{\mathbb{R}}$

- Analog complexity theory based on length
- ► Time of Turing machine ⇔ length of the GPAC
- Purely continuous characterization of PTIME
- Only rational coefficients needed

Elementary mass-action-law reaction system on finite universes of molecules are Turing-complete under the differential semantics.

Is this really realistic?

Elementary mass-action-law reaction system on finite universes of molecules are Turing-complete under the differential semantics.

Is this really realistic?

- we need precise reaction rates
- it is robust to small noise : y' = p(y) + e
- growth of the # molecules/volume

Elementary mass-action-law reaction system on finite universes of molecules are Turing-complete under the differential semantics.

Is this really realistic?

- ▶ we need precise reaction rates → no good answer (yet)
- it is robust to small noise : y' = p(y) + e
- growth of the # molecules/volume

Elementary mass-action-law reaction system on finite universes of molecules are Turing-complete under the differential semantics.

Is this really realistic?

- ▶ we need precise reaction rates → no good answer (yet)
- it is robust to small noise : y' = p(y) + e
- growth of the # molecules/volume

Two possible implementations/proof²

"Integer" encoding :

- exponential growth
- very robust : ||*e*|| ≤ 1/2

Elementary mass-action-law reaction system on finite universes of molecules are Turing-complete under the differential semantics.

Is this really realistic?

- ▶ we need precise reaction rates → no good answer (yet)
- it is robust to small noise : y' = p(y) + e
- growth of the # molecules/volume

Two possible implementations/proof²

"Integer" encoding :

- exponential growth
- very robust : $\|e\| \leq 1/2$

"Rational" encoding :

- linear growth
- Somewhat robust : if |e| ≤ 2^{-N^c} can do SPACE(O(N))

Elementary mass-action-law reaction system on finite universes of molecules are Turing-complete under the differential semantics.

Is this really realistic?

- ▶ we need precise reaction rates → no good answer (yet)
- it is robust to small noise : y' = p(y) + e
- growth of the # molecules/volume

Two possible implementations/proof²

"Integer" encoding :

- exponential growth
- very robust : $\|e\| \leq 1/2$
- "Rational" encoding :
 - linear growth
 - Somewhat robust : if |e| ≤ 2^{-N^c} can do SPACE(O(N))

2. Disclaimer : not in the paper, I haven't checked all the details.

Recall : two possible simulations of the form y' = p(y) + e

- "Integer" encoding :
 - exponential growth
 - very robust : $\|e\| \leq 1/2$
- "Rational" encoding :
 - linear growth
 - Somewhat robust : if |e| ≤ e^{-N^c} can do SPACE(O(N))

Recall : two possible simulations of the form y' = p(y) + e

- "Integer" encoding :
 - exponential growth
 - very robust : ||*e*|| ≤ 1/2
- "Rational" encoding :
 - linear growth
 - Somewhat robust : if |e| ≤ e^{-N^c} can do SPACE(O(N))

 \rightsquigarrow Focus on the integer encoding (much easier).

- theory of generable functions
- encoding of the Turing machines

Writing polynomial ODEs by hand is hard. What if we could write more than polynomials?

Example : y'(t) = sin(y(t)) not polynomial ODE!

Writing polynomial ODEs by hand is hard. What if we could write more than polynomials?

Example : $y'(t) = \sin(y(t))$

not polynomial ODE!

Introduce

 $z_1(t) = \sin(y(t))$ $z_2(t) = \cos(y(t))$

Writing polynomial ODEs by hand is hard. What if we could write more than polynomials?

Example : $y'(t) = \sin(y(t))$

not polynomial ODE!

Introduce

$$\begin{array}{ll} z_1(t) = \sin(y(t)) & & z_1'(t) = y'(t)\cos(y(t)) = z_1(t)z_2(t) \\ z_2(t) = \cos(y(t)) & & z_2'(t) = -y'(t)\sin(y(t)) = -z_1(t)^2 \end{array}$$

Writing polynomial ODEs by hand is hard. What if we could write more than polynomials?

Example : y'(t) = sin(y(t))

not polynomial ODE!

Introduce

$$z_1(t) = \sin(y(t)) \qquad \qquad z_1'(t) = y'(t)\cos(y(t)) = z_1(t)z_2(t) z_2(t) = \cos(y(t)) \qquad \qquad \qquad z_2'(t) = -y'(t)\sin(y(t)) = -z_1(t)^2$$

Therefore, y(t) is a component of the solution of

$$y' = z_1$$

 $z'_1 = z_1 z_2$
 $z'_2 = -z_1^2$

which is a polynomial ODE!
Generable functions : motivations

Writing polynomial ODEs by hand is hard. What if we could write more than polynomials?

Example : y'(t) = sin(y(t)) not polynomial ODE!

Introduce

$$z_1(t) = \sin(y(t)) \qquad \qquad z_1'(t) = y'(t)\cos(y(t)) = z_1(t)z_2(t) z_2(t) = \cos(y(t)) \qquad \qquad \qquad z_2'(t) = -y'(t)\sin(y(t)) = -z_1(t)^2$$

Therefore, y(t) is a component of the solution of

$$y' = z_1$$

 $z'_1 = z_1 z_2$
 $z'_2 = -z_1^2$

which is a polynomial ODE !

This is an instance of a more general phenomenon.

Generable functions : theory

Definition

 $f : \mathbb{R} \to \mathbb{R}$ is generable if $\exists d, p$ and y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Generable functions : theory

Definition

 $f : \mathbb{R} \to \mathbb{R}$ is generable if $\exists d, p$ and y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Nice theory for the class of total and univariate generable functions :

- analytic
- contains polynomials, sin, cos, tanh, exp
- ▶ stable under $\pm, \times, /, \circ$ and Initial Value Problems (IVP)

$$y' = f(y)$$

solutions to polynomial ODEs form a very large class

Why is this useful?

Writing polynomial ODEs by hand is hard.

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated **multivariate partial functions** using other operations, and we know they are solutions to polynomial ODEs **by construction**.

Writing polynomial ODEs by hand is hard.

Using generable functions, we can build complicated **multivariate partial functions** using other operations, and we know they are solutions to polynomial ODEs **by construction**.

Example : almost rounding function

There exists a generable function round such that for any $n \in \mathbb{Z}$, $x \in \mathbb{R}$, $\lambda > 2$ and $\mu \ge 0$:

• if $x \in \left[n - \frac{1}{2}, n + \frac{1}{2}\right]$ then $|\operatorname{round}(x, \mu, \lambda) - n| \leq \frac{1}{2}$,

• if
$$x \in \left[n - \frac{1}{2} + \frac{1}{\lambda}, n + \frac{1}{2} - \frac{1}{\lambda}\right]$$
 then $|\operatorname{round}(x, \mu, \lambda) - n| \leq e^{-\mu}$.

Simulating a Turing machine : discrete

Integer encoding : a configuration of a TM is a tuple $(x,y,z)\in \mathbb{Z}^3$

- x (resp. y) is the left (resp. y) part of the tape
- z encodes the state

Simulating a Turing machine : discrete

Integer encoding : a configuration of a TM is a tuple $(x,y,z)\in\mathbb{Z}^3$

- x (resp. y) is the left (resp. y) part of the tape
- z encodes the state
- A step of a TM *M* is performed by

$$\text{step}_M:\mathbb{Z}^3\to\mathbb{Z}^3$$

We need

- tests (if/then/else)
- basic arithmetic $(+, \times, -)$
- Euclidean division and remainder

Simulating a Turing machine : discrete

Integer encoding : a configuration of a TM is a tuple $(x,y,z)\in\mathbb{Z}^3$

- x (resp. y) is the left (resp. y) part of the tape
- z encodes the state
- A step of a TM *M* is performed by

$$\text{step}_M:\mathbb{Z}^3\to\mathbb{Z}^3$$

We need

- tests (if/then/else)
- basic arithmetic $(+, \times, -)$
- Euclidean division and remainder

A computation is just an iteration of $step_M$ on the encoding of the initial configuration

Simulating a Turing machine : continuous

Our simulation will make errors that need to be corrected, so a configuration will ready be

$$(x,y,z) + e \in \mathbb{R}^3$$

where $\|\boldsymbol{e}\| \leq \varepsilon$ small.

Simulating a Turing machine : continuous

Our simulation will make errors that need to be corrected, so a configuration will ready be

$$(x, y, z) + e \in \mathbb{R}^3$$

where $\|\boldsymbol{e}\| \leq \varepsilon$ small. We approximate the step function by

 $\widetilde{step}_M: \mathbb{R}^3 \to \mathbb{R}^3 \qquad \text{generable function}$

such that

$$\left\|\widetilde{\operatorname{step}}_{M}((x,y,z)+e)-\operatorname{step}_{M}(x,y,z)\right\|<\varepsilon.$$

The error stays under control.

Simulating a Turing machine : continuous

Our simulation will make errors that need to be corrected, so a configuration will ready be

$$(x, y, z) + e \in \mathbb{R}^3$$

where $\|\boldsymbol{e}\| \leq \varepsilon$ small. We approximate the step function by

 $\widetilde{step}_M: \mathbb{R}^3 \to \mathbb{R}^3 \qquad \text{generable function}$

such that

$$\left\|\widetilde{\operatorname{step}}_{M}((x,y,z)+e)-\operatorname{step}_{M}(x,y,z)\right\|<\varepsilon.$$

The error stays under control. To implement it :

- tests (if/then/else) : polynomial interpolation (finitely many cases)
- basic arithmetic $(+, \times, -)$: easy
- Euclidean division : good rounding function + division over \mathbb{R}

Assume f is generable, can we iterate f with an ODE? That is, build a generable y such that $y(x, n) \approx f^{[n]}(x)$ for all $n \in \mathbb{N}$

Formally :

 $y'(t) = \theta(t)(z(t) - y(t)),$ $z'(t) = (1 - \theta(t))(f(y(t)) - z(t))$ where θ generable : $\theta(t) = \operatorname{round}(\frac{1}{2} - \sin(2\pi t))$ We have a differential equation

$$y'=f(y)$$

where $y(t) \in \mathbb{R}^3$, *f* is generable such that y(t) encodes the configuration after *n* steps if $t \in [n, n + 1/2]$.

We have a differential equation

$$y'=f(y)$$

where $y(t) \in \mathbb{R}^3$, *f* is generable such that

y(t) encodes the configuration after *n* steps if $t \in [n, n + 1/2]$. From that, we can add a few variable to derive a stable accept/reject signal and we get ... **Definition :** $\mathcal{L} \in \text{ANALOG-DECIDABLE} \Leftrightarrow \exists p \text{ polynomial}, \forall \text{ word } w$

Definition : $\mathcal{L} \in \text{ANALOG-DECIDABLE} \Leftrightarrow \exists p \text{ polynomial}, \forall \text{ word } w$

satisfies

1. if $y_1(t) \ge 1$ then $w \in \mathcal{L}$

Definition : $\mathcal{L} \in ANALOG\text{-}DECIDABLE \Leftrightarrow \exists p \text{ polynomial}, \forall \text{ word } w$

$$y(0) = (\psi(w), |w|, 0, ..., 0) \qquad y' = p(y) \qquad \psi(w) = \sum_{i=1}^{|w|} w_i 2^i$$

$$1$$

$$\psi(w)$$

$$-1$$

$$computing$$

$$reject : w \notin \mathcal{L}$$

$$y_1(t)$$

satisfies

2. if
$$y_1(t) \leq -1$$
 then $w \notin \mathcal{L}$

Definition : $\mathcal{L} \in ANALOG\text{-}DECIDABLE \Leftrightarrow \exists p \text{ polynomial}, \forall \text{ word } w$

$$y(0) = (\psi(w), |w|, 0, ..., 0) \qquad y' = \rho(y) \qquad \psi(w) = \sum_{i=1}^{|w|} w_i 2^i$$

$$1$$

$$\psi(w)$$

$$-1$$

$$computing$$

$$T(w)$$

$$T(w)$$

$$t$$

$$reject : w \notin \mathcal{L}$$

satisfies

3. eventually $|y_1(t)| \ge 1$ (for $t \ge \text{some } T(w)$)

Definition : $\mathcal{L} \in \text{ANALOG-DECIDABLE} \Leftrightarrow \exists p \text{ polynomial}, \forall \text{ word } w$

Theorem

DECIDABLE = ANALOG-DECIDABLE

$$y(0) = (\psi(w), 0, \dots, 0)$$
 $y' = p(y) + e$

"Integer" encoding :

$$\psi(w) = \sum_{i=1}^{|w|} w_i 2^i$$

• exponential growth :
$$|\psi(w)| = 2^{|w|}$$

• very robust : $\|e\| \leq 1/2$

"Rational" encoding :

$$\psi(\boldsymbol{w}) = \left(|\boldsymbol{w}|, \sum_{i=1}^{|\boldsymbol{w}|} \boldsymbol{w}_i 2^{-i}\right)$$

- linear growth : $\|\psi(w)\| = |w|$
- Somewhat robust : if ||e|| ≤ 2^{-N^c} can do SPACE(O(N))

Rational encoding : same idea but

- need much better primitives for rounding, interpolation, ...
- errors cannot be corrected
- need to restart the simulation when errors grow too large

Rational encoding : same idea but

- need much better primitives for rounding, interpolation, ...
- errors cannot be corrected
- need to restart the simulation when errors grow too large

Two versions :

- [TAMC13] Ad-hoc rationals simulation, super fragile and with tricks
- [JACM17] Complete theory to prove this and a lot more

Rational encoding : same idea but

- need much better primitives for rounding, interpolation, ...
- errors cannot be corrected
- need to restart the simulation when errors grow too large

Two versions :

- [TAMC13] Ad-hoc rationals simulation, super fragile and with tricks
- [JACM17] Complete theory to prove this and a lot more

Detail I have not talked about : the coefficients in the differential equations can be taken to be rational (nontrivial)

Future work on polynomials ODEs

- chemical
- enzymatic

$$y' = p(y)$$

$$\int ?$$

$$y' = p(y) + e(t)$$

- Finer time complexity (linear)
- Nondeterminism
- Robustness
- « Space» complexity
- Other models
- Stochastic

Universal differential equations

Generable functions

Computable functions

x

subclass of analytic functions

any computable function

Universal differential equations

Generable functions

Computable functions

subclass of analytic functions

any computable function

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

For any continuous functions f and ε , there exists $y : \mathbb{R} \to \mathbb{R}$ solution to

$$3y'^{4}y''y''''^{2} -4y'^{4}y'''^{2}y'''' + 6y'^{3}y''^{2}y'''y'''' + 24y'^{2}y''^{4}y'''' -12y'^{3}y''y'''^{3} - 29y'^{2}y''^{3}y'''^{2} + 12y''^{7} = 0$$

such that $\forall t \in \mathbb{R}$,

 $|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y, y', \ldots, y^{(k)}) = 0$$

such that $\forall t \in \mathbb{R}$,

 $|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$

Universal differential algebraic equation (DAE)

Theorem (Rubel, 1981)

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists a solution $y : \mathbb{R} \to \mathbb{R}$ to

$$p(y, y', \ldots, y^{(k)}) = 0$$

such that $\forall t \in \mathbb{R}$,

$$|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$$

Problem : this is «weak» result.

The solution y is not unique, even with added initial conditions : $p(y, y', ..., y^{(k)}) = 0$, $y(0) = \alpha_0$, $y'(0) = \alpha_1$, ..., $y^{(k)}(0) = \alpha_k$
The solution y is not unique, even with added initial conditions : $p(y, y', ..., y^{(k)}) = 0$, $y(0) = \alpha_0$, $y'(0) = \alpha_1$, ..., $y^{(k)}(0) = \alpha_k$

In fact, this is fundamental for Rubel's proof to work !

- Rubel's statement : this DAE is universal
- More realistic interpretation : this DAE allows almost anything

Open Problem (Rubel, 1981)

Is there a universal ODE y' = p(y)? Note : explicit polynomial ODE \Rightarrow unique solution

Universal initial value problem (IVP)

Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t)-f(t)|\leqslant \varepsilon(t).$

Universal initial value problem (IVP)

Notes :

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t) - f(t)| \leq \varepsilon(t).$

Universal initial value problem (IVP)

Notes :

- system of ODEs,
- y is analytic,
- we need $d \approx 300$.

Theorem

There exists a **fixed** (vector of) polynomial p such that for any continuous functions f and ε , there exists $\alpha \in \mathbb{R}^d$ such that

$$\mathbf{y}(\mathbf{0}) = \alpha, \qquad \mathbf{y}'(t) = \mathbf{p}(\mathbf{y}(t))$$

has a unique solution $y : \mathbb{R} \to \mathbb{R}^d$ and $\forall t \in \mathbb{R}$,

 $|y_1(t) - f(t)| \leq \varepsilon(t).$

Remark : α is usually transcendental, but computable from *f* and ε

What is a computer?

What is a computer?

What is a computer?

Computability

Church Thesis

All reasonable models of computation are equivalent.

Complexity

Effective Church Thesis

All reasonable models of computation are equivalent for complexity.

► Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise.
It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0$.

Take f(t) = e^{-1/(1-t^2)}/_{1-t^2} for -1 < t < 1 and f(t) = 0 otherwise. It satisfies (1 - t²)²f''(t) + 2tf'(t) = 0.
For any a, b, c ∈ ℝ, y(t) = cf(at + b) satisfies

$$3y'^{4}y''y''''^{2} -4y'^{4}y''^{2}y'''' + 6y'^{3}y''^{2}y''''y'''' + 24y'^{2}y''^{4}y'''' -12y'^{3}y''y'''^{3} - 29y'^{2}y''^{3}y'''^{2} + 12y''^{7} = 0$$

- ► Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise. It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0$.
- For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

Can glue together arbitrary many such pieces

• Take $f(t) = e^{\frac{-1}{1-t^2}}$ for -1 < t < 1 and f(t) = 0 otherwise.

It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$

For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

- Can glue together arbitrary many such pieces
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear

• Take
$$f(t) = e^{\frac{-1}{1-t^2}}$$
 for $-1 < t < 1$ and $f(t) = 0$ otherwise.

It satisfies $(1 - t^2)^2 f''(t) + 2tf'(t) = 0.$

For any $a, b, c \in \mathbb{R}$, y(t) = cf(at + b) satisfies

 $3{y'}^4{y''}{y''''}^2 - 4{y'}^4{y''}^2{y''''} + 6{y'}^3{y''}^2{y'''}{y''''} + 24{y'}^2{y''}^4{y''''} - 12{y'}^3{y''}{y'''}^3 - 29{y'}^2{y''}^3{y'''}^2 + 12{y''}^7 = 0$

- Can glue together arbitrary many such pieces
- Can arrange so that $\int f$ is solution : piecewise pseudo-linear

Conclusion : Rubel's equation allows any piecewise pseudo-linear functions, and those are **dense in** C^0

Universal DAE revisited

Theorem

There exists a **fixed** polynomial p and $k \in \mathbb{N}$ such that for any continuous functions f and ε , there exists $\alpha_0, \ldots, \alpha_k \in \mathbb{R}$ such that

$$p(y, y', \dots, y^{(k)}) = 0, \quad y(0) = \alpha_0, y'(0) = \alpha_1, \dots, y^{(k)}(0) = \alpha_k$$

has a unique analytic solution and this solution satisfies such that

 $|\mathbf{y}(t)-f(t)|\leqslant \varepsilon(t).$

Definition

 $f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = \rho(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- ▶ $d \in \mathbb{N}$: dimension
- $\blacktriangleright \ \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R} : \mathsf{field}$
- ▶ p ∈ K^d[Rⁿ] : polynomial vector (coef. in K)

•
$$y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$$

Note : existence and unicity of y by Cauchy-Lipschitz theorem.

Definition

 $f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Example :
$$f(x) = x$$

 $y(0) = 0$, $y' = 1 \rightsquigarrow y(x) = x$

Types

- ▶ $d \in \mathbb{N}$: dimension
- $\blacktriangleright \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R}$: field
- ▶ p ∈ K^d[Rⁿ] : polynomial vector (coef. in K)

$$\blacktriangleright y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$$

Definition

 $f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- ▶ $d \in \mathbb{N}$: dimension
- $\blacktriangleright \ \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R} : \mathsf{field}$
- ▶ p ∈ K^d[Rⁿ] : polynomial vector (coef. in K)

$$\blacktriangleright y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$$

Example : $f(x) = x^2$ > squaring $y_1(0) = 0, \quad y'_1 = 2y_2 \quad \rightsquigarrow \quad y_1(x) = x^2$ $y_2(0) = 0, \quad y'_2 = 1 \quad \rightsquigarrow \quad y_2(x) = x$

Definition

 $f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- ▶ $d \in \mathbb{N}$: dimension
- $\blacktriangleright \ \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R} : \mathsf{field}$
- ▶ p ∈ K^d[Rⁿ] : polynomial vector (coef. in K)

$$\blacktriangleright y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$$

Example : $f(x) = x^n$ $y_1(0) = 0, \quad y'_1 = ny_2 \quad \rightsquigarrow \quad y_1(x) = x^n$ $y_2(0) = 0, \quad y'_2 = (n-1)y_3 \quad \rightsquigarrow \quad y_2(x) = x^{n-1}$ $\dots \qquad \dots \qquad \dots$ $y_n(0) = 0, \quad y_n = 1 \quad \rightsquigarrow \quad y_n(x) = x$

Definition

 $f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- ▶ $d \in \mathbb{N}$: dimension
- $\blacktriangleright \ \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R} : \mathsf{field}$
- ▶ p ∈ K^d[Rⁿ] : polynomial vector (coef. in K)

$$\blacktriangleright y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$$

Example : $f(x) = \exp(x)$ \blacktriangleright exponential $y(0)=1, \quad y'=y \quad \checkmark \quad y(x)=\exp(x)$

Definition

 $f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = \rho(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Example :
$$f(x) = \sin(x)$$
 or $f(x) = \cos(x)$
 $y_1(0) = 0, \quad y'_1 = y_2 \quad \rightsquigarrow \quad y_1(x) = \sin(x)$
 $y_2(0) = 1, \quad y'_2 = -y_1 \quad \rightsquigarrow \quad y_2(x) = \cos(x)$

Types

- \blacktriangleright $d \in \mathbb{N}$: dimension
- \triangleright $\mathbb{O} \subset \mathbb{K} \subset \mathbb{R}$: field
- ▶ $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial vector (coef. in \mathbb{K})

$$\blacktriangleright y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$$

e/cosine

Types Definition \blacktriangleright $d \in \mathbb{N}$: dimension $f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p \blacktriangleright $\mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field and y_0 such that the solution y to ▶ $p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. \blacktriangleright $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$ Example : f(x) = tanh(x) hyperbolic tangent v(0) = 0, $v' = 1 - v^2 \rightsquigarrow y(x) = \tanh(x)$ X tanh(x)

Definition

 $f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- ▶ $d \in \mathbb{N}$: dimension
- $\blacktriangleright \ \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R} : \mathsf{field}$
- ▶ p ∈ K^d[Rⁿ] : polynomial vector (coef. in K)

$$\blacktriangleright y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$$

Example : $f(x) = \frac{1}{1+x^2}$ rational function $f'(x) = \frac{-2x}{(1+x^2)^2} = -2xf(x)^2$

$$y_1(0) = 1, \qquad y'_1 = -2y_2y_1^2 \quad \rightsquigarrow \quad y_1(x) = \frac{1}{1+x^2}$$

 $y_2(0) = 0, \qquad y'_2 = 1 \qquad \rightsquigarrow \quad y_2(x) = x$

Definition $f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to $y(0) = y_0, \quad y'(x) = p(y(x))$ satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- ▶ $d \in \mathbb{N}$: dimension
- $\blacktriangleright \ \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R} : \mathsf{field}$
- ▶ p ∈ K^d[Rⁿ] : polynomial vector (coef. in K)

$$\blacktriangleright y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$$

Example : $f = g \pm h$ **>** sum/difference

$$(g\pm h)'=g'\pm h'$$

assume :

$$z(0) = z_0,$$
 $z' = p(z)$ \rightsquigarrow $z_1 = g$
 $w(0) = w_0,$ $w' = q(w)$ \rightsquigarrow $w_1 = h$
then:

 $y(0) = z_{0,1} + w_{0,1}, \qquad y' = p_1(z) \pm q_1(w) \quad \rightsquigarrow \quad y = z_1 \pm w_1$

Types Definition \blacktriangleright $d \in \mathbb{N}$: dimension $f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, p \blacktriangleright $\mathbb{Q} \subset \mathbb{K} \subset \mathbb{R}$: field and y_0 such that the solution y to $\triangleright p \in \mathbb{K}^d[\mathbb{R}^n]$: polynomial $y(0) = y_0, \qquad y'(x) = p(y(x))$ vector (coef. in \mathbb{K}) satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$. \blacktriangleright $y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$ Example : f = gh product (qh)' = q'h + qh'assume : $z(0) = z_0$, z' = p(z) $\rightarrow z_1 = g$ w' = q(w) $\rightsquigarrow W_1 = h$ $w(0) = w_0$, then : $y' = p_1(z)W_1 + z_1q_1(w) \quad \rightsquigarrow \quad y = z_1W_1$ $y(0) = z_{0,1} W_{0,1}$

Definition

 $f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Example : $f = \frac{1}{a}$ hive rse

Types

- ▶ $d \in \mathbb{N}$: dimension
- $\blacktriangleright \ \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R} : \mathsf{field}$
- ▶ p ∈ K^d[Rⁿ] : polynomial vector (coef. in K)

$$\blacktriangleright y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$$

$$f' = \frac{-g'}{g^2} = -g'f^2$$

assume: $z(0) = z_0, \qquad z' = p(z) \qquad \rightsquigarrow \quad z_1 = g$ then: $y(0) = \frac{1}{z_{0,1}}, \qquad y' = -p_1(z)y^2 \quad \rightsquigarrow \quad y = \frac{1}{z_1}$

Definition

 $f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- ▶ $d \in \mathbb{N}$: dimension
- $\blacktriangleright \ \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R} : \mathsf{field}$
- ▶ p ∈ K^d[Rⁿ] : polynomial vector (coef. in K)

$$\blacktriangleright y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$$

Example : $f = \int g$ integral

assume :

$$z(0)=z_0,$$
 $z'=p(z)$ \sim $z_1=g$
then:
 $y(0)=0,$ $y'=z_1$ \sim $y=\int z_1$

Definition

 $f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Example : f = g' berivative

$$f' = g'' = (p_1(z))' =
abla p_1(z) \cdot z'$$

assume :

$$z(0)=z_0, \qquad z'=p(z) \qquad \rightsquigarrow z_1=g$$

then :

$$y(0) = p_1(z_0), \quad y' = \nabla p_1(z) \cdot p(z) \quad \leadsto \quad y = z_1''$$

Types

- ▶ $d \in \mathbb{N}$: dimension
- $\blacktriangleright \ \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R} : \mathsf{field}$
- ▶ p ∈ K^d[Rⁿ] : polynomial vector (coef. in K)
- $\blacktriangleright y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$

Definition

 $f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- ▶ $d \in \mathbb{N}$: dimension
- $\blacktriangleright \ \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R} : \mathsf{field}$
- ▶ p ∈ K^d[Rⁿ] : polynomial vector (coef. in K)

$$\blacktriangleright y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$$

Example : $f = g \circ h$ \blacktriangleright composition

$$(z \circ h)' = (z' \circ h)h' = p(z \circ h)h'$$

assume :

$$\begin{array}{ll} z(0) = z_0, & z' = p(z) & \rightsquigarrow & z_1 = g \\ w(0) = w_0, & w' = q(w) & \rightsquigarrow & w_1 = h \\ \hline then: & \\ v(0) = z(w_0), & v' = p(v)z_1 & \rightsquigarrow & v = z \circ h \end{array}$$

Definition

 $f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- ▶ $d \in \mathbb{N}$: dimension
- $\blacktriangleright \ \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R} : \mathsf{field}$
- ▶ p ∈ K^d[Rⁿ] : polynomial vector (coef. in K)

$$\blacktriangleright y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$$

Example : $f = g \circ h$ \triangleright composition

$$(z \circ h)' = (z' \circ h)h' = p(z \circ h)h'$$

assume: $z(0) = z_0, \qquad z' = p(z) \quad \rightsquigarrow \quad z_1 = g$ $w(0) = w_0, \qquad w' = q(w) \quad \rightsquigarrow \quad w_1 = h$ then: $y(0) = z(w_0), \qquad y' = p(y)z_1 \quad \rightsquigarrow \quad y = z \circ h$ Is this coefficient in K?

Definition

 $f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- ▶ $d \in \mathbb{N}$: dimension
- $\blacktriangleright \ \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R} : \mathsf{field}$
- ▶ p ∈ K^d[Rⁿ] : polynomial vector (coef. in K)

$$\blacktriangleright y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$$

Example : $f = g \circ h$ \blacktriangleright composition

$$(z \circ h)' = (z' \circ h)h' = p(z \circ h)h'$$

assume :

 $y(0)=z(w_0), \quad y'=p(y)z_1 \quad \rightsquigarrow \quad y=z \circ h$

Is this coefficient in \mathbb{K} ? Fields with this property are called generable.

Definition

 $f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- ▶ $d \in \mathbb{N}$: dimension
- $\blacktriangleright \ \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R} : \mathsf{field}$
- ▶ p ∈ K^d[Rⁿ] : polynomial vector (coef. in K)

$$\blacktriangleright y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$$

Example : $f' = \tanh \circ f$ Non-polynomial differential equation

$$f'' = (\tanh' \circ f)f' = (1 - (\tanh \circ f)^2)f'$$

Definition

 $f : \mathbb{R} \to \mathbb{R}$ is generable if there exists d, pand y_0 such that the solution y to

$$y(0) = y_0, \qquad y'(x) = p(y(x))$$

satisfies $f(x) = y_1(x)$ for all $x \in \mathbb{R}$.

Types

- ▶ $d \in \mathbb{N}$: dimension
- $\blacktriangleright \ \mathbb{Q} \subseteq \mathbb{K} \subseteq \mathbb{R} : \mathsf{field}$
- ▶ p ∈ K^d[Rⁿ] : polynomial vector (coef. in K)

$$\blacktriangleright y_0 \in \mathbb{K}^d, y : \mathbb{R} \to \mathbb{R}^d$$

Example : $f(0) = f_0, f' = g \circ f$ Initial Value Problem (IVP) $f' = g'' = (p_1(z))' = \nabla p_1(z) \cdot z'$

assume :

$$z(0)=z_0, \qquad z'=p(z) \qquad \rightsquigarrow z_1=g$$

then :

$$y(0) = p_1(z_0), \quad y' = \nabla p_1(z) \cdot p(z) \quad \leadsto \quad y = z_1''$$

Almost-rounding function

"Perfect round" :

Back to presentation

round(x) :=
$$x - \frac{1}{\pi} \arctan(\tan(\pi x))$$
.

Almost-rounding function

"Perfect round" :

Back to presentation

round(x) :=
$$x - \frac{1}{\pi} \arctan(\tan(\pi x))$$
.
Undefined at $x = n + \frac{1}{2}$: observe that
 $\tan(\theta) = \operatorname{sgn}(\theta) \frac{\sin \theta}{|\cos(\theta)|}$

Almost-rounding function

"Perfect round" :

Back to presentation

round(x) :=
$$x - \frac{1}{\pi} \arctan(\tan(\pi x))$$
.
Undefined at $x = n + \frac{1}{2}$: observe that
 $\tan(\theta) = \operatorname{sgn}(\theta) \frac{\sin \theta}{|\cos(\theta)|}$
Approximate $\operatorname{sgn}(\theta)$:

$$\operatorname{sgn}(\theta) \approx \operatorname{tanh}(\lambda x)$$
 for big λ
Almost-rounding function

"Perfect round" :

Back to presentation

$$\begin{aligned} \operatorname{round}(x) &:= x - \frac{1}{\pi} \arctan(\tan(\pi x)). \end{aligned}$$
 Undefined at $x = n + \frac{1}{2}$: observe that
$$\tan(\theta) = \operatorname{sgn}(\theta) \frac{\sin \theta}{|\cos(\theta)|} \end{aligned}$$
 Approximate $\operatorname{sgn}(\theta)$:

$$\operatorname{sgn}(\theta) \approx \operatorname{tanh}(\lambda x) \qquad \text{for big } \lambda$$

Prevent explosion :

$$|\cos(\theta)| \quad \rightsquigarrow \quad \sqrt{\operatorname{nz}(\cos(\theta)^2)}$$

where $\operatorname{nz}(x) \approx x$ but $\operatorname{nz}(x) > 0$ for all x :

Almost-rounding function

"Perfect round" :

Back to presentation

round(x) :=
$$x - \frac{1}{\pi} \arctan(\tan(\pi x))$$
.
Undefined at $x = n + \frac{1}{2}$: observe that
 $\tan(\theta) = \operatorname{sgn}(\theta) \frac{\sin \theta}{|\cos(\theta)|}$

Approximate $sgn(\theta)$:

$$\operatorname{sgn}(heta) pprox \operatorname{tanh}(\lambda x) \qquad ext{for big } \lambda$$

Prevent explosion :

$$|\cos(heta)| \quad \rightsquigarrow \quad \sqrt{\mathsf{nz}(\cos(heta)^2)}$$

where $nz(x) \approx x$ but nz(x) > 0 for all x:

nz(x) = x +some variation on tanh

Almost-rounding function : gory details

Formally :

Back to presentation

$$\operatorname{rnd}(x,\mu,\lambda) = x - \frac{1}{\pi} \operatorname{arctan}(\operatorname{cltan}(\pi x,\mu,\lambda))$$
$$\operatorname{cltan}(\theta,\mu,\lambda) = \frac{\sin(\theta)}{\sqrt{\operatorname{nz}(\cos^2\theta,\mu+16\lambda^3,4\lambda^2)}} \operatorname{sg}(\cos\theta,\mu+3\lambda,2\lambda)$$
$$\operatorname{nz}(x,\mu,\lambda) = x + \frac{2}{\lambda} \operatorname{ip}_1\left(1 - x + \frac{3}{4\lambda},\mu+1,4\lambda\right)$$
$$\operatorname{ip}_1(x,\mu,\lambda) = \frac{1 + \operatorname{sg}(x-1,\mu,\lambda)}{2}$$
$$\operatorname{sg}(x,\mu,\lambda) = \operatorname{tanh}(x\mu\lambda)$$

All generable functions!